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Abstract
High-grade adsorbent (Fe–CS) was successfully synthesized from waste crab shells (CS) for the adsorptive removal of 
ammonia–nitrogen (A–N) from abattoir wastewater. Fe–CS was analyzed using Fourier transform infrared spectroscopy, 
x-ray diffraction, Scanning electron microscopy, and Thermogravimetric analysis. The characterization results indicated 
that Fe–CS possessed important qualities required for surface-driven chelation. The analysis of variance result showed 
that Fe–CS dosage (with f–value of 284.5) was the most effective process parameter of influence during A-N adsorption. 
The regression coefficients obtained from the process modeling illustrated the applicability of RSM (R2 = 0.9799), ANN 
(R2 = 0.9025), and ANFIS (R2 = 0.9998) in predicting the A–N adsorptive removal, while the comparative statistical analysis 
established the superiority of ANFIS model over ANN and RSMs’ data prediction accuracy. The optimization result further 
demonstrated that ANFIS–GA predicted an optimum removal efficiency of 92.60% at pH of 6.5, a dosage of 2.2 g, A–N conc. 
of 18.8 mg/L, Temp. of 317 K, and adsorption time of 156 min. The mechanistic plot obtained from Weber–Morris model 
depicted that three regions were involved in the adsorption process. Boyd model parameters revealed that intraparticle dif-
fusion controlled the process at low A–N concentration (A–N concentration ≤ 15 mg/L), while film diffusion dominated the 
adsorption process at concentrations higher than 15 mg/L. The average Gibbs free energy value ( −ΔG0 = 3.08212 kJ/mol), 
enthalpy ( ΔH0 = 4.1150 kJ/mol), activation energy ( E

A
 = 3.7454 kJ/mol) and entropy ( ΔS0 = 22.9710 J/mol K) obtained from 

thermodynamic studies confirmed the spontaneous, endothermic, favorable and physical nature of the process.

Keywords  Artificial neural network · Characterization · Response surface methodology · Mechanistic studies · 
Slaughterhouse

Introduction

According to the Food and Agricultural Organization (FAO), 
freshwater is one of the most significant commodities 
required for the sustenance of human life. Meanwhile, the 
presence of organic and inorganic pollutants resulting from 
the unrestricted discharge of effluents from various indus-
tries (desalination, oil & gas, abattoir, etc.) significantly 
degrades water quality, thus, making it unsuitable for use as 
a direct source of potable water for industrial applications 

(Panagopoulos 2021). These issues have worsened the prob-
lem of freshwater scarcity over the last two decades (Pana-
gopoulos 2022; Hashem et. al. 2021a).

Abattoir industries are very lucrative, especially in devel-
oping countries like Nigeria, as they provide a means to the 
major source of protein supply and also account for about 
21% of the country’s agricultural GDP (Ogbeide 2015). In 
addition to the nourishment and huge economic derivatives 
accruable from the abattoir industries, the issue of genera-
tion of a considerable volume of contaminated wastewaters 
(abattoir wastewater, AWW) during their operations still 
subsists. Studies have shown that these AWW are character-
ized by a variety of organic pollutants, which serve as sub-
strates for ammonia–nitrogen (A-N) generating microorgan-
isms (Elemile et al. 2019; Lin et al. 2014; Lopes et al. 2022). 
Due to the high toxicity of A-N, which has been extensively 
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reported (Elemile et al. 2019; Haseena et al. 2016; Halim 
et al. 2010), their total elimination or considerable reduction 
in AWW is plausible.

Many techniques such as chemical precipitation, nitri-
fication and denitrification, electrochemical coagulation, 
and membrane distillation (Haseena et al. 2016; Halim 
et al. 2010; Chen et al. 2018; Jorgensen et al. 2003; Mao 
et al. 2018; Qiang et al. 2020) have been successfully 
adopted for the removal of A-N from different sources. 
The reliability of adsorption techniques for A-N removal 
from AWW is attributed to the operational flexibility, 
cost-effectiveness, fast kinetics, and it is insensitive to 
ammonia toxicity as highlighted by several authors (Mao 
et al. 2018; Qiang et al. 2020; Ren et al. 2021; Mirahsani 
et al. 2019). Different adsorbents such as cross-linked 
chitosan, activated carbon and sawdust, etc., have been 
applied for AWW treatment (Atangana and Chiweshe 
2019; Agarry and Owabor 2012; Djonga et al. 2019). 
However, this study evaluated the effectiveness of crab 
shell-based adsorbent for the chelation of A-N from 
AWW.

Composed mainly of calcium carbonate, chitin, and 
proteins (Jeon et al. 2019; Ohale et al. 2020), the proper-
ties of crab shell biosorbent are linked to their rigid struc-
ture, high mechanical strength, and ability to withstand 
extreme conditions employed during the synthesis and 
adsorption process (Jeon et al. 2019). Jeon et al. (2019) 
and Jeon (2015), studied the removal of chromium and 
silver ions from an aqueous solution, using amino-func-
tionalized crab shell and immobilized crab shell beads. 
Using crab shell particles, Vijayaraghavan et al. (2011), 
investigated the removal of Mn (II) and Zn (II) from 
aqueous solutions. Also, iron functionalized activated 
carbon was successfully applied for the uptake of aqueous 
silver (Wang et al. 2019). Currently, the removal of A-N 
has focused on its adsorption from municipal wastewater 
sources (Qiang et al. 2020; Cheng et al. 2019). However, 
to our best knowledge, no work has been published on the 
adsorptive removal of A-N from AWW using crab shells, 
thus making this work imperative.

In the past, a uni-variant procedure (OFAT) was com-
monly adopted for evaluating the adsorptive removal of 
A-N (Hodur et al. 2020; Wang et al. 2018; Arslan and 
Veli 2011). However, OFAT approach is usually cum-
bersome, time-consuming, and rarely satisfies the search 
for the desired optimum. Using multi-variant empirical 
techniques which examine the simultaneous variations 
of process factors on the response, the limitations of the 
OFAT technique can be circumvented (Onu et al. 2020). 
Many nonlinear analytical techniques have been previ-
ously applied for nonlinear system modeling (Betiku 
et al. 2018, 2016), but response surface methodology 
(RSM), artificial neural network (ANN), and adaptive 

neuro-fuzzy inference system (ANFIS) have consistently 
shown good modeling and simulation results (Chen et al. 
2015; Myers et al. 2009). RSM and ANN are flexible 
mathematical tools, and artificial intelligence (AI) algo-
rithms, respectively, used for the design, modeling and 
optimization of majorly nonlinear systems (Chen et al. 
2015; Ohale et al. 2017). Literature has documented evi-
dence of researchers’ strong preference for ANN in data 
modeling in comparison with RSM (Wang et al 2018; Tu 
et al. 2019). This finding may not be unconnected with its 
(ANN) prediction accuracy, and minimal modeling data 
requirement (so long the data are statistically well distrib-
uted in the input domain) (Mahanty et al. 2020; Hariram 
et al. 2019; Dehghani et al. 2019; Dehghani et al. 2020).

