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Abstract
The objective of the present study was to develop a genetic algorithm capable of establishing optimal operating policies for 
monthly extractions from the three main reservoirs of the Cutzamala System, which supply drinking water to the Mexico 
City metropolitan area. In previous studies, annual water extraction defined with an annual Z curve in terms of the total water 
storage in the reservoirs on November 1 was optimized using genetic algorithms. In this study, a percentage of total annual 
extraction for each reservoir was also optimized, but monthly water extractions were adjusted too, when the water level fell 
outside the upper or lower limits of guide curves stablished for each reservoir. The capabilities of the genetic algorithms 
combined with a detailed simulation of reservoirs operation were used to optimize the levels of the guide curves and also to 
optimize the adjusted monthly programed extractions as linear functions of the difference between the actual storage level 
at the beginning of each month and the corresponding level of the guide curves. Therefore, 90 parameters were established: 
four to define the Z curve, two to establish the percentage assigned to each reservoir, 72 to establish the monthly levels of the 
guide curves and 12 to define the parameters of the linear functions used to adjust the monthly programed extractions when 
the actual water level exceeds the limits of the guide curves. For each alternative of the 90 parameters, a detailed simulation 
is done using the last 20 years of hydrological data on the inflow of water to the three main reservoirs, including the net 
contributions of five diversion dams, and the objective function sought to maximize water delivery to the treatment plant, 
while penalizing possible spills and deficits in the system is evaluated. The optimal policies found in this research resulted in 
smaller spills than those that occurred during the historical operation of the reservoir system. Therefore, the optimal monthly 
operating decisions required for each reservoir are provided by the genetic algorithm.

Keywords Decision support tools · Operation policies · Genetic algorithm · Z curve · Water management · Cutzamala 
system

Introduction

The Cutzamala System provides 25% of the drinking water 
consumed in the Valley of Mexico (Mexico City and the 
surrounding metropolitan area). It is made up of three main 
reservoirs (located in the states of Mexico and Michoacán) 
formed by the El Bosque Dam, Valle de Bravo Dam and 
Villa Victoria Dam (Fig. 1). Together they can store up to 

782.5  hm3, 642.5  hm3 of which are considered as useful 
capacity. These storage reservoirs are principally fed by the 
Cutzamala, Zitácuaro, and Tilostoc rivers and five diversion 
dams: Tuxpan, Ixtapan del Oro, Colorines, Chilesdo, and 
El Barraje.

The Tuxpan diversion dam receives water from the tribu‑
taries of the Zitácuaro River and transfers it along an open 
channel to the El Bosque storage dam, which captures water 
from the Zitácuaro river basin as well. Some of the water 
from the El Bosque reservoir is taken for irrigation and the 
rest is sent along an open channel to the Colorines reservoir. 
The latter, which also receives water from the Ixtapan del 
Oro diversion dam, functions as a regulating reservoir by 
providing water through pumping plant 1 (PP1) to the Valle 
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de Bravo reservoir. Hence, the Valle de Bravo storage dam 
is fed by the Tuxpan, El Bosque, Ixtapan del Oro, and Color‑
ines dams as well as from its own basin (the Amanalco river 
basin). It supplies water through pumping plants PP2, PP3 
and PP4 to the Los Berros water purification plant. The plant 
also receives water from the Villa Victoria and El Barraje 
storage dam along an open channel, and from the Chilesdo 
regulating dams through the PP6 pumping plant.

All the water in the system is processed in the Los Ber‑
ros water purification plant before being sent to the Valley 
of Mexico through the PP5 pumping plant. The pumping 
system (illustrated in Fig. 1) is capable of driving up to 
14.0  m3/s with pumping loads of up to 350 m. Overall, the 
water ascends more than 1100 m from the Colorines Dam, 
where the pumping begins, to oscillation tower 5. From this 
tower, the water flows by gravity to the point of entry of 
the Analco − San José tunnel, excavated in a high‑altitude 
point in the mountains, then through the tunnel to the Valley 
of Mexico. One restriction factor of the Cutzamala System 
is the capacity of the Los Berros water purification plant, 
which is now approximately 19  m3/s, equivalent to 600  hm3 
per year.

Since the beginning of operations in 1982, the dams and 
the flow of water in the Cutzamala System have been oper‑
ated empirically based on information about the historical 
behavior patterns of the volumes stored in the reservoirs dur‑
ing different periods of the annual hydrological cycle. The 
increase in water demand due to the growth of the Mexico 
City metropolitan area along with the variation in the annual 
pattern of rainfall in the basins of the Cutzamala System 
have created the need for a more sophisticated system. Con‑
sequently, it is necessary to develop tools to determine opti‑
mal policies for the operation of the dams in the system, 
considering the characteristics of the annual hydrological 
cycle as well as the necessary minimum and maximum lev‑
els of the reservoirs.

