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Abstract
Reservoir inflow (Qflow) forecasting is one of the crucial processes in achieving the best water resources management in a 
particular catchment area. Although physical models have taken place in solving this problem, those models showed a notice-
able limitation due to their requirements for huge efforts, hydrology and climate data, and time-consuming learning process. 
Hence, the recent alternative technology is the development of the machine learning models and deep learning neural network 
(DLNN) is the recent promising methodology explored in the field of water resources. The current research was adopted to 
forecast Qflow at two different catchment areas characterized with different type of inflow stochasticity, (semi-arid and topi-
cal). Validation against two classical algorithms of neural network including multilayer perceptron neural network (MLPNN) 
and radial basis function neural network (RBFNN) was elaborated and discussed. The research was further investigated the 
potential of the feature selection algorithm “genetic algorithm (GA)”, for identifying the appropriate predictors. The research 
finding confirmed the feasibility of the developed DLNN model for the investigated two case studies. In addition, the DLNN 
model confirmed its capability in solving daily scale Q more accurately in comparison with the monthly scale. The applied 
GA as feature selection algorithm was reduced the dimension and complexity of the learning process of the applied predictive 
model. Further, the research finding approved the adequacy of the data span used in the current investigation development 
of computerized ML algorithm.
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Introduction

One of the useful and most direct ways of guiding reservoir 
operation and management is reservoir inflow (Qflow) predic-
tion; it is also useful for flood control, reservoir operation, 
drought management, irrigation water management, and 
reservoir operation (Rezaeianzadeh et al. 2016; Xu et al. 
2021). Using the forecasted Qflow as an input information, 
the delicacy management of water resources at a reservoir 
is strongly reliant on precise Qflow predictions (Herbert et al. 
2021). In most parts of the world, accurate and real-time 
daily or monthly prediction of Qflow remains a difficult chal-
lenge due to the nonlinearity and non-stationarity of the 
associated real hydrological data (Kim et al. 2019; Lee et al. 
2020). Hence, this research topic has received much atten-
tion by the water engineers and decision makers.

Reservoir inflow prediction has become a major topic in 
hydrologic time series over the last few decades (Esmaeilza-
deh et al. 2017; Bashir et al. 2019; Allawi et al. 2019a). 
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However, the paucity of information about physical con-
cepts while studying the relationships between variables has 
necessitated the use of data-driven models in hydrological 
forecasting as an alternative to knowledge-driven methods. 
Two types of hydrological models are currently available to 
find solutions to nonlinear complex problems; these are the 
standard statistical methods and the physical-based meth-
ods (Tran et al. 2021). The standard statistical methods can 
not accurately capture nonlinear patterns while the physical 
process-based methods cannot sufficiently capture informa-
tion to characterize basins based on hydrologic parameters 
(Yaseen et al. 2016b). While both methods depend on his-
torical data to forecast the future, the underlying complex-
ity of hydrologic input–output interactions necessitates a 
model that is strong enough to discern nonlinear patterns 
without sacrificing accuracy (Petty and Dhingra 2018). The 
new adopted computer-based approaches, such as "machine 
learning (ML) algorithms," have shown capacity in captur-
ing complex nonlinear data patterns that would have required 
extrapolation (Nearing et al. 2021; Zounemat-Kermani et al. 
2021); hence, they are considered an alternative method to 
the existing prediction methods in several fields of hydrol-
ogy such as river flow forecasting (Yaseen et al. 2016a; 
Osman et al. 2020; Afan et al. 2020), rainfall forecasting 
(Tao et al. 2018; Ali et al. 2020), reservoir operation (Hos-
sain and El-shafie 2014; Ehteram et al. 2018), evaporation 
process simulation (Allawi et al. 2019b; Salih et al. 2019), 
surface water quality prediction (Yaseen et al. 2018; Yahya 
et al. 2019), geo-science related problems (Mukhlisin et al. 
2012; Alizamir et al. 2020), drought detection (Alamgir 
et al. 2020; Singh et al. 2021), and several others (Raghav-
endra and Deka 2014a; Zounemat-Kermani et al. 2021).

