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Abstract
The water penetration in soil is investigated numerically using the finite element method (FEM) in a novel way. In the sug-
gested method, new spherical Hankel shape functions are used and the finite element method is reformulated based on them. 
These new functions are obtained from the first and second kind of Bessel functions. The properties of Hankel shape func-
tions lead to having more accuracy and robustness for the proposed method with low number of elements. To validate the 
suggested approach, at first, a boundary value problem is solved and the results are compared with the available analytical 
solution. Then, in order to prove the efficiency and applicability of the present model in the seepage problems, five examples 
including saturated and unsaturated flow in porous media are studied and the hydraulic head is calculated. Afterward, the 
results obtained from the classical and new method are compared together. The comparisons indicate that the suggested 
method with the low number of elements is more precise than the classic FEM with the same mesh.

Keywords Finite element method · Spherical Hankel shape functions · Bessel function · Seepage problems · Hydraulic 
head

Introduction

The seepage phenomenon is an important issue in soil 
mechanics and water engineering and generally is defined 
as the slow moving of a fluid in a porous medium. This 
problem is related to various fields such as water seepage 
through body of a dam and its foundation and also ground-
water flows. To study these problems, the governing equa-
tion of the boundary value problems should be solved. This 
equation is obtained by combining Darcy’s and continuity 
laws. By solving the mentioned equation, the potential vari-
able or hydraulic head is calculated.

The numerical study of the seepage problems has been 
considered by many researchers. The analytical methods 
are applied when one problem has simple geometry and 
boundary conditions. However, when the computational 
domain boundary conditions are complicated, the numeri-
cal methods are more efficient and usually have suitable 

precision for the modeling. In the literature, several works 
have been done in the field of leakage flow problems by 
the numerical methods. Juanes (2005) presented a vari-
ational multiscale finite element method for multiphase 
flow in a porous media. Fu and Sheng (2009) presented a 
numerical model for simulation of the unsteady seepage 
flow through dam. These authors verified the reliability 
and accuracy of this model by laboratory data. A three-
dimensional numerical manifold method for unconfined 
seepage analysis was proposed by Jiang et  al. (2010). 
In this method, these researchers used tetrahedral finite 
element meshes. Bereslavskii (2011) simulated the plan 
steady state seepage in a homogeneous isotropic ground 
from channel as a hydrodynamic formulation. Alyavuz 
(2012) used a new computational analysis method known 
as discrete singular convolution (DSC) method for solving 
seepage flow problems. A numerical modeling was carried 
out for groundwater flow in Daxing, China, by Yang et al. 
(2012). Kazemzadeh-parsi and Daneshmand (2013) solved 
the 3D unconfined seepage problems using smoothed fixed 
grid finite element method. The transient seepage in an 
unsaturated porous media was solved by Pedroso (2015) 
using finite element solution. He also predicted the free 
surface location in the time-dependent problems. Athani 
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et al. (2015) presented the results of seepage and stability 
analysis of an earth dam using finite element method. A 
groundwater model was developed by Karay and Hajnal 
(2015) for flow in fractured rocks. These authors con-
sidered the non-laminar flow in discontinuities. Fukuchi 
(2016) studied the steady state seepage problems using 
interpolation finite difference method. He was able to solve 
two- and three-dimensional elliptic partial differential 
equations over the complicated domain. He also achieved 
results with high accuracy. The 2D subsurface seepage 
flow in an anisotropic porous medium was simulated by 
Lande et al. (2016). In this simulation, a new analytical 
solution was developed to estimate the transient behavior 
of the phreatic surface. Yuan and Zhong (2016) proposed a 
weak form quadrature element formulation in three-dimen-
sion for analysis of unconfined seepage in an earth dam. 
These authors validated the numerical solution by compar-
ing with the available analytical and numerical solutions. 
Jiang et al. (2017) simulated the groundwater bypass seep-
age at the dam site of Dongzhiang hydro-junction. They 
considered Hydrological conditions include underground 
water divides, a hanging river and hydraulic drops along 
faults.