With respect to studies related to the optimal operation of 
reservoirs for different purposes, Gilmore (1996) conducted 
an exhaustive investigation of the optimization models used 
to support decision making for the operation of the Colo‑
rado River. The monthly optimization model that he created 
included the appraisal of operational flexibility to increase 
the generation of electricity. Butcher (1971), from the Uni‑
versity of Texas at Austin, demonstrated how to find the 

Fig. 1  Location of reservoirs, dams, and associated infrastructure of the Cutzamala System
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optimal policy by means of stochastic dynamic program‑
ming for a reservoir with more than one function. Such 
policy is established in accordance with the storage volume 
of the reservoir in the previous month. Oliveira and Loucks 
(1997) focuses on the use of genetic search algorithms 
to derive multi‑reservoir operating policies. The genetic 
algorithms use real‑valued vectors containing information 
needed to define both system release and individual reservoir 
storage volume targets as functions of total storage in each of 
multiple within‑year periods. One of the outstanding stud‑
ies of a reservoir system in the last few decades was carried 
out in India by Neelakantan and Pundarikanthan (1999); the 
researchers arrived at optimal operating rules to meet the 
demand for drinking water by organizing data according to 
the month of the year and by utilizing Rosenbrock optimi‑
zation, neural networks, and the simulation of water inflow 
and extraction.

Sánchez and Andreu (2002) analyzed two systems of sur‑
face water resources to find the optimal scheme for expand‑
ing the hydraulic infrastructure with a methodology based 
on a genetic algorithm (GA). Ahmed and Sarma (2005) 
presented a Genetic Algorithm (GA) model for finding the 
optimal operating policy of a multipurpose reservoir, located 
on the river Pagladia, a major tributary of the river Brahma‑
putra. The policies derived by the GA model were compared 
with that of the stochastic dynamic programming (SDP) 
model on the basis of their performance in reservoir simula‑
tion for 20 years of historic monthly streamflow. Uhr (2006) 
employed stochastic dynamic programming to define poli‑
cies that optimized the production of hydroelectric power 
and minimized costs. The model contemplates the inflow 
of water and the energy load. Mathur and Nikam (2009) 
used a Genetic Algorithm (GA) to optimize the operation 
of existing multipurpose reservoir in India and to derive 
reservoir operating rules for optimal reservoir operations. 
Garudkar et al. (2011) developed an optimization model for 
the reservoir releases based on elitist GA approach consider‑
ing the heterogeneity of the command area. The developed 
model was applied to Waghad irrigation project in upper 
Godavari basin of Maharashtra, India. Cioffi and Gallerano 
(2012) analyzed how to optimize the output of electricity 
from hydroelectric dams while protecting the fish habitat. To 
identify the Pareto optimal set, they compared two different 
approaches: ε restriction methods and the non‑dominated 
sorting GA (NSGA II). El‑Hazek (2014) collected data from 
forty dams built in Al‑Baha (Saudi Arabia) from 1975 to 
2012 to achieve an optimal storage design and predict the 
cost of storing 1  m3 of water.

Yang et al. (2015) made comparisons of different opti‑
mization algorithms, several of them from the evolutionary 
computation for the multi‑objective problem of hydropower 
reservoir operation in California, USA; they introduced the 
Multi‑Objective Complex Evolution Global Optimization 

Method with Principal Component Analysis and Crowding 
Distance Operator method (MOSPD). The policy found by 
this method adapts to different runoff conditions in the year, 
especially in dry periods. Heydari et al. (2016) evaluated the 
performance of the system of six dams that form the Karun 
and Dez reservoirs in order to optimize the production of 
hydroelectric energy and the provision of water. A series of 
five dams have been built on the Karun River, and one more 
on the Dez River. One of the principal accomplishments of 
the research was to improve decision making about the struc‑
ture of hydroelectric energy production by feeding related 
information into MATLAB. Adib and Samandizadeh (2016) 
studied the Karaj Dam, located in western Tehran, with the 
aim of optimizing water management. The researchers com‑
pared dynamic programming with a GA, finding reliability 
and resilience to be greater and vulnerability lower when 
using the latter.

By assessing the performance of the operating poli‑
cies of a reservoir designated for the supply of drinking 
and irrigation water in South Africa, Ndiritu et al. (2017) 
achieved improvements with a nonlinear objective optimi‑
zation method and statistical policy analysis of operation. 
Different conditions of the initial level of the dam were con‑
templated, and simulations were carried out with synthetic 
records obtained with ARMA models. Anas et al. (2019) 
focuses on derivation of optimum operational policies for 
a single purpose reservoir using Genetic Algorithm (GA) 
in MATLAB.