In both direct and multi-step scenarios, ML algorithms 
were used to predict reservoir inflow, resulting in more reli-
able predictions of extreme inflows. It was first published 
in Coulibaly et al. (2000), where the authors used a feed-
forward neural network (FFNN) that was trained by using 
an early stopping approach for the prediction of real-time 
inflow with lead periods ranging from one to seven days. 
An enhanced version of the ML model for the prediction 
of daily inflow which employs a robust weighted-average 
ensemble that combines 3 different frameworks (a physical 
model, nearest neighbors, and an artificial neural network 
(ANN) was reported by Coulibaly et al. (2005). The use 
of least squares support vector machine (Bai et al. 2015), 
ensemble ML models (Ahmed et al. 2015), fuzzy logic mod-
els (El-Shafie et al. 2007), classical artificial neural network-
based radial basis function (El-Shafie et al. 2009), support 
relevance vector model (Liu et al. 2016), random forest (Liu 
et al. 2017), were noticed over the literature to predict inflow. 
Readers are encouraged to go more into the associated lit-
erature for reservoir inflow prediction using ML models by 

looking at the survey studies reported by Choong and El-
Shafie (2015), Mosavi et al. (2018) and Wee et al. (2021).

A recurrent neural network (RNN) model was utilized to 
predict daily flow data by Apaydin et al. (2020). To check 
the predictive model, the performance of the RNN model is 
compared with the ANN model. Based on several indicators, 
the research concluded that the RNN model is more accurate 
than the ANN in predicting reservoir flow records.

The effectiveness of well-known computation methods, 
including MLP, ANN, and SVM, to predict inflow data was 
examined by Lee et al. (2020). The coefficient S, NSE, and 
other indices were used to assess these forecasting tech-
niques. The study demonstrated that the models that were 
created could be a useful tool to predict reservoir inflow 
records.

The possible use of an ANN model in predicting reser-
voir inflow data was examined by Hadiyan et al. (2020). 
The research gave helpful data to simulate the inflow for the 
reservoir Sefidround, Iran. Allawi et al. (2017) employed the 
Coactive Neuro-Fuzzy Inference System (CANFIS) method 
to forecast reservoir inflow. The proposed model succeeded 
in providing high accuracy prediction results.

The use of ML algorithms to predict reservoir inflow is 
inconsistent, making it difficult to determine which strategy 
is preferable. In addition, the artificial intelligence models, 
such as ANN models, have several drawbacks, such as gen-
eralizing performance and learning divergence shortfalls, 
local minimum entrapment, and over-fitting issues (Ghimire 
et  al. 2018). While the support vector machine model 
appears to overcome some of the shortcomings of ANN, it 
does so at the expense of a long simulation time due to the 
kernel function (penalty factor and kernel width) (Raghav-
endra and Deka 2014a, b). As a result, ML algorithms may 
not efficiently learn all the conditions if there is high data 
complexity. In the field of hydrology, the search for new and 
more reliable ML algorithms is still underway. New deep 
learning-based ML models have been recently developed 
for inflow simulation. These models, such as Deep Learn-
ing Neural Network [DNNN], Long Short-Term Memory 
[LSTM], and Convolutional Neural Network [CNN] have 
been created and are frequently employed in the prediction 
of hydrological time-series. These DL models have advan-
tages such as the ability to handle highly stochastic data 
and the ability to extract the internal physical mechanism 
(Hrnjica and Mehr 2020).

Although there have been several researches conducted 
on the inflow forecasting over the literature (Bai et al. 2016, 
2018; Aljanabi et al. 2017; Allawi et al. 2018; Herbert et al. 
2021), limitations are still existed and motivated the hydro-
logical scientists to further study this essential problem. 
For instance, the robustness of the ML model, classical 
models such as ANN, SVM, ANFIS, etc., has demonstrated 
limitation in the learning process of the network and thus 
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exploring new version of ML such as deep learning can 
contribute to overcome the classical ML models. The rec-
ognition of the appropriate features in order to construct the 
learning process of the ML model has been observed to be 
serious element in the computer aid models development 
and thus the reliable nature inspired optimization called 
genetic algorithm has been integrated as feature selection 
for the proper lead time reservoir inflow forecasting. As a 
matter of fact, the stochastic variation varies from one dam 
to another, thus, implementation of the methodology based 
on two different flow mechanisms can be tested where the 
generalization method for this hydrology can be examined.