In this paper, it is developed a new finite element method 
for modeling the seepage problems. In this present approach, 
spherical Hankel shape functions are used instead of 
Lagrange shape functions in finite element method. Gener-
ally, in the classical FEM, when the number of elements 
are increased or in other words, when the mesh used is 
refined, the numerical solution become close to the exact 
solution, but by doing so, the CPU time and storage space 
are enhanced. Therefore, by using the new suggested shape 
functions, the degrees of freedom can be decreased while 
high accuracy can be resulted.

In order to estimate multivariable functions by linear 
combinations of terms depending on a univariate function, 
radial basis functions (RBFs) are used (Buhmann 2003). 
RBFs are categorized into two classes: oscillatory and non-
oscillatory. The Gaussian functions, the thin plate splines, 
compact supported functions, multiquadrics and inverse 
multiquadrics are in the non-oscillatory class, while real and 
complex Fourier and J-Bessel RBFs are placed in oscillatory 
category (Hamzeh Javaran et al. 2011a, 2011b; Hamzehei 
Javaran and Khaji 2012, 2014; Khaji and Hamzehei Javaran 
2013; Hamzehei Javaran and Shojaee 2017; Bahrampour 
et al. 2018; Farmani et al. 2018).

Complex Fourier and J-Bessel RBFs were proposed by 
Hamzeh Javaran et al. (2011a). The J-Bessel RBFs only 
have the properties of the first kind of Bessel function, while 
spherical Hankel shape functions contain the features of both 
first and second kind of Bessel functions, simultaneously. 
Therefore, this is the reason of the robustness of Hankel 
functions for increasing the solution accuracy. In the area 

of the application of Hankel shape functions, Mousavi et al. 
(2021) solved fracture mechanics problem using boundary 
element method based on these functions recently.

In order to apply Hankel functions in the fluid mechan-
ics, first, Farmani et al. (2018) made an improvement in 
the solution of Navier–Stokes equations for the benchmark 
fluid mechanics problems. Then, Hankel shape functions are 
used for boundary value problems (Farmani et al. 2019a) 
and for the sloshing behavior in 2-D tanks (Farmani et al. 
2019b). Recently, Hankel shape functions are used for mod-
eling the performance of Tuned Liquid Dampers (TLD) and 
also the interaction force between TLD-structure (Farmani 
et al. 2021). According to the past researches, it is useful to 
investigate the performance of the Hankel shape functions 
in the seepage and groundwater flow modeling in this paper.

The present paper consists of the following parts: at first, 
the governing equation and FEM formulation are stated. 
Then, spherical Hankel shape function and enrichment pro-
cedure are investigated. After that, to validate the proposed 
method for the leakage flows problems, one boundary value 
problem with different boundary conditions is solved and 
the results obtained are compared with the analytical solu-
tion. Also, in order to show applicability and reliability, 
five numerical problems are studied including saturated 
and unsaturated flow in porous media. Finally, the results 
are analyzed and the accuracy and precision of the present 
model are demonstrated.

Methods

The governing equations and FEM formulation are discussed 
in this part. Then, the suggested functions and the enrich-
ment procedure are stated.

Governing equation and FEM formulation

In order to study the behavior of water in the porous media, 
two-dimensional seepage flow is considered. Therefore, 
the governing equation can be written as Eq. (1) which is 
obtained from Darcy’s and continuity laws (Lam et al. 1987).

The above relation is a general equation that takes into 
account the transient condition. kx and ky are hydraulic per-
meability coefficients in x and y directions, respectively. 
h(x ⋅ y ⋅ t) denote hydraulic head. Also, �w and g indicate the 
density of water and gravitational acceleration, respectively. 
mw

2
 is the slop of water retention curve.
There are two types of boundary conditions for seep-

age problems: boundary with specific head (Dirichlet 
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boundary condition) and impermeable boundary (Neu-
mann boundary conditions) which are expressed as h = h0 
and �h∕�n , respectively. Of course, for the groundwater 
problems, if there is a river in the aquifer domain, Neu-
mann boundary conditions in the form of �h∕�n = q0 , can 
be considered.