Comparative assessment of ANN and RSM (Onu et al 
2020; Betiku et al. 2018; Ohale et al. 2017), as well as 
those between ANN and ANFIS (Onu et al. 2021a; Das-
torani et al. 2010; Kiran and Rajput 2011) in process 
modeling, has been reported by several authors. While 
some authors have verified the dominance of both ANN 
and ANFIS over RSM (Onu et al. 2020, 2021a, 2021b), 
Taheri et al. (2013) and Sajjadi et al. (2016) reported 
that RSM performed better than ANFIS. Furthermore, 
Kiran and Rjput (2011) observed that ANN performed 
better than ANFIS, even as Dastorani et al. (2010) con-
firmed the superiority of ANFIS over ANN. Betiku et al. 
(2016) established that both ANFIS and ANN were better 
than RSM, whereas ANN was slightly superior to ANFIS 
in data prediction accuracy. These inconsistent reports 
underscore the need to compare the predictive fitness of 
RSM, ANN and ANFIS under identical conditions, par-
ticularly as it relates to A–N uptake from AWW. Regard-
less of the numerous comparative applications of RSM, 
ANN and ANFIS in modeling of different processes (Zar-
ghi et al. 2020; Ting et al. 2020; Arabameri et al. 2015), 
no article exists on their application in the removal of 
A–N. This observation forms a major motivation for the 
work; hence, this present work is justified.

Therefore, the study aims at synthesizing a novel iron-func-
tionalized crab shell-based adsorbent with high A-N uptake 
capacity via thermal and chemical (impregnation) activation 
methods. Iron was chosen as a modifying agent owing to its 
special properties, namely catalysis, reduction, and increased 
electron transfer efficiency, which can improve the properties 
of CS with a larger surface area (Qin et al. 2020; Lyu et al. 
2019). The pre- and post-adsorption characteristics of the syn-
thesized novel adsorbent obtained, as well as the synergistic 
effects of process variables, were evaluated using RSM, ANN 
and ANFIS. Using genetic algorithm and RSM, the adsorp-
tive system was further optimized, while the probable rate-
controlling step and thermodynamics considerations during 
adsorptive uptake were elucidated.
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Experimental

Materials

Crabshell was obtained from a waste disposal site in Bad-
agry, Lagos State, Nigeria. The shells were washed and 
dried at a temperature of 378 K. With the aid of a mill 
apparatus, the dried shells were powdered and sieved to 
pass through 0.2 mm mesh size and subsequently stored in 
an airtight container for further processing.

Abattoir wastewater (AWW) was obtained from a local 
slaughterhouse in Amasea, Anambra state, Nigeria. AWW 
was characterized following standard procedures for water 
and wastewater analysis (APHA 2005; AWWA 2005), and 
the results are presented in Table 4. The characterized 
AWW was filtered to remove all solid particles capable 
of clogging the surface of the adsorbent and subsequently 
preserved in a dark-amber colored container for further 
analysis.

Analytical grade reagents of sulfuric acid (H2SO4), 
sodium hydroxide (NaOH), and iron nitrate (Fe (NO3)3) 
were purchased from Parchem limited, New Rochelle, New 
York, USA.

Adsorbent preparations

Fifty grams of ground crab shell was contacted with 400 ml 
of 0.3 M Fe(NO3)3 at 318 K for 7 h. The product was thor-
oughly washed with deionized water to remove all residual 
traces of the chemical. After drying, the chemically active 
crab shell was calcined for 3 h in a muffle furnace at 593 K, 
and the resultant product (iron-functionalized crab shell, 
Fe–CS) was cooled and stored for further use.

Instrumental characterization

Physicochemical properties of crab shell (CS), Fe–CS, and 
A–N-loaded Fe–CS were investigated using instrumen-
tal characterization. The functional groups, topographical 
equilibrium and crystalline structure of the samples were 
determined via Fourier transform infrared spectroscopy 
(FTIR – Thermo Nicolet Nexus, Model 470/670/870), scan-
ning electron microscopy (SEM – Model Zeiss Evo MA 
– 17 EDX/WDS microscopy), and X-ray diffraction (XRD 
– Philips XPERT X-RAY diffraction unit), respectively. 
Additionally, the thermal strength was analyzed by thermo-
gravimetric analysis (TGA – Mettler Toledo TGA/SDTG 
851). FTIR, XRD, SEM, and TGA analyses were carried 
out following ASTM E1421–99, ASTM F1185–88, ASTM 
E2809, and ASTM D3418 standard procedure, respectively.

Adsorption studies

The A–N removal efficiency was investigated at varying pH 
(4, 5, 7, 9, 10), Fe-CS dosages (0.7, 1.0, 1.6, 2.2, 2.5 g), ini-
tial A–N concentrations (1.7, 16.0, 44.5, 73.0, 87.5 mg/L), 
temperature (305.5, 308.0, 313.0, 318.0, 320.5 oK), and time 
(30, 60, 120, 180, 210 min). The experimental template 
(see Table S1) comprises 32 sets of individual runs, whose 
uniqueness lies in their input parameters synergy. The solu-
tion pH was adjusted with adequate drops of 0.5 M H2SO4 
and 0.6 M NaOH and standardized with Hanna pH instru-
ments (Model H12002–02). After pH adjustment, desired 
amounts of Fe–CS were added to 50 ml of AWW, and the 
mixture was stirred at 180 rpm for the specified adsorption 
time. The Fe–CS/AWW mixture obtained at the end ofcc 
each experimental run was separated by centrifugation and 
the supernatant was withdrawn for A–N analysis, while the 
spent Fe–CS adsorbate was recovered for characterization.

The experimental kinetic data used for mechanis-
tic modeling was obtained by studying the effect of time 
(15–300 min) and concentration (15.0–75.0 mg/L) on the 
A–N adsorption capacity (qt). The result of this study is 
illustrated in supplementary material. The equilibrium A–N 
concentration was determined by Nessler’s Reagent spectro-
photometry, while removal efficiency and adsorption capac-
ity were determined using Eq. (1) and Eq. (2), respectively.

C0 = Initial concentration of A–N (mg/L), Ct = residual 
concentration of A–N (mg/L), V = volume of AWW per 
batch (L), m = mass of Fe–CS (g) and qt = adsorption capac-
ity at time, t (mg/g).

Predictive and mechanistic modeling

RSM

The literature review showed the dependence of A-N 
removal efficiency on five process variables (pH, adsor-
bent dosage, initial concentration, adsorption tempera-
ture, and contact time) (Ren et al. 2021; Tu et al. 2019; Li 
et al. 2020; Couto et al. 2016; Kizito et al. 2015; Hodur 
et al. 2020; Wang et al. 2018; Arslan et al. 2011). The 
RSM–Central Composite Design provides the process 
variables’ synergistic study framework using an optimal 
number of experimental runs. Given that all the parameters 
are measurable, the mathematical relationship between 

(1)A − Nremovaleff .(%) =
C0 − Ct

C0

(100)

(2)qt =
C0 − Ct

m
V
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independent variables and removal efficiency is expressed 
by the second-order polynomial function (Eq. 3). To esti-
mate the statistical significance of each term in the polyno-
mial function, the independent variables and correspond-
ing responses were analyzed using analysis of variance, 
ANOVA (Table 5) (Betiku et al. 2018; Ohale et al. 2017).

For statistical analysis, the experimental variable has 
been coded as shown in Eq. 4:

where xi is the coded value of ith independent variable, Xi 
is the actual value of the ith independent variable, xn is the 
actual value of ith independent variable at the center point 
and, ΔX is the step change value of a real variable (Betiku 
et al. 2018; Ohale et al. 2017). The design matrix (Table S1) 
is generated based on five level input parameters given in 
Table 1 and the response surface methodology was carried 
out using the Design-Expert software 11.0 trial version 
(Stat-Ease Inc., Minneapolis, USA).

ANN

Multi-Layer Perceptron (MLP), aided with Marquardt Lev-
enberg’s backpropagation algorithm, was used in develop-
ing the ANN. The MLP consists of five input variables 
making up the input layer, with the A–N removal efficiency 
representing the output neuron (See Fig. 1a). Neuron input 
consists of its bias and the sum of its weighted input. The 
mathematical expression describing the neuron is given in 
Eq. 6, while the data set employed in ANN modeling was 
the same as those used in RSM (see Table S1). Seventy per 
cent (70%) of the data set was used for network training, 
while the remaining 30% was evenly used for validation 
and testing set (Ohale et al. 2017). To eliminate the influ-
ence of large–value process variables, all input parameters 
and responses were normalized using Eq. 5. The ANN was 
executed in MATLAB R 2015 b (Mathworks, Inc.).