Case studies

Semi‑arid region

The first case study used in the current research is Dukan 
reservoir. It is located around 67 km north of Sulaimani 
City in northern Iraq. The dam is adjacent to the city of 
Ranya and is located at 35°57′13.24′′ N and 44°57′11.61′′ 
E. It has a total capacity of 6.8 km3 and is situated near 
Latitude 35°57′13.24′′ N and Longitude 44°57′11.61′′ E. 
It is a reservoir that was created during Dukan Dam con-
struction on the small Zab River. This multipurpose dam 

Fig. 1   Case Studies maps a Dukan Dam and b Timah Tasoh Dam



	 Applied Water Science (2022) 12:272

1 3

272  Page 4 of 16

was constructed between 1954 and 1959 to provide water to 
farmers and to supply hydro plants for power generation. The 
dam is a concrete arch dam with gravity monoliths abutting 
it. It measures 360 m (1180 ft) in length and 116.5 m (382 
ft) in height. It measures 32.5 m (107 ft) wide at the bottom 
and 6.2 m (20 ft) wide at the top. The dam's total maxi-
mum discharge is around 4300 m3/s (150,000 ft3/s). This 

is partitioned between a spillway tunnel with 3 radial gates 
and an emergency bell mouth glory hole spillway that can 
discharge 2440 m3/s (86,000 ft3) and 1860 m3/s (66,000 ft3) 
per second, respectively. There are also 2 irrigation outlets 
that can co-discharge 220 m3/s (7,800 ft3/s) per second, but 
they haven't been used in 10 years. There is a powerhouse 
of 5 Francis units, each with an output of 80 MW, emitting 

Fig. 2   a The structure of the 
RBFNN model, b the structure 
of the MLPNN model, c the GA 
mechanism procedure
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between 110 and 550 m3/s (3900 and 19,000 ft3/s) of water. 
The lake has a surface size of 270 km2. The reservoir's 
capacity is 6.8 km2 in normal operation, with a maximum 
capacity of 8.3 km3. The surface elevation is 515 m above 
sea level. The surface elevation of the dam must be within 
469 and 511 m to operate the power station. The Dukan 
Dam's drainage basin spans 11,700 km2, with part of it in 
Iraq and the rest in Iran. The main source of water is the 
Zab River. The daily inflow to the reservoir over 11 years 
(January 2010–December 2020) is the only available data 
record. A Google map of this reservoir is shown in Fig. 1a.

Tropical region

Timah Tasoh Dam (TTD) construction began in 1987 and 
was finished in 1992 in Perlis, Malaysia (6°36′ N; 100°14′ 
E). TTD is an essential hydraulic construction within 
Peninsular Malaysia and its Qflow patterns operation and 
quantification is highly important for the water resources 
management of that region. In fact, the high variance and 
nonlinearity seen in the Qflow of the tropical zone frequently 
include a high stochastic pattern that contributes to the com-
plexity of the dam's reservoir systems. This case study will 
necessitate the development of a new method for evaluating 
the offered models. As a result, a thorough comparison of 
the existing and proposed operating procedures is required. 
The reservoir system has a total surface area of over 13.3 
km2. The reservoir's overall capacity is around 40 million 
cubic meters (MCM). With an entry average runoff of over 
100 MCM, the reservoir water storage has two major zones: 
a dead zone of 6.7 MCM and a live zone of 33.3 MCM. The 
reservoir could be classified as a shallow reservoir, with a 
maximum depth of 10 m. The reservoir's position was cho-
sen to receive water from two main rivers in Perlis State: 

The Tasoh and Perlarit Rivers. The TTD provides irrigation 
water for 3100 ha at a rate of roughly 55 MCM per year. 
Furthermore, it delivers around 55*103 m3 of water each 
day for home consumption. Dams are built to regulate and 
avoid floods that are expected during the rainy season. The 
location of the Timah Tasoh Dam is displayed in Fig. 1b.