The purpose of numerical modeling is finding the 
unknown variable h(x, y) . Therefore, in the finite element 
method, the nodal variables are expressed by the following 
relation:

where �j denotes the interpolation (shape) function. Using 
the FEM in solving Eq.  (1), the below relation can be 
resulted:

According to employment of the four-node elements, it 
can be written as:

in which m̃ = 𝜌wgm
w
2
 and �̇n′ is time derivative of nodal 

hydraulic head.
It should be noted that � can be classic Lagrange or Han-

kel shape functions. In the following section, the develop-
ment procedure of Hankel functions is stated.

Suggested new shape functions

The J-Bessel functions that have been used in the other 
researches contain just the properties of the first kind of 
Bessel functions. Equation (5) expresses the Bessel equa-
tion of order u:
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The solution of Eq. (5) is in the form of the following 
form:

in which A and B are constant and Ju and Yu show the first 
and second kind Bessel of order u , respectively. It should be 
noted that the first kind of Bessel functions is not capable of 
describing all properties of a physical phenomenon, while, 
by combining the first and second kind of it, Hankel RBFs 
are obtained and by using them, the numerical modeling is 
improved. In the following section, the enrichment process 
is stated completely.

Enrichment procedure of spherical Hankel shape 
functions

In this part, the enrichment procedure of Hankel RBFs is 
stated for an arbitrary n-node element in � direction, which 
is shown in Fig. 1.

At first, the polynomial terms and functional expansion 
of redial basis functions are combined:

in which n and m show the number of nodes and basis poly-
nomial terms, respectively. Also, the following relation indi-
cates the parameters and functions used in relation (7).

If the nodal points are replaced in Eq. (7), relation (9) 
can be resulted:

where

(5)x2y�� + xy� + (x2 − u2)y = 0

(6)y = AJu + BYu

(7)wh(�) =

n∑
i=1

Ri(r)ci +

m∑
j=1

Pj(�)dj = �T (r)c + �T (�)d

(8)

�T =
[

c1 c2 ... cn
]

, �T

=
[

d1 d2 ... dm
]

�T (r)
= [R1(r) R2(r) ... Rn(r)] , �T (�)
= [P1(�) P2(�) ... Pm(�)]

(9)�̂ = �Q� + �m�

Fig. 1  The n-node element in one dimension
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It should be noted that the number of unknowns in 
Eq. (9) is equal to n + m, while there are only n equations, 
and thus in order to balance the number of knowns and 
unknowns, additional conditions are essential [for more 
details see Farmani et al. (2018) and Bahrampour et al. 
(2018)].

Finally, the set of equations can be resulted as the fol-
lowing form:

By using some algebraic manipulations, relation (12) is 
resulted:

in which,

If c and d are replaced into Eq. (7), the following relation 
can be obtained:

The final matrix of the shape functions is suggested as 
below:

Consequently, the following relation expresses the 
intended RBF:
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that � and ñ denote the shape parameters of Hankel RBF and 
h
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(𝜀r) shows the spherical Hankel func-

tion of the first kind.
Since there is a singularity at imaginary part of 

h
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(𝜀r) = jñ(𝜀r) + iyñ(𝜀r) , the term of (𝜀r)ñ+1 is applied for 

resolving this problem. Thus the limiting values of the RBF 
can be obtained as:

The intended RBF for n-node element shown in Fig. 1 is 
calculated as below:

In the enrichment process of Hankel RBF, the matrices 
can be expressed as:
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��)ñ+1g(1)ñ
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Fig. 2  Domain and different boundary conditions for validation prob-
lem

Fig. 3  Meshed domain with a 2048 elements, b 8-element with nodes 
number for validation problem
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Table 1  Comparison of the results among Hankel shape function (8 elements), Lagrange shape function (8 and 2048 elements) and analytical 
solution for validation problem

Node Lagrange shape function (8 elements) 
(relative error%)

Hankel shape function (8 elements) 
(relative error%)

Solution with 2048 elements (rela-
tive error%)

Analyti-
cal solu-
tion

7 0.259 (2.99) 0.265 (0.75) 0.267 (0) 0.267
8 0.370 (1.85) 0.375 (0.53) 0.377 (0) 0.377
9 0.291 (8.98) 0.270 (1.12) 0.267 (0) 0.267
10 0.249 (–) 0.06 (–) 0 (–) 0

L
2 relative error norm = 46.92% L

2 relative error norm = 11.27% L
2 relative error norm = 0%

Computational time = 1.57 s Computational time = 1.91 s Computational time = 2.52 s

Fig. 4  Computational domain and boundary conditions for the first 
problem

Fig. 5  Meshed domain with a 
1280 elements, b 10-element for 
the first problem



 Applied Water Science (2023) 13:8

1 3

8 Page 6 of 15

(21)�m =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 �1 . . . �n−2
1

1 �2 . . . �n−2
2

. . . .

