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Abstract
Scour hole that occurs downstream of the hydraulic structures threatens the safety and stability of the hydraulic structures. 
The scour around the structures is a complex and important hydraulic phenomenon; hence, it requires a data extensive 
research for the accurate estimation of scour depth. Although many analytical models are available for scour depth estimation, 
they suffer from huge limitations. In this research, the support vector regression (SVR) model and SVR ensemble with the 
metaheuristic algorithm of innovative gunner (SVR-AIG) models have been developed for accurate prediction of scour depth 
downstream of the ski-jump spillways. Field measurements including head and discharge intensity are used for developing 
the models. The performances of the models are compared using root mean square error (RMSE), mean average error 
(MAE), and correlation coefficient (CC) criteria and some statistical plots. The results showed that the hybrid SVR-AIG-
based estimations (with CC = 0.987, 0.991, RMSE = 2.839, 1.987, and MAE = 2.247, 1.201) are more accurate than the SVR 
standalone model estimations (with CC = 0.942, 0.975, RMSE = 5.686, 4.040, and MAE = 4.114, 3.201) at the training and 
testing phases. This study is an important reference for analyzing the high capability of the AIG as an optimization tool in 
improving scour estimations of a standalone model. Also, this algorithm eliminates the trial-and-error procedure to optimize 
the internal parameters during the model development.
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Introduction

Spillways are major parts of dams for controlled and 
uncontrolled disposal of excess inflows to reservoirs, 
especially in f lood conditions. Downstream of the 
spillways, at the point of contact of the jet with the 
riverbed, a hole is excavated into the soil and rocks due 
to the high energy of water. Therefore, for high-flow 
discharges, spillways are devised with energy dissipaters 
such as ski jumps to reduce the downstream scouring. 
There are many types of spillways, out of which the ski-
jump bucket type is more commonly used. The energy 
dissipation in such a spillway is in the form of a jet of 
water leaving away from the bucket lip into the air, and 
then, falling into the plunge pool formed at the point of 
impact on the tailwater. To reduce heavy soil erosion and 
thereby dam failures, and to evaluate the stability of the 
dam and other hydraulic structures, accurate estimation of 
downstream scouring is very crucial.

In order to study erosion and scour downstream of 
hydraulic structures, physical hydraulic models such as 
Navier–stokes and associated equations by computational 
fluid dynamics (CFD) methods of finite element and finite 
volume have been widely applied (Zhang et al. 2014). 
However, these models due to their costs and complexities 
in design and analysis have become inefficient and time-
consuming. Hence, researchers investigate other fast, 
easy, and accurate methods for scouring estimation in 
hydraulic studies. Recently, hydraulic experts employ 
soft computing techniques in estimating scouring in many 
studies (Muzzammil 2008; Guven et  al. 2009; Adarsh 
2010; Ebtehaj and Bonakdari 2013; Rikar et al. 2016; 
Najafzadeh et al. 2017; Parsaie et al. 2018; Abdollahpour 
et  al. 2019). The main goal of prediction with AI 
techniques was following the recent developments to 
obtain the best model performances (Khatibi et al. 2017). 
In the last decade, artificial neural networks (ANN) as 
artificial intelligence (AI) techniques are widely employed 
in predicting hydraulic and other f low parameters 
(Muzzammil 2008; Emamgholizadeh 2012; Onen 2014; 
Raikar et al. 2016; Pourzangbar et al. 2017). However, 
due to many uncertainties in ANN modeling techniques, 
many attempts have been made by researchers to improve 
the model efficiency by applying optimization algorithms 

or developing other AI methods. The application of 
support vector regression (SVR) model in scour hole 
modeling has been significantly used in recent times (e.g., 
Goyal and Ojha 2011; Sharafi et al. 2016; Hoang et al. 
2018; Sun et al. 2021). It is imperative to note that the 
dimensionality of the input space in the SVR model does 
not affect the computational complexity. Moreover, the 
models’ prediction accuracy is insensitive to the outliers 
in the datasets. The SVR model requires large datasets for 
model development; it suffers from dimensionality and 
it is computationally demanding too (Awad and Khanna 
2015).