Applied machine learning

Deep learning neural network

Deep learning (DL) has emerged as a new branch of ANN 
research that is altering different scientific disciplines in the 
modern day (Goodfellow et al. 2016). The term “deep” in 
this method refers to a connection of layers that allows the 
translation of data representation from one to another. A 
deep net (DN) is a type of ANN that has numerous hid-
den layers, an input layer, and an output layer (Lecun et al. 
2015). In comparison with traditional machine learning 
methods, a DL-based model necessitates a huge amount of 
training data in order to comprehend the underlying data pat-
terns increases in the network depth (i.e. number of layers) 
allowing the extraction of the most appropriate data hierar-
chical representations using a proper data transformation 
(Schmidhuber 2015). In recent years, DL has found use in 
remote sensing, hydrological prediction, and image process-
ing. Although DL has different versions adopted over the 
literature, in the current study, the long short-term memory 
(LSTM) is conducted for the reservoir inflow forecasting. 
The design of the LSTM model is having feedback con-
nection with the learning layers that support the concept 
of complete input sequences. The LSTM model is estab-
lished to fit the pattern of the inflow based on lag times 

Table 1   The statistical 
indicators whiling testing phase 
for three methods “Semi-arid 
case study”

Models RMSE MAE MBE NSE SI BIAS d CI

MLPNN1 81.032 46.983 0.109 0.813 0.598 − 5.570 0.896 0.728
MLPNN2 53.188 36.794 0.164 0.919 0.393 17.141 0.948 0.871
MLPNN3 66.727 45.720 0.245 0.873 0.494 17.276 0.927 0.809
MLPNN4 71.482 47.623 0.229 0.854 0.529 14.492 0.919 0.785
MLPNN5 68.598 45.949 0.226 0.866 0.508 20.233 0.924 0.800
RBFNN1 72.505 40.174 0.014 0.850 0.535 24.549 0.916 0.778
RBFNN2 52.193 33.347 − 0.061 0.922 0.386 21.283 0.950 0.876
RBFNN3 71.537 47.540 0.148 0.854 0.530 30.092 0.921 0.787
RBFNN4 59.987 41.991 0.199 0.897 0.444 16.716 0.938 0.842
RBFNN5 65.299 44.097 0.230 0.878 0.484 16.682 0.930 0.816
DLNN1 48.763 27.322 0.052 0.932 0.360 9.766 0.954 0.889
DLNN2 39.627 23.678 0.125 0.955 0.293 2.578 0.967 0.923
DLNN3 45.795 27.632 0.169 0.940 0.339 3.010 0.958 0.901
DLNN4 53.427 34.548 0.140 0.918 0.396 9.788 0.948 0.871
DLNN5 57.845 36.355 0.155 0.904 0.428 15.894 0.941 0.851
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Fig. 3   Scatter Plots between actual and predicted Qflow using standalone ML models and for the five input combinations “Semi-arid case study”
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of inflow. Conceptually, it is a version of recurrent neural 
network “Cell construction model”. Every cell consists of 
three gates that presented input gate, forgetting gate and the 
model output gate. In addition, there is a vector that deals 
with the long-term memory of the forgoing gates. Owing 
to this, the input lags can be added/deleted due to the gates 
setting. Worth to highlight here, the gradient disappearance 
can be resolved based on the potential if the last two gates 
on forgetting the past information. The WekaDeeplearning4j 
tool which provides a graphical user interface (GUI) was 
used in this work to train and test the DL models in Weka 
software. For more detail on this instrument, we refer the 
interested reader to the article by Lang et al. (2019).

Artificial neural network

Multiple linear perceptron

A feed-forward network is a multilayer perceptron NN 
(MLPNN) with numerous layers; in this network, the output 
of one neuron serves as the input to the next neuron layer. 
Figure 2b depicts the MLPNN model. The input layer nodes 
in the MLPNN can only forward the input values of the first 
hidden layer's node. The input–output correlation of each 
node can be displayed in the hidden layers as follows:

where xj is the output that corresponds to the j node of the 
previous layer, wj is the weight that connects the j node and 
the current node, b is the bias value at the current node, and 
f is a sigmoid-like transfer function with nonlinear attributes.