. . . .

. . . .

1 �n . . . �n−2
n

⎤⎥⎥⎥⎥⎥⎥⎦

where, � = lim
r→0

R(r) , which is restricted by deleting the sin-
gularity in Eq. (17).

Finally, the shape functions for an n-node element are 
written as relation (22):

where F, G and E are expressed as:

that j, o ∈ A and the set A is expressed as A = {1, 2, ..., n} 
(Farmani et al. 2018).

It should be noted that the spherical Hankel shape func-
tions have some properties such as Kronecker delta property, 
Partition of unity, Linear independence property and Infinite 
piecewise continuity which are stated completely in Farmani 
et al. (2018) and Bahrampour et al. (2018).

The above process can be easily extended to 2-D ele-
ments. In this paper, four-node quadrilateral elements are 
used for solving the seepage problems by the classic finite 
element and new methods.
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Table 2  Comparison of the 
results among Hankel shape 
function (10 elements) and 
Lagrange shape function (10 
and 1280 elements) for the first 
problem

Node Lagrange shape function (10 ele-
ments) (relative error%)

Hankel shape function (10 ele-
ments) (relative error%)

Solution with 1280 elements

1 3.110 (1.70) 3.151 (0.41) 3.164
2 2.449 (9.23) 2.569 (4.78) 2.698
3 1.01 (23.19) 1.221 (7.15) 1.315
4 0.194 (42.09) 0.284 (15.22) 0.335
5 0.0466 (65.22) 0.114 (14.92) 0.134
6 3.274 (0.03) 3.273 (0) 3.273
7 2.616 (7.79) 2.725 (3.95) 2.837
8 0.846 (30.71) 0.919 (24.73) 1.221
9 0.111 (53.94) 0.226 (6.22) 0.241
10 0.0426 (55.48) 0.0875 (8.57) 0.0957
11 3.504 (2.040) 3.552 (0.7) 3.577
12 3.480 (5.87) 3.316 (0.88) 3.287

L
2 relative error norm = 8.326% L

2 relative error norm = 4.61%
Computational time = 1.27 s Computational time = 1.5 s Computational time = 2.1 s

Fig. 6  Contours of hydraulic head (m) for the first problem with 18 
nodes

Fig. 7  Computational domain and boundary conditions for the second 
problem
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Results and discussion

Validation

In this section, to validate and verify the numeri-
cal modeling of leakage problems, Laplace equation 
( �2�

/
�x2 + �2�

/
�y2 = 0 ) is solved for the domain shown 

in Fig. 2. In this problem, both boundary conditions, namely 
Dirichlet and Neumann conditions, exist. Thus, it can be a 
suitable representative for the seepage flow problems. For 

the modeling, the numerical results are obtained with high 
number of elements and then 8 elements for both methods 
(Fig. 3). Then, these results are compared with the analytical 
solution [Eq. (26)] and presented in Table 1.

According to the results in Table 1, it can be justified 
that firstly, Hankel shape functions with 8 elements present 

(26)�(x, y) =
�0

sinh
(

�b

a

) sin
(
�x

a

)
sinh

(�y
a

)

Fig. 8  Meshed domain with a 
3072 elements, b 12 elements 
for the second problem

Table 3  Comparison of the 
results among Hankel shape 
function (12 elements) and 
Lagrange shape function (12 
and 3072 elements) for the 
second problem

Node Lagrange shape function (12 
elements) (relative error%)

Hankel shape function (12 ele-
ments) (relative error%)