Jamali and Jamali (2019) adopted a simulation–opti‑
mization framework to formulate long‑term monthly 
operating rules for this same system of six dams, tak‑
ing three factors into account: the generation of hydro‑
electric power, the provision of irrigation water, and 
ecological f low. The simulation/optimization model 
of the corresponding Water Assessment and Planning 
System included two variables in decision making: (1) 
the monthly variation in the upper limit of the buffer 
parameter for the storage reservoirs that release water 
to satisfy consumer demand, and (2) the monthly policy 
for filling the reservoirs. Sharifi et al. (2021) employed 
five recently introduced robust evolutionary algorithms 
(EAs) of Harris hawks optimization algorithm (HHO), 
seagull optimization algorithm (SOA), sooty tern opti‑
mization algorithm (STOA), tunicate swarm algorithm 
(TSA) and moth swarm algorithm (MSA, for the first 
time, to optimal operation of Halilrood multi‑reservoir 
system. This system includes three dams with parallel 
and series arrangements simultaneously. The results 
obtained with the mentioned algorithms were compared 
with two well‑known methods of genetic algorithm (GA) 
and particle swarm optimization (PSO) algorithm. Yang 
et al. (2021) applied 12 Artificial Intelligence and Data 
Mining (AI&DM) with different models with different 
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parameterizations employed to simulate the daily reser‑
voir outflows of 33 reservoirs over the Upper Colorado 
Region in the USA. They conclude that the advantage of 
AI&DM models lies in their flexibility in incorporating 
different types of input data and identifying the implicit 
relationship between features and target variables; but a 
lot of trial‑error experiments must be done in order to get 
the most suitable combination of input data structure and 
model parameterizations to obtain the best possible model 
outcomes for each reservoir system.

In contrast to previous research, the current inves‑
tigation sought to optimize the operating policies of a 
system of three main reservoirs by using a GA designed 
to deliver the maximum annual extraction volume to the 
water treatment plant while achieving a minimum volume 
of deficits and spills. Firstly, based on the total volume 
of water storage in the main reservoirs of the system (El 
Bosque, Valle de Bravo and Villa Victoria) on November 
1 of each year, the GA calculated the optimal total annual 
extraction as well as the percentage to be taken from each 
reservoir. Because the demand for drinking water has few 
variations during the year, the GA was initially developed 
with a uniform monthly distribution of 1/12.

In the second stage of this investigation, monthly upper 
and lower limit guide curves were set for the water level 
of the three main reservoirs. These curves are intended to 
avoid abruptly reaching of deficit and spill situations by 
programming adjustments to be made early and gradually. 
Adjustments were presently made each time the storage 
in any of the dams fell outside the upper or lower limits 
of such curves.

In summary, the decision variables are the coordinates 
that define the annual Z curve; an extraction percentage 
was assigned to two of the main dams (the third being 
decided by default to reach 100%); monthly values were 
set for the maximum and minimum storage levels of the 
three main reservoirs (the upper and lower limit guide 
curves, respectively), constituting 72 values and two coef‑
ficients for linear equations were used to calculate the 
adjustments to the monthly withdrawals when the level of 
a reservoir fell outside the guide curves, implying another 
12 values. Hence, it was necessary to optimize a total of 
90 variables related to decision making, a task carried 
out with a simple GA coupled to a computer program for 
simulating the detailed operation of the system.

The simulations were made using the historical records 
of the monthly inflows to the three main dams and the 
contribution from diversion dams during the last 20 years. 
The capacities of the channels, pumping plants, pipes, and 
the water purification plant were considered as restric‑
tions for the movement of water through the system.

Methodology

Z curve

A Z curve was employed to determine the total annual pro‑
grammed withdrawals of water from the reservoirs to feed 
the Los Berros water purification plant. The curve was estab‑
lished based on the total storage of the main reservoirs of the 
system at the beginning of the hydrological cycle (November 
1 of each year). The name of the curve derives from its typi‑
cal shape (Fig. 2).

Simulation algorithm for the operation 
of the reservoir system

For the hydrological simulation of the entire water man‑
agement system, a continuity equation was applied to each 
reservoir:

where Vfinalk
i
 is the volume of reservoir “i” at the end of 

month “k”, Vinitialk
i
 is the volume of reservoir “i” at the 

beginning of month “k”, Vinflowk

i
 is the volume entering res‑

ervoir “i” in month “k”, Vextk
i
 is the volume extracted from 

reservoir “i” in month “k”, and Vevapk
i
 is the net evaporation 

volume in reservoir “i” in month “k”.
The simulation of the hydrological operation of the 

storage dam system was conducted with the following 
procedure:

 (1) The data on the characteristics of the reservoirs and 
the net amount of water evaporation for each month 
of the year are fed into the simulation program.

 (2) The simulation program reads the information in 
regard to the monthly inflow to each of the three main 
reservoirs, the contribution from the diversion dams, 
the capacities of the channels, pumping plants, pipes, 

(1)Vfinalk
i
− Vinitialk

i
= Vinflowk

i
− Vextk

i
− Vevapk

i

Fig. 2  Example of the shape of a Z curve
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and the water purification plant and the values of the 
90 decision‑making variables.

 (3) The initial storage is defined on November 1 for the 
start of the simulation.

 (4) In accordance with the total storage on November 1 
and the values of the Z curve, the annual programmed 
quantity of extracted water to be delivered to the Los 
Berros plant is found. This value is divided by 12 to 
calculate the total monthly extraction volume, which 
is multiplied by the percentage assigned to each reser‑
voir to establish the corresponding monthly extraction 
volume.