(1)y = f

(
∑

j

wjxj + b

)

where z is the weighted inputs aggregate, while f(z) is the 
neuron’s output.

The unit description of an MLPNN is an architecture that 
allows the computation of a nonlinear function using the 
scalar product of the weight and input vectors. The network 
architecture determines the efficiency of MLPNN models. 
It contains the hidden layer count, the neurons specific to 
each layer, as well as the form of computation employed by 
each neuron.

Radial basis function neural network (RBFNN)

RBFNN is a function approximation variation of the stand-
ard ANN model that has a faster learning capacity (Cotar 
and Brilly 2008). The model structure has one input layer 
and one output layer, as well as a single hidden layer; it uses 
Gaussian functions as the basis and the least-square criterion 
as the objective function (Talukdar et al. 2020). In the hid-
den layer, the Gaussian functions give a significant response 
to the input boost when the network input falls within a 
restricted region of the input space. The RBF is presented as 
� which is also know the hidden later function, whereas the 
hidden space is state in the following form 

{
�i(x)

}N

i=1
 . In the 

forgoing function, the number of the basis is less than input 
data observation, typically. Hence, the role of the Gaussian 
is the player for the solution of the one-dimension problem 
that is explained as �(x,�) = e

−
∥x− �|2

2d2  . � is the center value 
of the Gaussian function. d is the radius “distance” from the 
input value x to the �(x,�), that indicates the measure of the 
spread of the Gaussian curve. Because of this mathematical 
mechanism, the RBFNN model is sometimes known as a 

(2)f (z) =
1

1 + exp(z)

Table 2   The statistical 
indicators whiling testing phase 
for three methods “Tropical 
case study”

Models RMSE MAE MBE NSE SI BIAS d CI

MLPNN1 6.062 4.271 0.230 0.844 0.584 0.342 0.916 0.773
MLPNN2 7.895 5.144 0.521 0.734 0.767 0.119 0.876 0.643
MLPNN3 5.661 3.676 0.048 0.859 0.567 1.567 0.922 0.792
MLPNN4 7.346 5.363 0.790 0.738 0.769 − 1.466 0.865 0.639
MLPNN5 7.020 4.711 0.433 0.760 0.741 0.687 0.883 0.671
RBFNN1 7.215 5.039 0.375 0.779 0.695 0.976 0.891 0.695
RBFNN2 5.160 3.084 0.093 0.887 0.501 0.826 0.934 0.828
RBFNN3 6.306 4.340 0.421 0.824 0.632 − 0.433 0.903 0.744
RBFNN4 6.544 4.758 0.667 0.792 0.685 − 1.004 0.890 0.705
RBFNN5 7.196 3.398 0.198 0.747 0.760 0.068 0.878 0.656
DLNN1 6.930 5.069 0.366 0.796 0.667 1.236 0.899 0.716
DLNN2 4.699 2.899 0.007 0.906 0.456 1.528 0.944 0.855
DLNN3 4.833 2.867 0.258 0.897 0.484 − 0.020 0.939 0.842
DLNN4 5.381 3.786 0.423 0.859 0.564 0.461 0.921 0.791
DLNN5 6.756 4.672 0.433 0.777 0.713 1.128 0.889 0.691
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Fig. 4   Scatter Plots between actual and predicted Qflow using integrated ML models, a DLNN, b RBFNN, c MLPNN “Tropical case study”
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localized receptive field network. The convex form of the 
error function of BFNN allows for fast convergence to global 
optima (Bagtzoglou and Hossain 2009). The RBFNN frame-
work was chosen in this work using a trial-and-error method 
and four distinct learning algorithms (Elzwayie et al. 2016).