Solution with 3072 elements

2 34.742 (1.22) 34.998 (0.49) 35.173
3 28.408 (1.16 28.554 (0.65) 28.742
4 21.0 (1.93) 21.321 (0.43) 21.414
5 13.591 (3.35) 13.954 (0.77) 14.062
6 7.257 (2.55) 7.384 (0.84) 7.447
9 35.548 (1.99) 35.986 (0.79) 36.273
10 29.215 (0.271) 29.141 (0.017) 29.136
11 21.0 (1.97) 21.320 (0.47) 21.422
12 12.784 (6.77) 13.516 (1.43) 13.713
13 6.451 (2.89) 6.613 (0.45) 6.643
17 29.066 (0.998) 29.215 (0.49) 29.359
18 21.0 (1.97) 21.320 (0.48) 21.423
19 12.934 (4.093) 13.257 (1.69) 13.486

L
2 relative error norm = 2.01% L

2 relative error norm = 0.655%
Computational time = 1.29 s Computational time = 1.82 s Computational time = 3.6 s
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more accurate results than Lagrange shape functions with 
the same mesh. Secondly, Lagrange functions with high 
number of elements have very good agreement with the 
analytical solution. Thus the model with high degrees of 
freedom can be selected as a comparison source for the study 
of applicability and efficiency of the proposed approach for 
the seepage problems.

Applicability

In order to demonstrate the applicability and robustness 
of the suggested formulation in the seepage flows, various 
numerical models are carried out. Then the present model 
results with coarse meshes are compared with the traditional 
FEM with the same and refined meshes. The results are pre-
sented in the framework of tables and graphs. It should be 
noted that, for the results in the tables, the relative error 
L2 relative error norm and the computational time are 
presented.

First problem: groundwater flow under a coffer dam

The first problem is the steady state groundwater flow 
beneath a coffer dam. The computational domain with 
boundary conditions is shown in Fig. 4 (Reddy 2004). The 
Laplace equation is solved by the present model and also 
the classic method. For this purpose, a coarse mesh (10 ele-
ments) and then a mesh with high number of elements are 
chosen (Fig. 5). The results obtained from both methods are 
given in Table 2.

According to the Table 2, it is inferred that with fewer 
number of elements in the present formulation, better accu-
racy than the classic FEM is achieved and the calculated 
errors are also less. Also, the contours of hydraulic head are 
indicated in Fig. 6 for this problem with 10-element mesh.

Second problem: flow through the foundation 
of a dam

In this case, the steady state seepage flow of soil founda-
tion of a dam is studied. It is assumed that the soil under 
the dam is isotropic and heterogeneous (Reddy 2004). Fig-
ure 7 displays the geometry and boundary conditions for this 
problem. The governing equation is solved by both methods 
with refined meshes and then the meshes with low number 
of elements. The grids are shown in Fig. 8. To compare 
the proposed method results with the classic finite element 
method, the results are indicated in Table 3. The errors are 
also computed based on the numerical solution with high 
degrees of freedom.

As it can be observed in Table 3, the proposed formula-
tion has better agreement with the results by high elements 
compared with the classic method with the same number of 
elements. For this case, Fig. 9 shows the contours of hydrau-
lic head for the mesh with 12 elements.

Third problem: groundwater flow in an aquifer 
with river boundary, pumping and recharges wells

In this part, a homogeneous and anisotropic aquifer is inves-
tigated. Equation (1) with steady state condition is solved 
using the proposed and classical methods. For this problem, 
the permeability coefficients are considered kx = 1.75 m/
day and ky = 1 m/day in the x and y-direction, respectively. 
Furthermore, it is assumed that a river passes through the 
aquifer with infiltrating rate of q0 = 0.5  m3/day/m. Two 
pumping wells and one recharges well with rates of Q1 = 
900  m3/day, Q2 = − 220  m3/day and Q3 = − 450  m3/day 
are also considered (Reddy 2004). The geometry, boundary 
conditions, the locations of river and wells are illustrated in 
Fig. 10. The grids with 100 × 50 and 4 × 4 meshes are used 
which are depicted in Fig. 11. Also, Figs. 12 and 13 show 
the results obtained from the both methods at y = 0 and y = 

Fig. 9  Contours of hydraulic head (m) for the second problem with 
21 nodes

Fig. 10  Computational domain and boundary conditions for the third 
problem
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25 m, respectively. The contours of head are also given in 
Fig. 14 for the 16-element mesh. It should be noted that the 
computational time of this problem for Hankel and Lagrange 
functions with 16 elements and Lagrange functions with 
5000 elements is 2.11, 1.7 and 11.1 s, respectively.