The advantage of hybrid models over stand-alone mod-
els is that it takes the strength of each model and neutral-
izes the weaknesses, which results in improving the overall 
performances of the developed models. Many researchers 
have taken the advantage of hybrid models in hydrologic and 
hydraulic problems. An application of a hybrid smart artifi-
cial firefly colony algorithm (SAFCA)-based support vector 
regression (SAFCAS) model in modeling scour depth near 
bridge piers is seen in the research work of Chou and Pham 
(2014). Through their work, the hybrid model integrates the 
firefly algorithm (FA), chaotic maps, adaptive inertia weight, 
Lévy flight, and SVR model for scour depth modeling. The 
model’s performances were compared and assessed with 
other numerical models and empirical models. Salih et al. 
(2020) ensemble enhanced binary particle swarm optimiza-
tion (PSO) algorithm with SVR model (tBPSO-SVR) for 
submerged weir scour modeling. The comparison of the 
developed hybrid model with other machine learning mod-
els shows the outperformance of tBPSO-SVR model over 
other selected models.

Based on the literature, the efficiency of the optimization 
algorithm of innovative gunner (AIG) in soft computing 
hybrid models is less explored in water-related problems 
and hence needs further research to explore the effectiveness 
of its algorithm performance in the field of water resources 
problems. To the best of the authors’ knowledge, no studies 
have been carried out exploring the applicability of scour 
hole modeling using the hybrid model SVR-AIG. Hence, in 
this study, the effectiveness of the SVR-AIG hybrid model 
application over the stand-alone SVR model in scour depth 
modeling has been studied. Taylor diagrams, and scatter 
and Violin plots along with other measurement indices are 

Fig. 1   Schematic profile view of 
ski-jump spillway and variables 
(Azamathulla et al. 2008)
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used for checking the considerable improvements in SVR 
performance by employing the optimization AIG algorithm.

Table 1   Observed data of discharge intensity (q), head (H1), and 
scour depth (ds)

No Discharge inten-
sity
q (m3/s/m)

Head
H1 (m)

Scour depth 
below tailwater 
level
ds (m)

1 34.2 31.72 12.19
2 25.1 20.29 8.08
3 72.49 30.42 18.29
4* 42.76 46.18 19.51
5 21.37 12.55 19.51
6 3.62 24.85 10.37
7 75.8 85 28
8 113.6 180 43
9 68.8 49 20
10* 40 34 20
11 25 31 19
12 95.2 97 30
13 2.6 1.8 2.5
14 1.8 1.9 2.4
15 17 6.3 14.3
16 60 7.3 16.2
17 32 26 11
18 50 14 18
19 14 9 6.4
20 34 32 12.2
21 25 27 8.1
22 72 36 18.3
23 43 50 19.5
24 21 19 19.5
25 3.6 25 10.4
26 170 53 55
27 60 17 17
28* 48 19 24
29 70 19 32
30 10 30 9
31 32 6 11.5
32 31.4 4 11
33 25 8 16.5
34 14 1 6.35
35* 83.3 115.44 47
36 112.71 212.9 37.2
37 39.3 115.74 10.6
38 51.3 86.53 11.4
39 69.5 92.35 17
40 39 49 27.4
41* 47.6 26.6 24.7
42 143.43 19.45 16
43 48 90 70
44 78 88.5 88
45 26.5 96 23
48 47.8 220 62

*Testing set

Table 1   (continued)

No Discharge inten-
sity
q (m3/s/m)

Head
H1 (m)

Scour depth 
below tailwater 
level
ds (m)