Genetic algorithm

Similar to several introduced feature selection, GA is one of 
the robust one introduced in the domain of hydrology (Kamp 
and Savenije 2006; Moreno and Paster 2019). Numerous 
benefits and disadvantages of the optimization algorithms 
have been reported. The most popular methods used in opti-
mization algorithms come from evolutionary computation, 

a branch of computational intelligence. A genetic algorithm 
(GA) is a good example of the concept of evolutionary 
computation. This algorithm is based on the generation of 
a population that mimics natural evolution, selection, and 
natural genes (Zou et al. 2007; Sreekanth and Datta 2010; 
Lee and Tong 2011; Olyaie et al. 2017).

The framework of the GA is reported in Fig. 2c. The 
selection of the optimal lags is conducted simultaneously 
and determined based on the minimal error metric (i.e., 
root-mean-square error). The procedure is adopted due to 
the satisfaction of the fitness function of the GA approach 
(Chang et al. 2019). Worth to highlight, the GA approach is 
worked based on the three-optimization processes including 
selection, crossover and mutation.

Fig. 5   Scatter Plots between 
actual and predicted Qflow using 
integrated ML models, a GA-
DLNN, b GA-RBFNN, c GA-
MLPNN “Semi-arid region”
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Implementation results and analysis

The research was adopted on the development of new 
machine learning model for forecasting Qflow at two different 
regions located at semi-arid and tropical (Iraq and Malay-
sia), respectively. The proposed model was emphasized from 
the latest version of deep learning and was validated against 
two classical ANN algorithms. The modelling structure was 
initiated based on univariate modelling where only lead time 
of previous records was used for the initial development of 
the learning algorithms, where correlated lags were used 
as predictors for the prediction matrix. Worth to highlight, 
that forecasting Qflow using only lag times is a distinguished 
modeling scheme where the merit of the machine learning 
models take place in mimicking the complex relationship 

between the predictors and predicated. As this research 
was conducted in different climatic zones, this section will 
cover two subsections elaborating the modeling results of the 
developed deep learning model and its validation classical 
neural network algorithms. The third subsection is focused 
on the feasibility of integrating feature selection algorithm 
prior the forecasting process. Several metrics were calcu-
lated for the prediction evaluation that present the best-fit-
goodness [i.e., Nash–Sutcliffe efficiency (NSE), Willmott 
index (d)], absolute error indicators [i.e., root-mean-square 
error (RMSE), mean absolute error (MAE), Nash], and scat-
ter index (SI), BIAS, MBE; readers are advised to refer to 
the following literature for the reference of the mathematical 
expression (Yaseen 2021).

Fig. 6   Scatter Plots between 
actual and predicted Qflow using 
integrated ML models, a GA-
DLNN, b GA-RBFNN, c GA-
MLPNN “Tropical case study”
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Fig. 7   a The relative error 
percentage for the integrative 
GA-DLNN model for the Semi-
arid case study, b The actual 
and predicted for the best results 
of the integrative GA-DLNN 
model for the Semi-arid case 
study
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Semi‑arid case study

Table 1 tabulates the statistical results of the testing phase 
for the semi-arid region case study. The introduced DLNN 
model reported the superior results in comparison with 
the two classical ANN algorithms. It can be observed that 
MLPNN and RBFNN attained almost similar forecasting 
results. In quantitative explanation, DLNN model attained 
minimum RMSE and MAE (39.62 and 23.67) and maxi-
mum d and NSE (0.96 and 0.95). With respect to the bench-
mark models MLPNN and RBFNN, the statistical indica-
tors showed much lower prediction results MLPNN attained 
(RMSE = 53.18, MAE = 36.79, d = 0.94, NSE = 0.91) and 
RBFNN reported (RMSE = 52.19, MAE = 33.34, d = 0.95, 
NSE = 0.92). It can be note here that all models for the case 
of the semi-arid region, the second lag time series provided 
the best forecasting results. Although the correlation was 
determined for the five lags using the auto-correlation 
statistics, this gives the credit that the applied ML mod-
els reported a homogeneous mechanism in abstracting the 
essential information from the memorial time series.