(3)y = b0 +
∑

biXi +

∑

biiXii +

∑

bijXiXj + �

(4)xi =
Xi − Xn

ΔXi

where Xnorm. represents the normalized value of Xi , Xmin . 
and Xmax . denotes the minimum and the maximum values 
of the data set. The Yi is the net input to the node, i is the 
hidden layer, �i(i = 1, n) denotes the connection weights, �i 
represents the bias and xi is the input parameter.

The weighted output was subjected to a nonlinear acti-
vation function (Tu et al. 2019), while the logistic output 
function is given in Eq. (7).

The hidden number of neurons was arbitrarily varied from 
2.0 to 12.0, and a suitable number of the hidden neuron was 
chosen based on the results of regression and error function 
analysis obtained by applying Eqs. (8) and (9). Meanwhile, 
the graphical result of this test is presented in Fig. 5e.

where N is the number of data points, ypred.(i) is the ANN pre-
diction, yexp .(i) is the actual experimental response, yexp .ave. is 
the mean value of experimental data and i is the data index 
(Onu et al. 2020).

ANFIS

A fuzzy model for the prediction of A–N removal efficiency 
was initiated using a feed-forward neural network structure. 
The network consists of a multi-input single-output (MISO) 
ANFIS model which was developed using the fuzzy logic 
toolbox of MATLAB R 2015 b (Mathworks Inc.). The 

(5)Xnorm. =
Xi − Xmin .

Xmax . − Xmin .

(6)Yi =

n
∑

i=1

xi�i + �i

(7)sf (sum) =
1

1 + exp (−sum)

(8)R2
= 1 −

∑N

i=1

�

yexp .(i) − ypred.(i)
�2

∑N

i=1

�

ypred.(i) − yexp .ave.
�2

(9)RMSE =

�

∑N

i=1

�

ypred.(i) − yexp .(i)
�2

N

Table 1   Levels of independent 
variables for central composite 
design

Factors Unit Symbol Coded variable levels

− 1.5 − 1 0 1 1.5

pH x1 4 5 7 9 10
Dosage g x2 0.7 1 1.6 2.2 2.5
A–N Conc mg/L x3 1.75 16 44.5 73 87.25
Temp K x4 305.5 308 313 318 320.5
Time minutes x5 30 60 120 180 210
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architectural framework of the suggested ANFIS model, 
whose structure involved five discrete layers (Betiku et al. 
2016) is presented in Fig. 1b. First-order Sugeno inference 
systems that convert input parameters into membership func-
tions (MF) were employed for this investigation. To further 
analyze the ANFIS framework presented in Fig. 1b, the fuzzy 
inference system was assumed to have two input variables 
( x, y ) and one output ( f ) , as a result, the fuzzy ‘IF–THEN’ 
rules apply as expressed in Eqs. (10) and (11) (Betiku et al. 
2016; Betiku et al. 2018).

(10)Rule 1 ∶ IFxisA1andyisB1, thenf1 = k1x + l1y + m1

where Ai and Bi are fuzzy sets, fi is output, ki, li and mi are 
adjustable parameters set during ANFIS training [38]. Five 
layers of the ANFIS model were explained via Eqs. (12)–(16).

Layer 1 All nodes (i) in the first layer are defined by the 
function in Eq. (12).

where x is the input node, i and O1
i
 are the membership grade 

of fuzzy set Ai.

(11)Rule 1 ∶ IFxisA2andyisB2, thenf2 = k2x + l2y + m2

(12)O1
i
= �Ai

(x)

Fig. 1   Architectural framework of a ANN b ANFIS
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Layer 2 Every node i approximates the weight of each 
membership function (MF) by way of multiplication (Betiku 
et al. 2018), as shown in Eq. (13).

Layer 3 In this third layer, the approximated MFs are nor-
malized by computing each activation level using Eq. (14).

Layer 4 The fourth layer is used to compute the output by 
de-fuzzing the MFs via Eq. (15).

where wi is the output of the third layer and ki , li , and mi 
are parameter set.

Layer 5 The fifth layer is a single non-adaptive node used 
to compute the overall output using Eq. (16).

Appraisal of predictive models

To ascertain the superiority of either ANN, RSM, or ANFIS 
in predicting the A-N removal efficiency, the respective 

(13)O2
i
= wi = �Ai

(x) ∗ �Bi
(y);[i = 1, 2]

(14)O3
i
= wi =

wi

wi + w2

, [i = 1, 2]

(15)O4
i
= wi ∗ fi = wi

(

ki ∗ x ∗ li ∗ y + mi

)

(16)O5
i
=

�

i

wi ∗ fi =

∑

i wi ∗ fi
∑

i wi

model predictions were compared using error function indi-
ces (such as regression coefficient, R; coefficient of deter-
mination, R2; adjusted–R2, absolute average relative error, 
AARE; % Marquardt’s percent standard deviation, MPSED; 
root-mean-square error, RMSE; standard deviation, SD; 
the sum of squares error, SSE and Hybrid fractional error 
function HYBRID %) (Onu et al. 2020; Betiku et al. 2016; 
Betiku et al. 2018; Ohale et al. 2017; Agu et al. 2020). Math-
ematical expressions of the error indices (Eqs. 17–25) are 
tabulated in Table 2.

Process optimization

To determine the best parameters for optimum A-N removal, 
RSM and GA optimization techniques were adopted. To exe-
cute RSM optimization, the removal efficiency was set at 
maximum desirability, while the process factors were desig-
nated within the experimental constraints. For genetic algo-
rithm (GA), a statistical exploration technique, capable of.

simulating a natural biological evolution was used in 
solving the optimization problems. The developed models 
(RSM, ANN, ANFIS) were coupled with GA and used as 
a decision parameter in GA optimization (which occurs 
through a 4-staged cycle). The cycle was sustained until the 
attainment of a desirable outcome; thus, the best sequence 
produced at the convergence of the above-described loop 
becomes the solution to the optimization problem (Betiku 
et al. 2016, 2018). RSM optimization was implemented 

Table 2   The error function and 
adsorption mechanistic models

Error model Mathematical expression Eq. no

Correlation coefficient (R)
R =

∑N

i=1 (ypred.(i)−ypred.ave.).(yexp .(i)−yexp .ave.)
�

�

∑N

i=1 (ypred.(i)−ypred.ave.)
2
��

∑N

i=1 (yexp .(i)−yexp .ave.)
2
�

(17)

Coefficient of determination (R2)
R2

= 1 −
∑N

i=1 (yexp ..(i)−ypred.(i))
2

∑N

i=1 (ypred.(i)−yexp .ave.)
2

(18)

Adjusted R2
AdjustedR2

= 1 −
[

(

R2
)

x
N−1

N−P−1

]

(19)

Absolute average relative error
AARE =

1

N

N
∑

i=1

�

�

�

�

�

yexp .(i)−ypred.(i)

yexp .(i)

�

�

�

�

� (20)

Marquardt’s percent standard deviation

MPSED,% =

�

∑N

i=1

�

yexp .(i)−ypred.(i)

yexp .(i)

�2

N−P
× 100

(21)

Root-mean-square error
RMSE =

�

1

N−1

N
∑

i=1

�

ypred.(i) − yexp .(i)
�2

(22)

Standard deviation
SD =

�

1

N−1

N
∑

i=1

�

�

�

�

�

yexp .(i)−ypred.(i)

yexp .(i)

�

�

�

�

− AARE

�2 (23)

Sum of squares error
SSE =

N
∑

i=1

�

yexp .(i) − ypred.(i)
�2 (24)

Hybrid fractional error function
HYBRID,% =

1

N−P

N
∑

i=1

�

(yexp .(i)−ypred.(i))
2

yexp .(i)

�

× 100
(25)
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using Design-Expert 11.0 trial version (Stat-Ease Inc., Min-
neapolis, USA), while GA optimization was carried using 
the optimization toolbox of MATLAB R 2015 b (Mathworks 
Inc.). The method of the GA algorithm is illustrated in sup-
plementary material, Fig. S3.