49* 96.5 32 35.4
50 42.56 83.5 32
54 25.86 83.5 32
55* 41 49 18
56 41.2 83.5 32
57 55.99 84 32
58 48.98 83.5 41
59 56.2 84 41
60 61.33 83.5 41
61 46.5 23 18
62* 97.54 47.85 15
63 97.54 47.84 23
64 42.6 56.7 19.5
65* 21.5 21.8 28.2
67 46.5 25 10
68 275 101 68
69* 57.58 163 27.5
73 20.51 102 13.5
74 31.4 27 15
75 14 12 6.35
76* 96.3 148 37.5
77 32.62 143 23
78 12.1 97 12
79* 275 91 68
80 26.5 96 23
81 53.1 97.8 37
82* 79.6 98.5 49
83 116.66 65 36
84 79.26 47 29
85 116 64.92 35.96
86 79.06 154.2 8.82
87 52.95 97.53 36.88
88* 79.33 98.45 48.76
89 57.5 122.8 27.43
90 32.6 102.1 13.41
91 7.67 24 5.53
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Methods and materials

Case study and data description

Conventionally, the scour depth downstream of the ski-jump 
buckets spillways (Fig. 1) has been estimated using various 
empirical equations derived from the experimental datasets. 
Veronese equation is among these equations, in which scour 
can be estimated as (Yildiz and Uzucek 1994):

where ds is the vertical depth of scour below tailwater, H1 
is the effective energy of the jet entering tailwater, and q 
represents specific discharge. Wu (1973) suggested another 
equation for estimating relative scour in ski-jump spillways 
as follows:

Martins (1975) also proposed this equation for the estima-
tion of scour depth:

(1)dS = 1.90H1
0.225q0.54

(2)
ds

H1

= 2.11(
q

√
qH3

1

)
0.51

In the present work, the data of the previous experimental 
works, obtained from the mentioned and other traditional 
prediction formulae based on only q and H1, have been col-
lected and compiled in Table 1 to investigate the usefulness 
of the SVR-AIG approach to predict scour depth at down-
stream of ski-jump spillways. To elaborate more, ( ds

H1

 ) is 

taken as dependent variable and 
(

q

gH3

1

)
 as independent 

variable.

Support vector regression (SVR)

The SVR model was first developed by Vapnik (1995) for 
regression and classification problems. The SVR model 
approach is considered a nonparametric approach, as it 
mainly relies on kernel functions. This model is developed 
based on statistical learning theory for structural risk mini-
mization (Safavi and Esmikhani 2013). Also, this aims to 
decrease the learning machine's confidence interval and 

(3)ds = 1.5q0.6H1
0.1

Fig. 2   Flowchart of SVR-AIG 
model
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empirical risk for attaining a strong generalization capacity 
(Raghavendra and Deka 2015).

A set of training data, 
{(

xi + di
)}N

i
 , is considered for 

model development, where xi is the input vector, di is the 
target vector, and N is the number of observations. The 
regression function of SVM can be written as follows:

The variables are defined as: �i is a weight vector, b is 
a bias, and ∅i is a nonlinear transfer function that maps 
the input vectors into a high dimensional feature space, 
where a simple linear regression can deal with the complex 
nonlinear regression of the input space.

The SVR models minimize the e-insensitivity loss func-
tion to find a solution for the following equation:

(4)fx = �i ⋅ �i(x) + b

(5)

(6)

where  and  represent the slack variables, which 

reduces the errors in the training process by the loss func-
tion over the error tolerance � ; C is a positive trade-off 
parameter which represents the degree of the empirical 
error in the optimization problem and di is the desired or 
target value (Suryanarayana et al. 2014). Mathematical 
manipulations are adopted for transforming the objective 
function into the binary formulation. The dual problem is 
transformed into an objective function for quadratic cod-
ing, which was first employed to solve the SVR technique 
to guarantee a global minimum. During the training stage 
of the SVR model, the application and selection of the 
optimization algorithm are critical, as this determines the 
precision of optimization variables, training speed, and 
memory constraint. As a result, the following optimization 
is utilized and can be expressed as mentioned in Eq. 4 
(Suryanarayana et al. 2014):

This is opted for solving linear regression problems, 
rather than nonlinear regression cases; a modified version of 
Eq. (4) is used and written as follows (Isazadeh et al. 2017):

where k
(
xi, x

)
 represents the kernel function. The selection 

of suitable internal parameters is important for better pre-
diction accuracy (Zounemat-Kermani et al. 2016). For the 
present study, a linear kernel is selected.