Figure 3a, b and c explains the deviation from the identi-
cal line in the form of scatter plots for the applied ML mod-
els (i.e., DLNN, MLPNN and RBFNN) and for the five-input 
combination configured at the first place. The maximum 
determination coefficient uses the second input combina-
tion for the DLNN model (R2 = 0.90), whereas the com-
parable models attained MLPNN (R2 = 0.85) and RBFNN 
(R2 = 0.87). It can be observed from Fig. 3 presentation, the 
models in general performed well. Particularly the DLNN 
attained identical prediction for the whole range of the data 
minimum and maximum Qflow data.

Tropical case study

The statistical results over the testing phases for the tropi-
cal region case study are reported in Table 2. Apparently, 
the developed DLNN model attained the best prediction 
results with values of (RMSE = 4.69, MAE = 2.89, d = 0.94, 
NSE = 0.90), whereas MLPNN attained (RMSE = 5.66, 
MAE = 3.67, d = 0.92, NSE = 0.85) and RBFNN attained 
(RMSE = 5.16, MAE = 3.08, d = 0.93, NSE = 0.88). The best 
results indicated that the best results were achieved using the 
second lags incorporating two months of previous inflow to 
forecast one step ahead inflow for the DLNN and RBFNN 
models. On the other hand, the MLPNN showed that includ-
ing three lags is the best scenarios for the forecasting pro-
cess. The superiority of the DLNN clearly explained the pre-
diction performance enhancement. Also, this is elaborating 
the merit of the DLNN in better understanding the compli-
cated relationship using the feasibility of the deep learning 
processes executed using multiple layers learning over the 
classical introduced ML algorithms over the literature.

Fig. 9   Taylor diagram for GA-model: GA-MLPNN, GA-RBFNN and 
GA-DLNN “Semi-arid case study”

Fig. 10   Taylor diagram for GA-model: GA-MLPNN, GA-RBFNN 
and GA-DLNN “Tropical case study”
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Graphical results were confirmed the presented predicta-
bility performance displayed in Table 2, based on the scatter 
plots generated in Fig. 4; the ideal correlation was observed 
for the DLNN using the second lag with max determination 
coefficient (R2 = 0.89). In comparison with the benchmark 
models, MLPNN was attained max determination coefficient 
equal to (R2 = 0.78); RBFNN was given max determination 
coefficient equal to (R2 = 0.82).

Integrative predictive model results

Modeling Qflow based on univariate modeling where only 
historical data of inflow used for the learning process is 
somehow a complex hydrological problem. Hence, reducing 
the dimension of the prediction matrix though the integra-
tion of the feature selection can participate essentially on 
providing a reliable and robust predictive model. Hence, the 
results of the hypothesized integration of GA as selection 
algorithm are presented in this subsection.

The results of the semi-arid indicated the variation between 
the best selected lags between the applied ML models. The 
best results configured using GA feature selection using sec-
ond and third lags with best statistical (i.e., GA-DLNN-2: 
(RMSE = 23.49, MAE = 15.55, d = 0.98, NSE = 0.98) and 
GA-DLNN-3: (RMSE = 39.30, MAE = 24.24, d = 0.96, 
NSE = 0.95)). However, lower prediction results uses the first 
two lags. The results of the Tropical case study revealed simi-
lar results with respect to the optimal lags, GA-MLPNN and 
GA-RBFNN best results the first two lags. GA-BLNN best 
results using the second and third lags. In quantitative results, 
[i.e., GA-DLNN-2: (RMSE = 2.92, MAE = 2.06, d = 0.97, 
NSE = 0.96) and GA-DLNN-3: (RMSE = 3.99, MAE = 2.57, 
d = 0.95, NSE = 0.93)].