Mechanistic modeling

Molecular diffusion is predictably influenced by film diffu-
sion, pore diffusion or mass actions. However, the effect of 
mass action occurs rapidly; hence, it is considered negligible 
in the adsorption kinetics. Therefore, the liquid film adsorp-
tion mechanism is principally controlled by either film or 
pore diffusion (Ohale et al. 2020; Aniagor et al. 2018). To 
investigate the rate-limiting step in the adsorptive process 
of A–N onto Fe–CS, mechanistic models listed in Table 3 

are applied (Ohale et al. 2020; Onu et al. 2020; Aniagor 
et al. 2018).

Results and discussion

AWW characterization

The AWW is typically assessed using the parameters tabu-
lated in Table 4. From the results shown, the amount of 
A-N present in the raw effluent was significantly higher 
than the stipulated discharge limit by NESREA and WHO 
(Ohale et al. 2020; Onu et al. 2020). Aside from the pol-
lutant of interest (A–N), other wastewater characterization 
indicators such as biochemical oxygen demand (BOD5) 
and chemical oxygen demand (COD) were considerably 
higher than the specified discharge limit. This may be due 

Table 3   The expression of the mechanistic models applied in the study

Mechanistic model Mathematical expression Eq. no

Webber Morris qt = kidt
1∕2

+ Cid
(26)

Double exponential
qt = qe −

D1

mads.

exp
(

−kD1
t
)

−
D2

mads.

exp
(

−kD2
t
)

 
ln
(

qe − qt
)

= ln
(

D2

mads

)

− kD2
t (27)

Liquid film diffusion ln (1 − F) = −kfdt
(

F =
qt

qe

)

,

(

F =
qt

qe

)

 
Bt = − ln

(

�2

6

)

− ln (1 − F(t)), (28)

Homogeneous solid diffusion
F = 6

(

Ds

R2�

)1∕2

t1∕2
(

F =
qt

qe

) (29)

Richenberg (Boyd) model Bt = − ln
(

𝜋2

6

)

− ln (1 − F(t)),→ F > 0.85 (30)

Bt =

�

√

𝜋 −

�

𝜋 −
𝜋2F(t)

3

�2

,→ F < 0.85
�

F =
qt

qe

� (31)

Table 4   The physicochemical 
characteristics of AWW​

Parameter Raw AWW​ Discharge limits

NESREA FEPA WHO

pH 7.2 ± 1.2 6 – 9 6 – 9 6.8–8.2
Turbidity (NTU) 599 ± 0.14 – < 100 < 11.75
Biochemical oxygen demand (BOD5), mg/L 483 ± 0.13 30 210 40
Chemical oxygen demand, mg/L 676 ± 0.23 60 < 180 250
Total organic carbon, mg/L 582 ± 0.18 – – –
Total phosphorus, mg/L 77.6 ± 0.08 3.5 – 5.0
Total suspended solids, mg/L 1030.8 ± 0.64 25 < 100 < 50
Total solids, mg/L 2814.8 ± 0.16 1000 < 2000 500
Total dissolved solids, mg/L 1784 ± 0.19 500 – < 500
Ammonia Nitrogen, mg/L 103 ± 0.63 15 – 10
Nitrate, mg/L 11.97 ± 0.26 – – –
Potassium, mg/L 21.2 ± 0.02 – – –
Color, Pt scale (mg/L) 302.1 ± 0.16 – – –
Odor Objectionable Odorless Odorless Odorless
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to the presence of substantial amounts of organic mat-
ter in AWW (Okey-Onyesolu et al. 2020). The recorded 
pH values ranged between pH 7.0 and pH 7.4, the values 
which are well within the tolerable NESREA, WHO and 
FEPA discharge limits (Okey-Onyesolu et al. 2020; Onu 
et al. 2020). The high A–N content of our AWW sample 
justifies the need for predisposal treatment.

Characterization of CS, Fe–CS and Fe–CS  loaded A–N

FTIR analyses

FTIR is a dynamic technique that provides valuable informa-
tion regarding the surface chemistry of substances. Depicted 
in Fig. 2a are the FTIR spectra of CS, Fe–CS and Fe–CS-
loaded A–N. The FTIR spectrum of CS indicated the pres-
ence of important peaks at wave-numbers 3324.8, 2903.6, 

Fig. 2   a FTIR spectra and b 
XRD pattern
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1628.8, 1582.6, 1428.8, 1241.2, 1032.5, and 834.9 cm−1. 
The waveband at 3324.8 cm−1 is attributed to the presence 
of an aromatic group, while the strong absorption peak at 
1032.5 cm−1 demonstrates the presence of an aliphatic C-H 
stretching group. The existence of amide—I (C = O sec-
ondary amide stretch) and amide—II (C-N stretch, N–H 
bend) in the CS were represented by waveband at 1628.8 
and 1582.6 cm−1, respectively, while those at 2903.6 cm−1 
denotes the presence of amide C-H stretching. The pres-
ence of phosphorus compound of P-F stretching and methyl 
group with C-N bending was illustrated by adsorption band 
at 834.9  cm−1 and 1428.8  cm−1, respectively. A similar 
observation was reported by Ohale et al. (2020).

The post-functionalization FTIR spectrum of Fe-CS dis-
played several recognizable peaks. The bands at 3324.8, 
2903.6 and 1628.8  cm−1, associated with aromatic and 
amide groups of CS were retained, although with diminished 
intensities. Slight deviations in the 1032.5–1049.1 cm−1 
wave-numbers are assigned to the -OH deformation vibra-
tion due to the Fe-CS thermal activation. The appearance 
of a new peak at 710.8 cm−1, in addition to the observed 
alterations in some others (for instance, the wave-numbers 
at 1428.8 and 834.9 cm−1 shifted to 1440.3 and 873 cm−1, 
respectively), reveals characteristic calcite spectra (Ohale 
et al. 2020; Dai et al. 2017).

The post-adsorption FTIR spectrum of Fe–CS-loaded 
A–N showed obvious wave-number shifts. The C = O amide 
stretch previously domicile at 1628.8 shifted to 1619.1 cm−1, 
with a corresponding intensity reduction. The sharp peak 
at 1049.1 cm−1 further shifted to 1088.3 cm−1, while the 
band at 873.2 cm−1 slightly deviated to 881.3 cm−1. These 
vibrational deviations and intensity reduction, especially 
as it relates to the amide functional groups, suggest their 
significant contributions during the A-N adsorptive uptake.

XRD analyses

The crystallographic features of CS, Fe–CS, and Fe–CS-
loaded A–N determined via XRD technique are depicted in 
Fig. 2b. The XRD pattern of CS portrays a well-structured 
spectral pattern with prominent 2-theta reflections at 9.5°, 
22.9°, 29.4°, 43.2°, and 47.6°. The XRD pattern of Fe–CS 
exhibited similar 2-theta reflections as CS; however, stronger 
peaks were observed for Fe–CS at 22.9° and 29.4°. The pro-
nounced peaks at 22.9°, 29.4°, and 43.2° indicate that the 
principal crystal in CS and Fe–CS was calcite. Meanwhile, 
the higher 2-theta reflection intensity at 29.4° in Fe–CS 
illustrated a significant concentration of calcite crystal in 
Fe–CS compared to CS. The presence of ferric-based crystal 
in Fe–CS was illustrated by the 2-theta reflection at 44.6°. 
This observation is just as expected because iron nitrate 
was utilized during the CS functionalization process. Simi-
lar observations have been reported elsewhere (Ohale et al. 