 (5) From the extractions found for the El Bosque Dam and 
Valle de Bravo Dam, half of the net contributions of 
the Ixtapan del Oro and Colorines diversion dams are 
subtracted. From the extractions found for the Villa 
Victoria Dam, the net contributions of the Chilesdo 
and El Barraje diversion dams are subtracted.

 (6) Immediately, it is determined whether the storage 
in one or more of the dams falls outside the interval 
between the guide curves, and the necessary correc‑
tions are made by the adjustment equations.

 (7) It is verified that the extraction volumes obtained do 
not exceed the conduction capacities of the canals 
and pipes of the system and that the values are not 
negative for the El Bosque Dam and Villa Victoria 
Dam. Where appropriate, the necessary corrections 
are made.

 (8) It is verified that the total delivery volume does not 
exceed the capacity of the Los Berros water purifica‑
tion plant.

 (9) The final storage level at the end of the month is cal‑
culated with Eq. (1). Where appropriate deficits and 
spills are recorded.

 (10) The procedure is repeated for the following month 
from point 6.

 (11) The procedure is repeated from point 4 at the end of 
the year in order to begin another annual cycle.

The genetic algorithm generated optimal values 
for water management policies

The optimal values for each of the 90 decision variables 
were found with a simple GA. GAs represent one of the first 
computational techniques to make analogies with the pro‑
cesses of natural selection to ascertain the values of search 
variables capable of maximizing or minimizing an objective 
function. They are able to optimize values to achieve operat‑
ing policies for a reservoir system (Goldberg 1989; Math‑
works 1992; Chipperfield et al. 1994; Gestal et al. 2010). 
The GA presently employed is widely used for practical 
engineering problems.

In its typical form, a GA begins with a randomly pro‑
duced population of n individuals, each consisting of a set 
of proposed search variables, expressed as a row of binary 
values in a matrix (resembling a chromosome). Each indi‑
vidual is tested in the objective function to evaluate its per‑
formance, and then some individuals are selected to form 
an intermediate population by means of random methods 
such as roulette, tournament, or universal stochastic. The 
exchange or crossover operator and the mutation operator are 
applied to the selected individuals to create a new population 
and therefore the next generation (iteration). Provided that 
the established number of generations (iterations) has not yet 
been met, the procedure is repeated in the objective function 
through the processes of selection, exchange and crossover 
to again form a new population. In case the number of itera‑
tions has reached its maximum, the individual with the best 
performance in the final generation represents the optimal 
solution and is reported as the real set of variables. The GA 
herein developed was applied to the simulation program for 
the operation of the three main dams and reservoirs of the 
system.

The objective function

The objective function has been formulated in the current 
study to maximize the delivery of water to the Los Berros 
plant (taking into account its maximum capacity) to meet the 
demands of the population, while at the same time penaliz‑
ing unwanted deficit or spill conditions for the storage dams 
and their reservoirs. Hence, the objective function (Eq. 2) 
represents the amount of water supplied to the Valley of 
Mexico. It was optimized by maximizing the flow of water 
to the Los Berros water purification plant, considering as 
restrictions the processing capacity of the plant, the conduc‑
tion capacity of channels, pipes and pumping plants, as well 
as the maximum and minimum volumes allowed in each of 
the three storage reservoirs. To decrease the possibility of 
unwanted events, deficit or spill events were penalized.

where Ventk is the volume delivered to the Los Berros plant 
in month “k”, Vderrk

i
 is the volume spilled in reservoir “i” 

in month “k”, Vdefk
i
 is the deficit volume in reservoir “i” 

in month “k”, Cderrk
i
 is the penalty coefficient for the vol‑

ume spilled in reservoir “i” in month “k”, and Cdefk
i
 is the 

penalty coefficient for the deficit volume in reservoir “i” in 
month “k”. The first term of the objective function repre‑
sents the quantity of water arriving to the Los Berros water 
purification plant and the remaining two terms penalize the 

(2)

Fobj =

N
∑

k=1

{

Ventk −

(

∑

i

Cderrk
i
Vderrk

i
+

∑

i

Cdefk
i
Vdefk

i

)}
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undesirable conditions (spills and deficits) in the storage 
dams.

The genetic algorithm for determining the optimal 
operating policy (without guide curves)

For the optimization of the Z curve, a simple GA (Goldberg 
1989; Mathworks 1992; Gestal et al. 2010) was applied to 
the simulation algorithm. In a preliminary analysis, the GA 
was applied to optimize six parameters: four correspond to 
the points that define the Z curve and 2 to the percentage of 
total extraction assigned to two of the dams. The percent‑
age for the third dam is obtained by default, being the value 
needed to make the sum of the three percentages equal to 
100.

Based on the total volume stored in the reservoirs as of 
November 1 of each year, the total annual quantity of water 
to be extracted from the reservoirs and delivered to the Los 
Berros plant is programmed with the Z curve. This quan‑
tity is divided into 12 equal parts to indicate the allocations 
for each month of the year. Finally, the amount of water to 
be extracted from each dam is calculated with the assigned 
percentage. The steps of the optimization algorithm are illus‑
trated in Fig. 3.