Graphical result is based on scatter plots for the two cases in 
Figs. 5 and 6. The max determination coefficient (GA-DLNN: 
R2 = 0.96) was attained for both case studies. The relative error 
percentage and actual/forecasted time series graphics were 
calculated and presented in Figs. 7 and 8 for semi-arid and 
tropical, respectively. It can be observed that the relative error 
percentage ranged between ∓ 30% for the semi-arid case study, 
while the tropical case study achieved even lower relative error 
percentage ranged between ∓ 20%. Final graphical presenta-
tion tested for the research results model is the Taylor diagram 
(Taylor 2001). Figures 9 and 10 present the two dimensions of 
the Taylor diagram for the conducted integrative ML models 
for both cases. Clearly, the GA-DLNN model showed nearer 
coordinate to the observed record of Qflow. The results for both 
cases confirmed crucial findings: (i) the feasibility of the GA 
feature selection algorithm for reducing the dimension of the 
predictors and facilitate more reliable prediction matrix for 
the learning process, (ii) the adopted integrative GA-DLNN 
model confirmed its capability in modeling different time 
scales Qflow day scale “semi-arid region” and monthly scale 
“tropical region”, and (iii) GA-DLNN model could compre-
hend the actual mechanism that interconnect the predictors 
and predictand with more robust manner for both regions sto-
chasticity (Tables 3, 4).

Discussion, limitation and future research

This current research is similar to several adopted related 
literature on reservoir inflow forecasting. However, the main 
contribution that is worth to highlight here is the potential 
of introducing new version of machine learning for better 
prediction accuracy. In addition, the capability to merge the 
mask input selection automated algorithm for selecting the 

Table 3   The statistical 
indicators whiling testing phase 
for the integrative models 
“Semi-arid case study”

Models RMSE MAE MBE NSE SI BIAS d CI

GA-MLPNN1 49.972 32.194 0.144 0.929 0.369 − 0.503 0.951 0.883
GA-MLPNN2 36.986 21.717 − 0.006 0.961 0.273 10.238 0.970 0.932
GA-RBFNN1 40.561 25.641 0.160 0.953 0.299 − 8.349 0.965 0.920
GA-RBFNN2 33.680 21.886 0.093 0.968 0.249 − 1.799 0.974 0.943
GA-DLNN2 23.493 15.556 − 0.008 0.984 0.174 2.882 0.987 0.972
GA-DLNN3 39.304 24.247 − 0.031 0.956 0.291 6.834 0.967 0.924

Table 4   The statistical 
indicators whiling testing phase 
for the integrative models 
“Tropical case study”

Models RMSE MAE MBE NSE SI BIAS d CI

GA-MLPNN1 6.342 3.949 0.080 0.829 0.611 1.583 0.912 0.756
GA-MLPNN3 5.483 3.428 0.015 0.867 0.550 1.475 0.926 0.803
GA-RBFNN2 4.216 2.612 0.019 0.924 0.410 0.901 0.952 0.880
GA-RBFNN3 5.691 3.939 0.276 0.857 0.570 0.025 0.919 0.788
GA-DLNN2 2.922 2.063 0.001 0.964 0.284 1.079 0.974 0.939
GA-DLNN3 3.993 2.574 0.214 0.930 0.400 − 0.073 0.955 0.887
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relevant predictors. The finding of the research is totally sup-
porting the research hypothesized assigned in the first sec-
tion of this article. The limitation of the current research is 
the large data spam that is possibility to be incorporated in 
the model’s construction. In addition, the whole process is 
an offline modeling for reservoir inflow forecasting. There-
fore, for better practicality, an active learning can be adopted 
for such a kind of simulation and that can be adopted in 
future studies.

Conclusion

The main objective of the current study was to roll out a 
new robust and reliable predictive model to forecast reser-
voir inflow data in two different climatic regions (semi-arid 
and tropical). The development and validation of the deep 
learning predictive model started using two algorithms of 
the ANN model (MLPNN and RBFNN). In addition, tran-
scriptomes of certified ML models were tested where the 
genetic algorithm was incorporated as an approach to select-
ing reliable input variables.

The results of the prediction accuracy indicated the 
potential of the DLNN model over the benchmark mod-
els and for both investigated case studies. Also, it was 
observed that the DLNN model confirmed its capability 
in solving daily scale reservoir inflow more accurately in 
comparison with the monthly scale. Further, the research 
finding approved the adequacy of the data span used in the 
current investigation development of computerized ML 
algorithm. The capacity of the GA approach had reduced 
the dimension of the prediction matrix and provided the 
learning process of the ML models with more informative 
historical memorial time series data.
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