2020; Dai et al. 2017). The post-adsorption XRD pattern 
indicated minor alterations in the Fe–CS-loaded A–N struc-
tural configuration, thus, illustrating the crystalline stability 
of Fe–CS despite the A–N adsorption.

SEM analyses

SEM analyses fundamentally examine the particle size, 
porosity, and morphological properties of any given adsor-
bents. The surface morphology of CS (Fig. 3a) depicts the 
existence of a layer-stacking structure with irregular flakes, 
an indication that the CS was composed of fibrillary struc-
ture and crispy rough edges (Ohale et al. 2020). Figure 3b 
(SEM image of Fe–CS) shows the development of supe-
rior surface cohesion, with moderate thin layer tissues and 
a coral-like porous structure. These improvements in the 
surface properties of Fe–CS are attributed to the modifi-
cation techniques carried out during the CS functionaliza-
tion procedure. The morphological micrograph of Fe–CS-
loaded A–N as depicted in Fig. 3c shows the appearance of 
an intense river-like morphology, thus, validating effective 
adsorption of A–N onto Fe–CS.

TGA analyses

TGA was conducted to evaluate the mass stability of CS 
with temperature variations. The TGA results serve as a 
useful guide for the selection of suitable thermal activation 
temperatures (Ohale et al. 2020; Sebestyén et al. 2020). TGA 
result of CS, Fe–CS, and Fe–CS-loaded A–N is illustrated in 
Fig. 3d, and the respective curves portrayed three (3) thermal 
process stages. For CS, the first stage was recorded between 
50 and 195 °C. During this period, a 6% loss of initial mass 
was recorded, a development which could be attributed to 
the volatilization of surface organic matter and water desorp-
tion. The second stage, which illustrates an accelerated mass 
reduction, was observed between 225 and 330 °C. This stage 
accounted for a 38% loss of CS mass. This massive weight 
loss is unconnected with the probable dehydroxylation of 
the OH functional group and decomposition of the acetyl 
groups (Ren et al. 2021). Beyond 330 °C, CS attained the 
final stage of thermal equilibrium, which was sustained until 
its termination at 600 °C.

Fe–CS and Fe–CS loaded A–N exhibited very similar 
thermal behavior as demonstrated in Fig. 3d. The initial 
stage for both samples (Fe–CS and Fe–CS-loaded A–N) 
occurred between 50 and 350 °C. This characteristic of high 
thermal stability was a direct consequence of the Fe–CS 
calcination step. Between 350 and 370 °C, a rapid mass loss 
which accounted for about 19.5 and 25% weight reduction in 
Fe–CS and Fe–CS loaded A–N, respectively, was recorded. 
However, the samples (Fe–CS and Fe–CS-loaded A–N) 
attained thermal equilibrium beyond 370 °C. The TGA result 
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further showed that Fe–CS is more thermally stable than 
Fe–CS-loaded A–N. Such observation is not surprising, not-
ing that Fe–CS-loaded A–N contained a substantial amount 
of imbibed adsorbate, which contributed significantly to its 
weight.

Experimental design

RSM

The combined effects of pH, Fe–CS dosage, initial concen-
tration, temperature, and contact time on the A–N removal 
efficiency were studied using a central composite design. 
Results obtained from the respective experimental runs are 
presented with supplementary material (Table S1). Table 5 
shows the relevant parameters generated from the analysis 
of variance (ANOVA). The ANOVA technique employs p 
value and f-value to determine the adequacy and fit goodness 

of the empirical models. A confidence level of 95% was used 
to analyze the probability of p value; thus, the lower the p 
values (p values < 0.05), the higher the significance of the 
corresponding model term and vice versa (Onu et al. 2021b). 
The full quadratic model and the reduced quadratic model 
obtained after the elimination of the insignificant terms are 
presented in Table 5. Meanwhile, the developed RSM model 
prediction is given in Eq. (32).

Besides the p values, the f-values are also useful in ascer-
taining the significance of each term in the quadratic model. 
This was accomplished by evaluating the ratio between the 
mean square and the residual error of the quadratic model. 
Hence, by comparing the models’ lack of fit parameters for 
the reduced quadratic model, an f-value of 107.96 (Table 5) 
was recorded, an implication that the quadratic model is 
significant, relative to the pure error. The lack of fit f-value 
of 1.09 also implies the lack of fit is not significant relative 
to the pure error. Lack of fit p-value suggests that there is a 

Fig. 3   SEM micrograph for a 
CS b Fe–CS c Fe–CS-loaded 
A–N and d TGA analyses 
spectra
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49.35% chance that the f-value for lack of fit is attributable 
to noise. Furthermore, the predicted R–squared of 0.9507 
is in reasonable agreement with the adjusted R–squared 
(R2 = 0.9822), thus, suggesting the reproducibility of the 
RSM model (Ohale et al. 2017; Onu et al. 2020, 2021a; 
Betiku et al. 2018). The adequacy of the quadratic model 
is evaluated using the normal plot of residuals shown in 
Fig. 4a. It was observed that the residuals sustain a close 
alignment with the normality line, thereby, confirming the 
normality of the residual points.

Conversely, the plot of residuals vs. predicted values 
shown in Fig.  4b illustrates the random positioning of 
residuals around the baseline. This observation is a further 
indication of the suitability and accuracy of the developed 
quadratic model. An indication for the signal-to-noise ratio 

is given by the adequate precision value (APR). Accord-
ing to Betiku et al. (2018), for a model to effectively navi-
gate the design space, an APR greater than 4.0 is required. 
Therefore, an APR of 40.789 recorded in this study (Table 5) 
indicates the occurrence of sufficient signals relative to the 
noise. Also, the obtained coefficient of variance (CV) value 
(3.07%) indicates that the quadratic model was satisfacto-
rily reproducible, judging from the assertions made by Onu 
et al. (2021a). The effect of the respective model term on 
the overall removal efficiency prediction was demonstrated 
using the Pareto effect plot (Fig. 4c), while the influence 
of the corresponding factors was estimated using Eq. (33). 
Figure 4c shows that the Fe–CS dosage ( x2) sustained the 
greatest influence on the A–N removal efficiency, thus but-
tressing its (Fe-CS) adsorptive applicability.

Table 5   Test of significance for model coefficients and analysis of variance

Full quadratic model Reduced quadratic model

source sum of squares Df mean squares f-value P value sum of squares df mean squares f-value p value

x1 341.0 1 341.0 33.7 0.0001 341.0 1 341.0 33.4 < 0.0001
x2 2899.2 1 2899.2 286.0 < 0.0001 2899.2 1 2899.2 284.5 < 0.0001
x3 2328.4 1 2328.4 229.8  < 0.0001 2328.4 1 2328.4 228.5 < 0.0001
x4 2558.1 1 2558.1 252.4 < 0.0001 2558.1 1 2558.1 251.0 < 0.0001
x5 382.6 1 382.6 37.8  < 0.0001 382.6 1 382.6 37.6 < 0.0001
x1x2 24.4 1 24.4 2.4 0.1489 – – – – –
x1x3 327.8 1 327.8 32.4 < 0.0001 327.8 1 327.8 32.1 < 0.0001
x1x4 0.56 1 0.56 0.06 0.819 – – – – –
x1x5 81.0 1 81.0 7.9 0.0164 81.0 1 81.0 7.9 0.0129
x2x3 448.6 1 448.6 44.3 < 0.0001 448.6 1 448.5 44.0 < 0.0001
x2x4 386.1 1 386.1 38.1 < 0.0001 386.1 1 386.0 37.8 < 0.0001
x2x5 790.4 1 790.4 78 < 0.0001 790.4 1 790.4 77.6 < 0.0001
x3x4 284.1 1 284.1 28.0 0.0003 284.1 1 284.1 27.9 < 0.0001
x3x5 55.6 1 55.6 5.5 0.03900 55.6 1 55.6 5.4 0.0337
x4x5 5.5 1 5.5 0.55 0.4757 – – – – –
x2
1