The genetic algorithm for determining the optimal 
operating policy (with guide curves for reservoirs)

In the second analysis, the GA was employed to calculate 
90 parameters, including the six mentioned in the previous 
section and 84 more, related to guide curves, which help to 
maximize the delivery of water to the population. Of these 
84 variables, 72 are needed to define the monthly values of 
the high and low guide curves for the three‑storage reser‑
voir (12 months × 2 guide curves × 3 reservoirs). Another 12 
values are required to make adjustments when the storage 
in some reservoir is outside the limits of the guide curves.

Results and discussion

The computational tool presently developed was applied to 
the three main storage dams of the Cutzamala System to 
determine optimal operating policies based on the histori‑
cal monthly inflow of water to the reservoirs from Novem‑
ber 1999 to October 2018. The values resulting from the 
GA without guide curves (GA1) were compared to those 
obtained by including guide curves and the corresponding 
adjustment parameters (GA2). The latter adjustment param‑
eters were used when the initial monthly level in any of the 
main reservoirs was outside the limits. Finally, a sensitivity 
analysis was conducted to create a GA (GA3) that assigns a 

different lower limit to the Valle de Bravo reservoir in order 
to avoid low levels (to accommodate recreational use).

The values of the optimal extraction policy found with 
GA1 (considering six parameters only) formed a Z curve 
(Fig. 4), which represents the total annual volume of water 
scheduled for delivery to the Los Berros purification plant, 
based on the total initial storage of the three reservoirs as of 
the beginning of the annual cycle (November 1). To select 
the values used to penalize undesired events a penalty‑free 
operation rule is first obtained, the operation of the system 
is simulated, and the behavior of the variables of interest 
(storage, extractions and the presence of undesirable events, 
mainly) is analyzed, once this is done, a trail and error pro‑
cess of testing different penalty values is started until finding 
the combination that minimizes the unwanted events. The 
penalty coefficients obtained are shown in Table 1.

A percentage of total annual extraction was assigned to 
each main reservoir by GA1 (Table 2).

In the simulation of the Cutzamala System from 1999 to 
2018 with GA, there was a greater amount of total deficits 
than spills (Table 3).

The second analysis included variables corresponding to 
upper and lower limit guide curves for each reservoir and 
each month of the year, and to the adjustments made when 
the initial monthly level in a reservoir fell outside the limits 
of the guide curves. In the latter case, the adjustments were 
calculated as a linear function of the difference between the 
initial storage level and the affected guide curve (Eqs. 3 and 
4). For each reservoir and each guide curve, two parameters 
were defined for the linear relationship.

The Z curve obtained by using the GA2 is illustrated in 
Fig. 5.

A percentage of the total annual extraction was assigned 
to each main reservoir by GA2 (Table 4).

The upper and lower limit guide curve values optimized 
with GA2 (listed in Table 5) are compared to those based 
on the empirical practice of the historical operation of the 
reservoirs (Fig. 6).

The adjusting parameters were determined for Eqs. 3 and 
4 to obtain optimal GA2 policy (Table 6).

The spills and deficits caused by applying GA2 are shown 
in Table 7.

When simulating operational policy from 1999 to 2018 
with GA2, spills only occurred at the Valle de Bravo Dam, 
and the total spill volume decreased from 196.05 (Table 3) to 
45.94  hm3 (Table 7). The total deficit volume dropped from 
306.89  hm3 to zero, leading to an increase from 8436.3 to 
8496.1  hm3 in the volume supplied to the Los Berros plant.

(3)Ajusextr = a1 + a2 ∗ difference

(4)Ajusextr = a3 + a4 ∗ difference; a3anda4 < 0
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A monthly drawing of the total volume arriving to the Los 
Berros water purification plant is illustrated for GA2 policy 
in Fig. 7. As can be appreciated, in no month was the capac‑
ity of the Los Berros plant exceeded. On the other hand, 
the minimum utilization value of the quantity delivered was 
always greater than 14.5  m3/s.

The monthly initial water storage level of each of the 
three reservoirs is compared between the GA2 simulation 
and the real historical record (Figs. 8,9 and 10). The same 
comparison is shown for the total monthly initial water 

storage level (Fig. 11). The maximum simulated levels for 
the El Bosque reservoir were generally lower than the histor‑
ical ones (particularly from the year 2010), which facilitates 
transfers to it from the Tuxpan diversion dam, avoiding spills 
in this dam (the total historical spill in Tuxpan diversion dam 
was 289.6  hm3, mainly in years 2014, 2015 and 2018, as it 
is shown in Fig. 12). In the case of the Valle de Bravo and 
Villa Victoria reservoirs, the minimum simulated levels were 
lower than the historical ones.

Fig. 3  Flow diagram of the 
genetic algorithm applied to 
the simulation of the reservoir 
system
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The simulated storage employed all the available useful 
capacity. In the Valle de Bravo reservoir (Fig. 10), the simu‑
lation reached much lower levels than the historical record.

A comparison of the total volume of water extracted from 
the reservoirs between the simulated GA2 policy and the 
actual historical record is illustrated in Fig. 13. It is remark‑
able that the actual historical extractions were lower than 10 
 m3/s in a dry period in 2009.