According to Figs. 11 and 12, it can be found that using 
spherical Hankel shape functions with 16 elements leads to 

having better results than Lagrange shape functions with 
the same mesh.

Fourth problem: groundwater flow in anisotropic 
heterogeneous region with river boundary

A domain with different permeability in two direc-
tions is considered in this section. Then, the steady state 

Fig. 11  Meshed domain with a 
5000 elements, b 16 elements 
for the third problem

Fig. 12  Comparison of hydraulic head results at y = 0, among Hankel 
shape function (16 elements) and Lagrange shape function (16 and 
5000 elements) for the third problem

Fig. 13  Comparison of hydraulic head results at y = 25  m, among 
Hankel shape function (16 elements) and Lagrange shape function 
(16 and 5000 elements) for the third problem
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groundwater flow is studied for the intended aquifer. In the 
top boundary, the hydraulic head is varied as linear and in 
the function of x. There is a river at the left boundary with 
rate of q0 = 0.24  m3/day/m. Other boundaries are imperme-
able (Reddy 2004). The computational domain and bound-
ary conditions are also shown in Fig. 15. Also, the meshes 
used are illustrated in Fig. 16. The numerical results are also 
exhibited in Fig. 17 and Table 4. The contours of hydraulic 
head are presented in Fig. 18.

It can be concluded from Fig. 17 and Table 4 that the 
suggested formulation improves the accuracy in the numeri-
cal modeling of the mentioned problem. The computational 
time of Hankel functions is marginally more than Lagrange 
functions with the same mesh for all problems. However, 
this time is less than Lagrange functions with high num-
ber of elements. Also, the improved accuracy using Hankel 
functions is significant.

Fifth problem: unsaturated–saturated soil 
with transient condition

A time-dependent seepage problem is investigated in this 
section. The studied soil consists of two unsaturated and 
saturated regions. In order to model the unsaturated part, 
the permeability coefficient (or hydraulic conductivity coef-
ficient) is assumed to be a function of pore-water pressure. 
The permeability function for different soils is shown in 
Fig. 19.

The governing equation for seepage in unsaturated–satu-
rated soil with transient condition is expressed as the fol-
lowing relation:

Fig. 14  Contours of hydraulic head (m) for the third problem with 25 
nodes

Fig. 15  Computational domain and boundary conditions for the 
fourth problem

Fig. 16  Meshed domain with a 
4900 elements, b 18 elements 
for the fourth problem
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In this paper, mw
2
 value (the slop of water retention curve) 

is considered constant and equal to 0.0001   m2/kN. Fig-
ure 20 shows the water retention curve for this problem. 
It should be noted that the soil is assumed sandy for this 
problem. There is the anisotropic condition in the unsatu-
rated part where the angle between the major permeability 
coefficient and x-axis is considered � = 30◦ . In Eq. (27), 

(27)

�
�x

(

kxx
�h(x ⋅ y ⋅ t)

�x
+ kxy

�h(x ⋅ y ⋅ t)
�y

)

+ �
�y

(

kyx
�h(x ⋅ y ⋅ t)

�x
+ kyy

�h(x ⋅ y ⋅ t)
�y

)

= �wgmw
2
�h(x ⋅ y ⋅ t)

�t

Fig. 17  Comparison of hydraulic head results at y = 0, among Hankel 
shape function (18 elements) and Lagrange shape function (18 and 
4900 elements) for the fourth problem

Table 4  Comparison of the 
results among Hankel shape 
function (18 elements) and 
Lagrange shape function (18 
and 4900 elements) for the 
fourth problem

Node Lagrange shape function (18 
elements) (relative error%)

Hankel shape function (18 ele-
ments) (relative error%)