2217.7 1 2217.7 218.8 < 0.0001 2299.7 1 2299.7 225.7 < 0.0001
x2
2

383.8 1 383.8 37.8 < 0.0001 408.5 1 408.4 40.0  < 0.0001
x2
3

753.1 1 753.1 74.3 < 0.0001 791.3 1 791.2 77.6 < 0.0001
x2
4

382.7 1 382.7 37.7 < 0.0001 407.2 1 407.2 39.9 < 0.0001
x2
5

10.8 1 10.8 1.07 0.3222 – – – – –
ANOVA
Model 17,644.0 20 882.2 87.06 < 0.0001 17,602.6 16 1100.1 107.9 < 0.0001
Lack of fit 63.32 6 10.55 1.1 0.4699 104.7 10 10.5 1.09 0.4935
Residual 111.47 11 10.13 152.8 15 10.2
Pure error 48.15 5 9.63 48.1 5 9.6
Adequacy precision = 34.38 Adequacy precision = 40.789
C. V. (%) = 3.05 C. V. (%) = 3.07
Mean = 35.18 Mean = 35.18
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where b is the f-value for the respective model term.

(32)

A − N rem. (%) = 45.7989x1 − 449.7647x2 + 9.5928x3 + 148.8144x4

− 0.1576x5 + 0.0794x1x3 − 0.0187x1x5 − 0.3096x2x3

+ 1.6374x2x4 + 0.1952x2x5 − 0.0296x3x4 − 3.5087 x2
1

− 16.4300x2
2
− 0.0101x2

3
− 0.2362x2

4
− 23591.2578

(33)Pi =

�

bi
∑

bi

�

x100

ANN

The graphical expression for the topological analysis of 
ANN is presented in Fig. 5(a–d) the data partitioning (as a 
training set and test set) was conducted to eliminate over-
training and over parameterization (Ohale et al. 2017; Onu 

Fig. 4   RSM plots for a Normal residuals, b residual vs. predicted, and c Pareto effect
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et al. 2021b). Based on the hidden neurons selection cri-
teria described in ″ANN″ Section, seven hidden neurons 
emerged as the most appropriate, because they depicted the 
least root-mean-square error (RMSE = 0.3619) and highest 
correlation coefficient (R2 = 0.9981) values (see Fig. 5e). 
Hence, the developed network was described as a 5–7–1 
(five input neurons, seven hidden neurons, and one output 
neuron) ANN architecture. Furthermore, the correlation 
coefficients obtained from the regression plots were 0.9919, 
0.9625, 0.9447, and 0.9686 for training, validation, testing, 
and overall data sets, respectively, evidence for a high cor-
relation between experimental data and ANN predictions. 
The consistency of the training process was estimated using 
the validation performance plot shown in Fig. 5f. The best 
validation performance of the training network generated a 
mean square error of 1.5061E-04 at the 53rd epoch itera-
tion. The negligible mean square error value recorded for the 
study suggests that the absence of any over-fitting difficulty 
within the network (Onu et al. 2021a; Nwadike et al. 2020). 
The estimated R2 and adjusted R2 of the ANN model were 
0.9025 and 0.8945, respectively. This suggests that 90.25% 
of the variations in experimental and predicted values can 

be described by the ANN model. Significant R2 value estab-
lished for the ANN model illustrates its capability in captur-
ing the nonlinear nature of the adsorptive process of A–N 
onto Fe–CS.

Fig. 5   ANN plots for a training data b validation data c test data d overall data e effect of hidden neurons and f performance evaluation

Table 6   ANFIS architecture and training parameters

Number of nodes 524

Number of linear parameters 243
Number of nonlinear parameters 30
Total number of parameters 273
Number of training data set 120
Number of checking data set 55
Average training error 0.0000138
Number of testing data set 60
Average testing error 0.0000101
Number of epochs 43
Membership function Gaussmf
Output membership function Constant
Method of optimization Hybrid
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ANFIS

The Sugeno type ANFIS structure for five input parameters 
and one output variable generated by grid partitioning is 
displayed in Fig. S1 (Supplementary data). The ANFIS 
structure was designed using a hybrid learning procedure 
that incorporates the least square and gradient technique. To 
enhance the effectiveness of the system, the raw data were 
normalized using Eq. (5). Among the five tested membership 
functions (trimf, trapmf, gbellmf, gaussmf, and guass2mf), 
gaussmf was selected as the most suitable for the develop-
ment of the fuzzy inference system (FIS). The ANFIS archi-
tecture and training parameters are listed in Table 6.

Plots of the experimental and predicted A–N removal 
rates against run numbers for training, testing, checking, 
and overall data set are illustrated in Fig. 6(a–d), respec-
tively. The significant spread of the interwoven data depicted 
in these plots is indicative of a high correlation between 
experimental and ANFIS predicted data. Furthermore, the 
calculated values R2 and adjusted R2 of the overall model 
performance were 0.9998 and 0.9978, respectively. This 

high R2 further gave credence to the ability of the ANFIS 
model in predicting the A–N adsorptive removal (Onu et al. 
2021a). The adjusted R2 value implies that the ANFIS model 
can describe 99.78% of the variability between the experi-
mental and predicted values (Betiku et al. 2018).

Fig. 6   ANFIS plots for a training data, b testing data, c checking data, and d overall data

Table 7   Statistical appraisal of RSM, ANN and ANFIS

Parameter RSM ANN ANFIS

R 0.9898 0.9500 0.9999
R2 0.9799 0.9025 0.9998
Adj-R2 0.9761 0.8845 0.9978
AARE 3.0847 4.3016 0.0075
MPSED (%) 23.2849 27.0725 0.0307
RMSE 16.9717 19.7323 0.0224
SD 16.9560 19.5659 0.0214
SSE 108.0657 1368.0471 48.2191
HYBRID (%) 3.5639 16.7914 0.0324
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Model appraisal analysis

The precision of established models (RSM, ANN, and 
ANFIS) in estimating the A–N removal was appraised by 
comparing their error variance using the models presented 
in Table 2 and the results are presented in Table 7. Accord-
ing to Betiku et al. (2018), the value of R should be greater 
than 0.8 for an effective correlation between experimental 
and predicted values. Hence, the high R values (R > 0.95) 
obtained for the three models indicate their significant appli-
cability in predicting experimental values. Adjusted R2 is 
applied for testing the extent of R2 overestimation, and its 
values obtained for the three models were satisfactorily 
sufficient, thus, validating their importance in predicting 
the A–N adsorptive removal. AARE was used to estimate 
the mean relative error between the model predictions and 
experimental values. However, the ANFIS model yielded 
negligible AARE values, a demonstration of its (ANFIS 
model) prediction accuracy and superiority over RSM and 
ANN. MPSED estimates the geometric error distribution of 
a system and allows for several degrees of freedom. The val-
ues of MPSED obtained for RSM, ANN, and ANFIS were 
23.3%, 27.1%, and 0.03%, respectively, which demonstrates 
the high prediction accuracy of the ANFIS model in captur-
ing the nonlinear nature of the adsorptive process. Low error 
magnitudes obtained by testing other statistical indicators 
(RMSE, SSE, SD, HYBRID) on the outputs (Table 7) fur-
ther gave credence to the superiority of the ANFIS model in 
the data prediction accuracy of the present study.