Due to its recreational function, the Valle de Bravo res‑
ervoir has historically been maintained at medium to high 
levels (Fig. 9), thus, the GA2 procedure was modified by 
setting the minimum water level for the Valle de Bravo reser‑
voir at 170  hm3. The new procedure was denominated GA3.

The optimal Z curve from GA3 versus GA2 policy is 
shown in Fig. 14 and Table 8.

A percentage of annual total extraction was assigned to 
each main reservoir by GA3 (Table 9).

The parameters were determined for Eqs.  3 and 4 to 
obtain optimal GA3 policy (Table 10). The optimal upper 
and lower limit guide curves for GA3 and GA2 policy are 
compared in Fig. 15.

The spills and deficits caused by applying GA3 policy are 
denoted in Table 11.

By reducing the useful capacity in the Valle de Bravo 
reservoir, the total spill amount rose from 45.94 to 170.93 
 hm3 (GA2 versus GA3 policy). The deficit remained at zero 
for GA3.

The average monthly delivery to the Los Berros plant 
with GA3 policy is illustrated in Fig. 16. The minimum val‑
ues are still above 14.5  m3/s.

Figures 17, 18 and 19 illustrate the evolution of the 
monthly initial storage in each of the three main reser‑
voirs, comparing GA3 and GA2 policies. With GA3, the 
storage in the Valle de Bravo reservoir was never less than 
190  hm3, except for one value of 175.6  hm3. On the other 
hand, the maximum monthly storage level in the El Bosque 
reservoir was still lower than the historical values (particu‑
larly from 2010 onwards), which would facilitate transfers 
from the Tuxpan Dam, avoiding the spills in that dam. The 

Fig. 4  The Z curve optimized with genetic algorithm GA1

Table 1  The penalty coefficients integrated into genetic algorithm 
GA1 policy

Cr, coefficient to take into account the total annual extraction in the 
objective function; Cderr, penalty coefficient based on the total annual 
spills (for all the years simulated); Cdef, penalty coefficient based on 
the total annual deficits (for all the years simulated)

GA1 El Bosque Valle de Bravo Villa Victoria

Cr 1 1 1
Cderr 5000 1000 2000
Cdef 1000 2000 1000

Table 2  Percentage of total annual extraction supplied by each reser‑
voir, found with genetic algorithm GA1

El Bosque V. Bravo V. Victoria Sum

GA1 41% 39% 20% 100%

Table 3  Summary of the results of simulating the Cutzamala System 
from 1999–2018 with genetic algorithm GA1

GA1 Total spill 
amount  hm3

Total deficit 
amount  hm3

Delivery to 
Los Berros 
 hm3

El Bosque 103.60 210.51 3336.89
Valle de Bravo 25.87 0.00 3392.70
Villa Victoria 66.58 96.38 1706.7
Sum 196.05 306.89 8436.3

Fig. 5  The optimized Z curve found with genetic algorithm GA2

Table 4  Percentage of the total annual extraction supplied by each 
reservoir, found with genetic algorithm GA2

El Bosque V. Bravo V. Victoria Sum

GA2 35% 32% 33% 100%
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total monthly initial storage for all three main reservoirs is 
depicted in Fig. 20.

The water delivery pattern to the Los Berros plant was‑
different between policies GA2 and GA3 (Fig. 2, Fig. 21). 
Since the availability of useful storage decreased with GA3, 
its minimum delivery volume was lower than that found with 
GA2. Although more frequent peaks in delivery volume 

Table 5  Optimized upper and 
lower limit guide curve values 
for the Cutzamala System found 
with genetic algorithm GA2

Guide curve value  (hm3)

Reservoir El Bosque Valle de Bravo Villa Victoria

Month Upper Lower Upper Lower Upper Lower

Nov 176.33 86.64 349.48 123.89 134.22 65.52
Dec 161.42 127.17 376.89 148.85 153.00 79.32
Jan 178.66 115.03 372.14 140.06 177.27 102.42
Feb 176.10 116.45 382.50 151.36 170.87 85.42
Mar 160.69 101.17 379.10 138.90 166.33 95.85
Apr 174.66 108.66 375.26 129.49 163.61 90.85
May 137.21 91.22 383.79 125.73 161.53 83.66
Jun 133.49 72.58 378.00 101.16 156.19 76.98
Jul 113.23 74.11 353.06 114.51 150.55 60.89
Aug 114.49 62.99 328.77 93.15 131.96 69.06
Sep 118.24 73.64 351.57 123.78 137.62 69.38
Oct 140.68 73.69 345.77 134.10 117.04 60.94

Fig. 6  The upper limit guide 
curve (UGC) and lower limit 
guide curve (LGC) obtained 
for each reservoir with genetic 
algorithm GA2 versus the 
corresponding curves based on 
empirically determined histori‑
cal operation patterns

Table 6  Optimal parameters of Eqs.  3 and 4 for genetic algorithm 
GA2 policy

Reservoir Above guide curve Below guide curve

a1 a2 a3 a4

El Bosque 2.0015 0.6266 −2.1280 −0.7590
Valle de Bravo 3.1823 0.7243 −1.7924 −0.8593
Villa Victoria 2.4089 0.8362 −1.3707 −0.4505
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occurred with GA3 (during times of more abundant rainfall), 
they did not prevent the increased spill volume.