Solution with 4900 elements

8 45.962 (18.32) 37.003 (4.74) 38.844
9 51.380 (13.51) 46.665 (3.097) 45.263
10 89.758 (21.19) 75.656 (2.15) 74.062
11 106.075 (5.81) 102.056 (1.80) 100.250
12 126.945 (0.248) 126.790 (0.12) 126.631
13 157.433 (0.79) 156.554 (0.23) 156.199
14 171.935 (0.76) 170.947 (0.18) 170.638
15 30.378 (23.76) 25.585 (4.23) 24.545
16 43.253 (5.24) 40.850 (0.60) 41.097
17 83.905 (15.20) 74.458 (2.23) 72.831
18 103.242 (3.1) 101.016 (0.88) 100.132
19 127.195 (0.25) 127.651 (0.10) 127.514
20 161.060 (0.82) 160.756 (0.63) 159.745
21 181.423 (1.13) 180.030 (0.35) 179.394

L
2 relative error norm = 5.51% L

2 relative error norm = 0.98%
Computational time = 1.54 s Computational time = 2.1 s Computational time = 7.6 s

Fig.18  Contours of hydraulic head (m) for the fourth problem with 
28 nodes

Fig. 19  Unsaturated permeability function for different soils (Lam 
et al, 1987)
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kxx = k1 cos
2 � + k2 sin

2 �, kyy = k1 sin
2 � + k2 cos

2 �  and 
kxy = kyx = (k1 − k2) sin � cos � . That, k1 and k2 are the major 
and minor permeability coefficient, respectively.

It can be mentioned that matrix C is defined as 

� =

[
kxx kxy
kyx kyy

]
 for this problem.

In order to approximate the hydraulic head at the different 
time step, the central finite difference approximation is used 
as the following relation:

where Δt is the time step that is considered equal to 0.5 min.
It should be noted that the transient seepage equation in 

the unsaturated region is nonlinear. Because the permeabil-
ity coefficient is a function of pore-water pressure, an itera-
tive scheme is needed to obtain the correct nodal hydraulic 
heads. First, an initial permeability is assumed and nodal heads 
are calculated. Then, the water-pore pressure is obtained by 
(uw)t =

(
hn

�

t
− zn

�)
�wg that zn′ indicates the elevation at the 

nodes of the elements. Therefore, using the pressure and per-
meability function, a modified permeability value is consid-
ered to calculate the new nodal heads. This process is repeated 
until the difference of the head and permeability for two itera-
tions are smaller than 0.0001.

To model this numerical example, the geometry with 
boundary conditions is considered according to illustrated con-
ditions in Fig. 21. The problem discussed here is a transient 
groundwater flow in two unsaturated–saturated regions. The 
initial depth of water in pond is assumed 1 m. Also, a lining 
with permeability coefficient equal to 1 ×  10−6 m/s is consid-
ered on the bottom of pond. At the left and right boundaries, 
there are hydrostatic conditions.

In order to investigate the applicability of this problem, 
the present model results are compared with the results 
of Lam et al. (1987). A grid with 20 elements (Fig. 22) is 
studied for the numerical modeling. Tables 5, 6, 7 and 8 
present the nodal hydraulic head at different times using 
finite element method based on both Lagrange and Han-
kel functions. The negative sign for some values in the 
tables represents the suction pressure. Also, the contours 
of hydraulic head at the points when the time is equal to 
1316 min are shown in Fig. 23 using 20 elements based on 
the proposed functions.

It is observed that Hankel functions present the results 
with more precision than Lagrange functions in compari-
son with numerical results of Lam et al. (1987). Although 
the computational cost of Hankel functions is slightly 
more, the increased accuracy is significant.

Conclusion

Leakage flow in soil was studied numerically by sug-
gesting new shape functions based on the finite element 
method. In the proposed formulation, the new functions 

(28)
(
� +

2�

Δt

)
�n

�

t+Δt
=
(
2�

Δt
−�

)
�n

�

t
− 2�̃

Fig. 20  Water retention curve for different soils (Lam et al, 1987)

Fig. 21  Computational domain and boundary conditions for the fifth 
problem

Fig. 22  Meshed domain with 20 elements for the fifth problem
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Table 5  Comparison of the 
results obtained from Hankel 
shape function, Lagrange 
shape function and numerical 
solution of Lam et al. (1987) 
at t = 22.5 min for the fifth 
problem

Node Lagrange shape function (20 ele-
ments) (relative error%)