In general, results obtained from statistical analysis indi-
cate that ANFIS was the most effective model, while ANN 
was the least effective model in predicting the adsorptive 
removal of A–N from AWW onto Fe–CS. Thus, the pre-
diction accuracy of the studied models followed the order: 
ANFIS > RSM > ANN. The results obtained here correlate 
favorably with the findings of Onu et al. (2020) and Dasto-
rani et al. (2010).

Effect of process variables

Figure 7a and b presents the contour plots for the tem-
perature-dosage, and temperature-concentration effects, 
respectively. Both figures illustrate the positive impact of 
temperature on the removal efficiency and the entire adsorp-
tive process. At all levels of adsorbent dosage and effluent 
concentration, an increase in the system temperature resulted 
in a rapid removal rate, as depicted in the 2D contour plots 
of Fig. 7(a–d). Onu et al. (2021a, b), had earlier reported 
the augmentation of the adsorbate–adsorbent interaction rate 
and strengthening of the adsorbate ions’ mobility due to tem-
perature increase. This phenomenon explains the observed 
increase in the removal efficiency upon temperature increase; 

thus, an endothermic process. Figure 7(b–e) depicts the 
3D surface plots for the pH-dosage, and pH-concentration 
effects, respectively. The figures demonstrated that pH has 
a prominent quadratic effect on the A–N removal. At any 
given adsorbent dosage, increasing the pH from 4.0 to 6.8 
resulted in a rapid A–N removal rate. However, increasing 
pH beyond pH 6.8 decreased the A–N removal efficiency 
(see Fig. 7b and e). Under slightly acidic conditions (pH 
4.0–6.8), high amounts of H + competes with the ionized 
ammonia (NH4

+) for available adsorption sites on Fe–CS, 
thus resulting in a reduced.

removal rate. Similarly, from Eq. (34), it is evident that a 
large amount of NH4

+ was converted to NH3.H2O molecule 
in an alkaline medium. The production of non-ionized NH3.
H2O resulted in adsorption difficulties and reduced removal 
rate of A–N in alkaline medium.

The effect of initial concentration on the removal effi-
ciency was studied via a variation in the A–N initial concen-
tration from 1.75 to 87.25 mg/L (see supplementary material, 
Table S1). Figure 7(c–e) shows a continuous reduction in A–N 
removal efficiency due to a progressive increase in initial con-
centration. This trend is attributed to the increased occupation 
of readily available adsorption sites on the surface of Fe–CS. 
Conversely, the effect of Fe–CS dosage depicted a reverse 
trend (Fig. 7f), as more active sites were made available upon 
the Fe–CS dosage increase from 1.0–2.2 g. This increment 
subsequently enhanced the A-N removal efficiency, as dem-
onstrated in Fig. 7f. Similar observations have been reported 
by other researchers (Ohale et al. 2020; Aniagor et al. 2018; 
Onu et al. 2021a, b; Okafor et al. 2015).

Process optimization

Four optimization techniques (RSM-GA, ANFIS-GA, ANN-
GA, and RSM) were applied for optimizing the selected input 
variables (pH, dosage, concentration, temperature, and time) 
used for modeling the adsorptive process. The optimization is 
aimed at maximizing the A–N removal efficiency. The range 
of constraints used for genetic algorithm optimization is given 
in Eq. (35)–Eq. (39), while optimum values for A–N removal 
efficiency predicted by each method are given in Table 8. 
The graphical solutions for the RSM-GA, ANFIS-GA and 
ANN-GA optimization processes are given in Fig. 8(a–c), 
respectively. Judging by the figures, the removal efficiency 
increased steadily in a stepwise order from generation G1–G198 
for RSM-GA; generation G1–G110 for ANFIS-GA; and gen-
eration G1–G182 for ANN-GA, and subsequently remained 
constant until termination of the process. Such observations 
suggest the absence of a probable crossover or mutation, with 

(34)NH+

4
+ OH−

→ NH3.H2O
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Fig. 7   Surface and contour plots for the adsorption of A–N adsorption onto Fe–CS
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a substantive optimization effect within the parameters (Betiku 
et al. 2018, 2016).

Duplicate validation experiments were conducted at 
the predicted optimum conditions, and the average A–N 
removal efficiency was calculated and is recorded as actual 
removal efficiency in Table 8. ANFIS-GA gave the highest 
A–N removal efficiency prediction of 92.60% (at pH 6.5, 
2.2 g, 18.8 mg/L, 317 K, and 156 min). The superiority of 
ANFIS-GA prediction performance over those of RSM-GA 
and ANN-GA is linked to their experimental data captur-
ing accuracy. Therefore, regarding the quality and accuracy 
of the optimized process variables, the observed perfor-
mance of the optimization techniques followed the trend: 
ANFIS-GA > RSM-GA > ANN-GA > RSM.

(35)5.0 ≤ pH ≤ 9.0

(36)1.0(g) ≤ Fe − CSdosage ≤ 2.2(g)

(37)16
(mg

L

)

≤ A − Nconcentration ≤ 73
(mg

L

)

(38)308(K) ≤ Temperature ≤ 318(K)

Mechanistic modeling

The adsorption kinetic data interpretation from a mechanis-
tic viewpoint is an important step in describing the sorption 
process, and the accurate identification of the predominant 
sorption mechanism is also paramount for design purposes 
(Ohale et al. 2020). Generally, for an adsorption system, 
the solute transfer mechanism is typically characterized by 
either boundary layer diffusion (film) or intraparticle diffu-
sion (pore), or both. Meanwhile, the final adsorption stages 
are mostly regarded as the equilibrium step, provided the 
adsorptive.

simulating a natural biological evolution was used in 
solving the optimization problems. The developed models 
(RSM, ANN, ANFIS) were coupled with GA and used as 
a decision parameter in GA optimization (which occurs 
through a 4-staged cycle). The cycle was sustained until the 
attainment of a desirable outcome; thus, the best sequence 
produced at the convergence of the above-described loop 
becomes the solution to the optimization problem (Betiku 

(39)60(min .) ≤ time ≤ 180(min .)

Table 8   Optimization and 
model validation parameters

Tool x1

pH

x2

dosage (g)

x3

conc (mg∕L)

x4

Temp (K)

x5

Time (min)

Rem. Eff. (%)

Predicted Actual

RSM-GA 6.7 2.20 22.4 316 165 92.00 89.82
ANN-GA 6.2 2.19 17.1 318 168 91.58 89.01
ANFIS-GA 6.5 2.18 18.8 317 156 92.60 90.06
RSM 6.3 2.17 19.18 317 163 91.80 88.25

Fig. 8   Genetic algorithm optimization for a RSM-GA b ANFIS-GA and c ANN-GA
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et al. 2016, 2018). RSM optimization was implemented 
using Design-Expert 11.0 trial version (Stat-Ease Inc., Min-
neapolis, USA), while GA optimization was carried using 
the optimization toolbox of MATLAB R 2015 b (Mathworks 
Inc.). The method of the GA algorithm is illustrated in sup-
plementary material, Fig. S3.

Mechanistic modeling

Molecular diffusion is predictably influenced by film diffu-
sion, pore diffusion or mass actions. However, the effect of 
mass action occurs rapidly; hence, it is considered negligible 
in the adsorption kinetics. Therefore, the liquid film adsorp-
tion mechanism is principally controlled by either film or 
pore diffusion (Ohale et al. 2020; Aniagor et al. 2018). To 
investigate the rate-limiting step in the adsorptive process 
of A–N onto Fe–CS, mechanistic models listed in Table 3 
are applied (Ohale et al. 2020; Onu et al. 2020; Aniagor 
et al. 2018).