The optimal Z curves derived from GA1, GA2 and GA3 
policies are compared in Fig. 22. Despite the fact that GA1 
policy (without guide curves) allowed for a greater annual 
extraction of water, the total spill volume was larger than the 
obtained under GA3 and specially under GA2 policy (see 
Tables 3, 7, and 11).

The consideration of a minimum level of storage in the 
Valle de Bravo reservoir of 170  hm3 versus 50  hm3 (GA3 vs 

Table 7  Spills and deficits with genetic algorithm GA2 policy

GA2 Total spill 
amount

Total deficit 
amount

Delivery to 
Los Berros

hm3 hm3 hm3

El Bosque 0.00 0.00 3434.90
Valle de Bravo 45.94 0.00 3246.80
Villa Victoria 0.00 0.00 1814.40
Sum 45.94 0.00 8496.10

Fig. 7  The total monthly deliv‑
ery of water to the Los Berros 
water purification plant based 
on GA2 policy

Fig. 8  The monthly initial water 
storage level of the El Bosque 
reservoir: the historical record 
versus the simulated values 
found with genetic algorithm 
GA2

Fig. 9  The monthly initial water 
storage level of the Valle de 
Bravo reservoir: the historical 
record versus the simulated 
values calculated with genetic 
algorithm GA2
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GA2 policy) resulted in a loss of regulatory capacity, which 
led to lower annual extractions and a higher spill volume. 
Hence, the volume delivered to the Los Berros plant by GA3 
was 97.8% of that supplied by GA2.

When the reservoir levels were very low on November 
1, the largest difference that existed between GA2 and GA3 
policy in relation to the rate of water delivery to the Los Ber‑
ros plant was an approximately 0.75  m3/s greater quantity 
furnished by GA2. When the reservoirs were full, a greater 
delivery volume was also found with GA2 versus GA3, with 
a maximum difference of 0.95  m3/s. The average monthly 
rate of water flow arriving to the Los Berros plant under 
each of the three policies herein analyzed is depicted in 
Fig. 23. The frequency of the distinct monthly average rates 
of water flow that arrived to the Los Berros plant based on 
GA1, GA2, and GA3 policies is portrayed in Fig. 24.

Fig. 10  The monthly initial 
water storage level of the Villa 
Victoria reservoir: the historical 
record versus the simulated 
values determined with genetic 
algorithm GA2

Fig. 11  The total monthly initial 
water storage level: the histori‑
cal record versus the simulated 
values established with genetic 
algorithm GA2

0

20

40

60

80

100

2013 2014 2015 2016 2017 2018 2019

Vo
lu

m
e 

hm
3

Years

Total annual spill

Fig. 12  Historical spills in Tuxpan diversion dam

Fig. 13  The total extraction of 
water from the reservoirs (to 
be delivered to the Los Ber‑
ros water treatment plant) is 
compared between the historical 
record and the genetic algorithm 
GA2 simulation
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Conclusions

The historical management of the Cutzamala system has 
been made based on subjective decisions supported by the 
experience of the operators. In this research an operating 
procedure was reached that avoids subjectivity and gives 
precise instructions on how to operate that can be by inex‑
perienced staff.

Simulations of the operation of the three main reservoirs 
of the Cutzamala System were carried out with three GAs 
(GA1, GA2 and GA3) based on real data on the annual 
hydrological cycle during the last 20  years. Such data 
included the quantity of direct inflow to the aforementioned 
reservoirs and the contributions made by its five diversion 
dams.

The policies of GA1 (without guide curves, six variables), 
GA2 (with upper and lower guide curves and GA3 (with 
upper and lower guide curves, with less useful capacity 
in the Valle de Bravo dam) were compared in relation to 
the objective function, which involved several factors: the 
annual and monthly extraction of water from each of the 
three main reservoirs, the annual total extraction, and the 
annual and monthly water spills and deficits in the system. 
The restriction factors includes the capacity of channeling 
water through canals and pipes, the pumping capacities and 

the capacity of the water purification plant, as well as the 
maximum and minimum allowable levels of the three main 
reservoirs.

GA1, involving six variables, was similar to the histori‑
cal operation of the Cutzamala System based on empirical 
decision making. GA2 considered upper and lower, when 
guide curves. The initial monthly level of one of the res‑
ervoirs was outside the limits of the guide curves, linear 
equations were employed to make the adequate adjust‑
ments. Hence, the 90 search variables included in GA2 
were related to the Z curve of total annual extraction, the 
percentages of total annual extraction from each of the 
three main reservoirs of the system, the upper and lower 
limit guide curves, and the adjustments in the extractions 
during the simulation in case a reservoir level was outside 
the limits of the guide curves.