Hankel shape function (20 ele-
ments) (relative error%)

Numerical modeling 
of Lam et al. (1987)

8 2.00 (0.00) 2.00 (0.00) 2.00
9 2.13 (6.50) 2.00 (0.00) 2.00
10 2.06 (3.00) 2.00 (0.00) 2.00
11 2.00 (0.00) 2.00 (0.00) 2.00
14 0.00 (–) 0.00 (–) 0.00
15 0.00 (–) 0.00 (–) 0.00
16 − 0.11 (–) 0.00 (–) 0.00
17 0.00 (–) 0.00 (–) 0.00
20 − 3.16 (5.33) − 3.12 (4.00) − 3.00
21 − 3.35 (8.06) − 3.15 (1.61) − 3.10
22 − 3.21 (7.00) − 3.12 (4.00) − 3.00
23 − 3.16 (5.33) − 3.07 (2.33) − 3.00

L
2 relative error norm = 6.01% L

2 relative error norm = 2.62%

Table 6  Comparison of the 
results obtained from Hankel 
shape function, Lagrange 
shape function and numerical 
solution of Lam et al. (1987) 
at t = 66.5 min for the fifth 
problem

Node Lagrange shape function (20 Ele-
ments) (Relative error%)

Hankel shape function (20 Ele-
ments) (Relative error%)

Numerical modeling 
of Lam et al. (1987)

8 2.10 (5.0) 2.0 (0.0) 2.0
9 2.11 (5.50) 2.0 (0.0) 2.0
10 2.20 (10.0) 2.13 (6.50) 2.0
11 2.10 (5.0) 2.0 (0.0) 2.0
14 − 0.09 (–) 0.0 (–) 0.0
15 − 0.15 (–) − 0.12 (–) 0.0
16 − 0.09 (–) 0.0 (–-) 0.0
17 − 0.13 (30.0) − 0.11 (10.0) − 0.10
20 − 3.41 (13.66) − 3.22 (7.33) − 3.0
21 − 2.50 (7.40) − 2.51 (7.03) − 2.70
22 − 1.80 (5.88) − 1.77 (4.11) − 1.70
23 − 2.61 (16.0) − 2.65 (6.0) − 2.5

L
2 relative error norm = 9.08% L

2 relative error norm = − 5.88%

Table 7  Comparison of the 
results obtained from Hankel 
shape function, Lagrange 
shape function and numerical 
solution of Lam et al. (1987) 
at t = 174min for the fifth 
problem

Node Lagrange shape function (20 ele-
ments) (relative error%)

Hankel shape function (20 ele-
ments) (relative error%)

Numerical modeling 
of Lam et al. (1987)

8 2.23 (11.50) 2.10 (5.00) 2.00
9 2.20 (10.00) 2.11 (5.50) 2.00
10 2.25 (2.27) 2.10 (4.54) 2.20
11 2.44 (6.08) 2.35 (2.17) 2.30
14 0.11 (–) 0.10 (–) 0.00
15 0.15 (50.00) 0.12 (20.00) 0.10
16 0.62 (55.00) 0.50 (25.00) 0.40
17 0.50 (16.67) 0.55 (8.33) 0.60
20 − 2.74 (5.51) − 2.82 (2.75) − 2.90
21 − 1.55 (18.42) − 1.66 (12.63) − 1.90
22 − 1.20 (20.00) − 1.14 (14.00) − 1.00
23 − 1.29 (10.25) − 1.22 (4.27) − 1.17

L
2 relative error norm = 10.87% L

2 relative error norm = 6.59%
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were derived by combining polynomials and spherical 
Hankel radial basis functions, and therefore, they contain 
the advantages of both functions. These advantages also 
provide robustness and strength for the offered approach. 
In addition, these properties improve the solution accuracy 
with fewer degrees of freedom. In order to validate the 
present method, one boundary value problem with differ-
ent boundary conditions was studied and then the results 
were compared with analytical solution. Also, five seep-
age numerical problems for finding hydraulic head were 
investigated, and through them, the applicability and reli-
ability of the proposed method were examined. The results 
indicated that the present model with the low number of 
elements is more efficient than the classic FEM with the 
same mesh.
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