Some advantages and disadvantages of the SVR model 
are:

	 (i)	 It is robust to the outliers.

(7)fx =

i�

i=1

�
ai − a∗

i

�
⟨xi, x⟩ + b

(8)

fx =

l�

i=1

�
ai − a∗

i

�
k
�
xi, x

�
+ b which k

�
xi, x

�
= ⟨�(xi)�(x)⟩

Fig. 3   Pseudocode of AIG algorithm (Roshni et al. 2022)

Table 2   Parameters used in SVR modeling

Model parameters Value/description

Type Function estimation (f)
The value of the gamma variable 10
Kernel Type Linear_Kernel

Table 3   Parameters used in SVR-AIG modeling

Model Parameters Value

Angles � 0.995 < 𝛼 ≤ 1

Correction Angles �
max

90
Correction Angles �

max
90
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	 (ii)	 It can use multiple classifiers trained on the different 
types of data using the probability rules.

	 (iii)	 It can improve prediction accuracy by measuring 
confidence in classification.

	 (iv)	 SVR performs lower computation compared to other 
regression techniques.

	 (v)	 It introduces an additional parameter ε.
	 (vi)	 It calculates twice Lagrange multipliers ( ai , a∗i  , i.e., 

2 for each).
	(vii)	 It uses all points in the model training (Ccoicca 

2013).

Algorithm of innovative gunner (AIG)

The AIG is developed by Pijarski and Kacejko (2019) 
developed the AIG, which is considered as one of the quick 
metaheuristic optimization algorithms for solving many 
optimization problems. The other advantages include a 
high convergence rate and less time for optimization with 
high accuracy. It is evident from previous literature that this 
is one of the more efficient algorithms than other known 
swarm intelligence algorithms. Detailed information about 
the algorithm is given by Dehghani and Poudeh, (2021a, b).

The overall steps involved in the model development of 
SVR-AIG are detailed in the flowchart shown in Fig. 2. The 
pseudo-code of the AIG algorithm is found in Roshni et al., 
(2022) also given in Fig. 3, which further elaborates the 
high-level working of the proposed scheme.

Both the SVR and hybrid SVR-AIG models were coded 
in MATLAB software.

Performance criteria

To validate the performance of the SVR-AIG model with 
respect to the standalone SVR model, three statistical score 
metrics were employed. These metrics can be described as:

I: Root mean square error (RMSE) expressed as:

II: Mean absolute error (MAE) expressed as:

(9)RMSE =

√√√√ 1

N

N∑

i=1

(Pi − Oi)
2

III: Correlation Coefficient (CC) expressed:

where Oi and Pi are the measured and estimated ith value of 
the scour depth (ds), Oi and Pi are the average of the meas-
ured and estimated scour depth value, respectively, and N is 
the number of data.

Results and discussion

In this research, the SVR model is used to predict the scour 
depth, and the performance is compared with the hybrid 
SVR-AIG model. The first stage of applying the models is to 
normalize the data and divide them for the training (70% of 
the whole data) and testing dataset (30% of the whole data). 
The experimental dataset including the head and discharge 
intensity was considered as the models’ input variables and 
the scour depth below the tailwater level was the output vari-
able of the models. The parameters considered for construct-
ing and developing the models’ structure are as presented in 
Tables 2 and 3.

The performance indices of root mean square error 
(RMSE), mean average error (MAE), and correlation coef-
ficient (CC) are summarized in Table 4 for the training and 
testing phases. It is evident from Table 4 that the strategy 
of applying the AIG algorithm in the hybrid SVR-AIG 
model (with CC = 0.987, 0.991, RMSE = 2.839, 1.987, 
and MAE = 2.247, 1.201) has significantly improved the 
performances of the SVR model (with CC = 0.942, 0.975, 
RMSE = 5.686, 4.040, and MAE = 4.114, 3.201) at the train-
ing and testing phases based on all the performance indices. 
This proves the high ability of the AIG algorithm in improv-
ing the standalone SVR model.