Since the GA1 policy regulated water extraction from 
the three reservoirs without implementing upper and lower 
limit guide curves, there were numerous spills and defi‑
cits. The GA2 policy optimized the objective function, 
delivering a greater monthly volume of water to the puri‑
fication plant (compared to GA1) without exceeding its 
capacity. GA2 minimized spills and deficits in the long 
term because it made timely adjustments to comply with 
the standards set by the guide curves. GA3, consisting of 

Fig. 14  The optimized Z curve portraying the annual extraction of 
water with genetic algorithm GA3 versus GA2

Table 8  Values based on the 
Z curve of genetic algorithm 
GA3 versus GA2 policy, with 
extractions in  hm3 and  m3/s

GA2 GA3

Total storage (three 
reservoirs) on Nov 1

Annual total 
extraction

Annual total 
extraction

Total storage (three 
reservoirs) on Nov 1

Annual total 
extraction

Annual total 
extraction

m3/s hm3 m3/s m3/s hm3 m3/s

0.00 403.82 12.81 0.00 387.46 12.29
122.56 403.82 12.81 110.19 387.46 12.29
779.10 542.24 17.19 770.51 512.09 16.24
900.00 542.24 17.19 900.00 512.09 16.24

Table 9  The percentage of annual total extraction supplied by each 
reservoir, found with genetic algorithm (GA3)

El Bosque V. Bravo V. Victoria Sum

GA3 41% 36% 23% 100%

Table 10  The parameters of Eqs.  3 and 4 for optimal genetic algo‑
rithm GA3 policy

Reservoir Above guide curve Below guide curve

a1 a2 a3 a4

El Bosque 1.8248 0.8740 −2.6227 −0.7863
Valle de Bravo 2.3329 0.5052 −2.9481 −0.7824
Villa Victoria 3.0711 0.8555 −2.3221 −0.4207



Applied Water Science (2023) 13:2 

1 3

Page 13 of 16 2

the same 90 search variables as GA2, included a greater 
restriction since it required a higher minimum level for 
the Valle de Bravo reservoir to accommodate its tradi‑
tional recreational use. As a consequence, the total spills 
suffer an important increase and the delivery of water to 
the treatment plant was slightly lower for GA3 than GA2.

The current research allows to define an operation pol‑
icy with precise instructions by using a simple genetic 
algorithm to reach a operation policy that optimize a com‑
plex objective function evaluated thru a detailed simula‑
tion model of a complex reservoir system.

Fig. 15  The upper limit guide 
curve (UGC) and lower limit 
guide curve (LGC) for GA3 
versus GA2 policy

Table 11  Spills and deficits with genetic algorithm GA3 policy

GA3 Total spill 
amount  hm3

Total deficit 
amount  hm3

Delivery to 
Los Berros 
 hm3

El Bosque 0.00 0.00 3438.60
Valle de Bravo 103.23 0.00 3142.90
Villa Victoria 67.70 0.00 1715.00
Sum 170.93 0.00 8296.50

Fig. 16  The total monthly deliv‑
ery of water to the Los Berros 
water purification plant based 
on GA3 policy
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There are several benefits of applying the proposed policy 
GA2 compared with the historical ones; mainly:

For the simulated period of 20 years the total spill volume 
was reduced from 52.82 to 45.94  hm3. In addition the spills 
in the diversion dam Tuxpan (Fig. 12) can be substantially 

Fig. 17  The monthly initial 
storage values of the El Bosque 
reservoir with GA2 and GA3 
policy

Fig. 18  The monthly initial 
storage values of the Valle de 
Bravo reservoir with GA2 and 
GA3 policy

Fig. 19  The monthly initial 
storage values of the Victoria 
Valley reservoir with GA2 and 
GA3 policy

Fig. 20  The total monthly initial 
storage of the three main reser‑
voirs with GA2 and GA3 policy
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diminished because the reduction in the maximum storages 
in El Bosque dam (Fig. 8) makes transfers easier from the 
Tuxpan to the El Bosque dam.

Applying the proposed policy the minimum release to 
the treatment plant is 14.5  m3/s over the 20 years simu‑
lated in contrast with the historical minimum of 9.5  m3/s 
(Fig. 13), there for it is avoided an important stress in the 
Mexico City water distribution system.

The proposed function to make adjustments when the 
water level in any of the three storage areas goes out of the 
limits of the Guide curve means that these adjustments are 
not abrupt as shown in Fig. 13, in particular, there are no 
steep drops that would also negatively affect the operation 
of Mexico City water distribution system.

The current research established an objective function 
capable of managing a complex reservoir system, including 
timely adjustments to the levels of the reservoirs to maxi‑
mize water delivery to the treatment plant and minimize 
spills and deficits. The subjective criteria for decision mak‑
ing employed to date do not allow for a precise response 
when the water storage of reservoirs is outside the upper or 
lower limits. The comprehensive policies presently proposed 
give concrete instructions to the operators of the reservoirs 
at the beginning of each month in accordance with the state 
of the system. Additionally, said policies replace subjective 
Operation decisions based on the operator's experience.
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