The visual presentation of the test results for SVR and 
SVR-AIG models during the training and testing phase 
is shown in Fig.  4. It is observed from the time series 
plots that the predicted values are more aligned with the 

(10)MAE =
1

N

N∑

i=1

|||
(
Pi − Oi

)|||

(11)CC =

∑N

i=1

�
Oi − Oi

��
Pi − Pi

�

�
∑N

i=1

�
Oi − Oi

�∑N

i=1

�
Pi − Pi

�

Table 4   The values of the 
performance criteria of the 
models for training and testing 
stages

Models Training Testing

CC RMSE MAE CC RMSE MAE

SVR 0.942 5.686 4.114 0.975 4.040 3.201
SVR-AIG 0.987 2.839 2.247 0.991 1.987 1.201
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Fig. 4   Scatter plots and time series of the observed and predicted scour depth of the models for training and testing periods
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observed values for both the selected models. However, 
more accurate predictions of scour depth are evidently seen 
for the developed SVR-AIG model than SVR stand-alone 
model. The 1:1 correlation plots also show a significant 
correlation between the observed and the predicted values 
with R2 = 0.9742 for training and R2 = 0.9847 for testing 
phases for the SVR-AIG model.

The error plots were prepared for both SVR and SVR-
AIG models and the results are shown in Fig. 5. The rela-
tive error plot of the testing phase indicates that the error 
percentage varies from − 30% to + 15% in the SVR model 
and -30% to + 10% in the SVR-AIG model. It is interesting 
to note that the relative errors measured in the SVR-AIG 
model were less compared to the Model SVR in both the 
training and testing phases. It is also noteworthy that the 
SVR-AIG model results reduce the maximum relative error 
value by about 30%.

Taylor diagrams (Fig. 6) visualize the variation of CC, 
standard deviation, and RMSE of the SVR and SVR-AIG 
outputs. The plot indicates that the hybrid SVR-AIG model 
outperforms the SVR model results in both the training and 
testing stages.

Figure 7 shows the violin plots of the models for the train-
ing and testing phases. As can be seen from this figure, the 
shape of the violin of the SVR-AIG model is more similar 
to the observed shape at both the training and testing phases. 
This means that the predicted values of scour depth for the 
SVR-AIG model are more close to the observed/measured 
values at both the training and testing stages.

In general, the results of the evaluation of the statistical 
criteria and plots showed that the SVR-AIG model outper-
forms the SVR model in predicting the scour depth. This 
proves the high ability of the AIG optimization algorithm 
in improving the SVR performance and estimation of its 
optimal parameters. The results are in accordance with the 
results of Dehghani and Poudeh (2021a; b), who found that 
the hybridization of the AIG algorithm performs better than 
other optimization algorithms in improving the ANN models 
for hydrological modeling.

Conclusions

The focus of this research was to find the effectiveness of 
the SVR-AIG hybrid approach for scour depth estimation of 
the ski-jump spillways. The performance of the SVR-AIG 

Fig. 5   Relative error plots of the models for testing period

Fig. 6   Taylor diagrams of the models at the training and testing peri-
ods
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hybrid models and the standalone SVR models in predicting 
the scour depth has been evaluated using statistical indi-
cators. The performance indices (RMSE, MAE, and CC) 
and graphical indicators clearly indicated that the SVR-AIG 
method performs more precisely than the SVR standalone 
model results. The improved performance of the SVR may 
be attributed to the AIG algorithm that can solve complex 
nonlinear problems with greater accuracy than the stan-
dalone models. Therefore, to reduce heavy soil erosion, 
dam failures, and to evaluate the stability of the dam and 
other hydraulic structures it is recommended to apply the 
hybrid SVR-AIG model to predict scouring depth accurately. 
For future studies, it is recommended to develop the other 
hybrid models applying the AIG optimization algorithm and 
investigate its efficiency in improving the accuracy of the 
standalone models in estimating scour depth significantly.
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