Results and discussion

AWW characterization

The AWW is typically assessed using the parameters tab-
ulated in Table 4. From the results shown, the amount of 
A-N present in the raw effluent was significantly higher 
than the stipulated discharge limit by NESREA and WHO 
(Ohale et al. 2020; Onu et al. 2020). Aside from the pol-
lutant of interest (A–N), other wastewater characterization 
indicators such as biochemical oxygen demand (BOD5) and 
chemical oxygen demand (COD) were considerably higher 
than the specified discharge limit. This may be due to the 
presence of substantial amounts of organic matter in AWW 
(Okey-Onyesolu et al. 2020). The recorded pH values ranged 
between pH 7.0 and pH 7.4, the values which are well within 
the tolerable NESREA, WHO and FEPA discharge limits 
(Okey-Onyesolu et al. 2020; Onu et al. 2020). The high A–N 
content of our AWW sample justifies the need for their pre-
disposal treatment.

Characterization of CS, Fe–CS and Fe–CS‑loaded 
A–N

FTIR analyses

FTIR is a dynamic technique that provides valuable informa-
tion regarding the surface chemistry of substances. Depicted 
in Fig. 2a are the FTIR spectra of CS, Fe–CS and Fe–CS-
loaded A–N. The FTIR spectrum of CS indicated the pres-
ence of important peaks at wave-numbers 3324.8, 2903.6, 
1628.8, 1582.6, 1428.8, 1241.2, 1032.5, and 834.9 cm−1. 

The waveband at 3324.8 cm−1 is attributed to the presence 
of an aromatic group, while the strong absorption peak at 
1032.5 cm−1 demonstrates the presence of an aliphatic C-H 
stretching group. The existence of amide—I (C = O sec-
ondary amide stretch) and amide—II (C-N stretch, N–H 
bend) in the CS were represented by waveband at 1628.8 
and 1582.6 cm−1, respectively, while those at 2903.6 cm−1 
denotes the presence of amide C-H stretching. The pres-
ence of phosphorus compound of P-F stretching and methyl 
group with C-N bending was illustrated by adsorption band 
at 834.9 and 1428.8 cm−1, respectively. A similar observa-
tion was reported by Ohale et al. (2020).

The post-functionalization FTIR spectrum of Fe-CS dis-
played several recognizable peaks. The bands at 3324.8, 
2903.6 and 1628.8  cm−1, associated with aromatic and 
amide groups of CS were retained, although with diminished 
intensities. Slight deviations in the 1032.5–1049.1 cm−1 
wave-numbers are assigned to the -OH deformation vibra-
tion due to the Fe-CS thermal activation. The appearance 
of a new peak at 710.8 cm−1, in addition to the observed 
alterations in some others (for instance, the wave-numbers 
at 1428.8 and 834.9 cm−1 shifted to 1440.3 and 873 cm−1, 
respectively), reveals characteristic calcite spectra (Ohale 
et al. 2020; Dai et al. 2017).

The post-adsorption FTIR spectrum of Fe–CS-loaded 
A–N showed obvious wave-number shifts. The C = O amide 
stretch previously domicile at 1628.8 shifted to 1619.1 cm−1, 
with a corresponding intensity reduction. The sharp peak 
at 1049.1 cm−1 further shifted to 1088.3 cm−1, while the 
band at 873.2 cm−1 slightly deviated to 881.3 cm−1. These 
vibrational deviations and intensity reduction, especially 
as it relates to the amide functional groups, suggest their 
significant contributions during the A-N adsorptive uptake 
from  AWW.

XRD analyses

The crystallographic features of CS, Fe–CS, and Fe–CS-
loaded A–N determined via XRD technique are depicted in 
Fig. 2b. The XRD pattern of CS portrays a well-structured 
spectral pattern with prominent 2-theta reflections at 9.5°, 
22.9°, 29.4°, 43.2°, and 47.6°. The XRD pattern of Fe–CS 
exhibited similar 2-theta reflections as CS, however, stronger 
peaks were observed for Fe–CS at 22.9° and 29.4°. The pro-
nounced peaks at 22.9°, 29.4°, and 43.2° indicate that the 
principal crystal in CS and Fe–CS was calcite. Meanwhile, 
the higher 2-theta reflection intensity at 29.4° in Fe–CS 
illustrated a significant concentration of calcite crystal in 
Fe–CS compared to CS. The presence of ferric-based crystal 
in Fe–CS was illustrated by the 2-theta reflection at 44.6°. 
This observation is just as expected because iron nitrate 
was utilized during the CS functionalization process. Simi-
lar observations have been reported elsewhere (Ohale et al. 
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2020; Dai et al. 2017). The post-adsorption XRD pattern 
indicated minor alterations in the Fe–CS-loaded A–N struc-
tural configuration, thus, illustrating the crystalline stability 
of Fe–CS despite the A–N adsorption.

SEM analyses

SEM analyses fundamentally examine the particle size, 
porosity, and morphological properties of any given adsor-
bents. The surface morphology of CS (Fig. 3a) depicts the 
existence of a layer-stacking structure with irregular flakes, 
an indication that the CS was composed of fibrillary struc-
ture and crispy rough edges (Ohale et al. 2020). Figure 3b 
(SEM image of Fe–CS) shows the development of supe-
rior surface cohesion, with moderate thin layer tissues and 
a coral-like porous structure. These improvements in the 
surface properties of Fe–CS are attributed to the modifi-
cation techniques carried out during the CS functionaliza-
tion procedure. The morphological micrograph of Fe–CS-
loaded A–N as depicted in Fig. 3c shows the appearance of 
an intense river-like morphology, thus, validating effective 
adsorption of A–N onto Fe–CS.

TGA analyses

TGA was conducted to evaluate the mass stability of CS 
with temperature variations. The TGA results serve as a 
useful guide for the selection of suitable thermal activation 
temperatures (Ohale et al. 2020; Sebestyén et al. 2020). TGA 
result of CS, Fe–CS, and Fe–CS-loaded A–N is illustrated in 
Fig. 3d, and the respective curves portrayed three (3) thermal 
process stages. For CS, the first stage was recorded between 
50 and 195 °C. During this period, a 6% loss of initial mass 
was recorded, a development which could be attributed to 
the volatilization of surface organic matter and water desorp-
tion. The second stage, which illustrates an accelerated mass 
reduction, was observed between 225 and 330 0C. This stage 
accounted for a 38% loss of CS mass. This massive weight 
loss is unconnected with the probable dehydroxylation of 
the OH functional group and decomposition of the acetyl 
groups (Ren et al. 2021). Beyond 330 °C, CS attained the 
final stage of thermal equilibrium, which was sustained until 
its termination at 600 °C.

Fe–CS and Fe–CS loaded A–N exhibited very similar 
thermal behavior as demonstrated in Fig. 3d. The initial 
stage for both samples (Fe–CS and Fe–CS-loaded A–N) 
occurred between 50 and 350 °C. This characteristic high 
thermal stability was a direct consequence of the Fe–CS 
calcination step. Between 350 and 370 °C, a rapid mass loss 
which accounted for about 19.5% and 25% weight reduc-
tion in Fe–CS and Fe–CS loaded A–N, respectively, was 
recorded. However, the samples (Fe–CS and Fe–CS-loaded 
A–N) attained thermal equilibrium beyond 370 °C. The TGA 

result further showed that Fe–CS is more thermally stable 
than Fe–CS-loaded A–N. Such observation is not surpris-
ing, noting that Fe–CS-loaded A–N contained a substantial 
amount of imbibed adsorbate, which contributed signifi-
cantly to its weight.

Experimental design

RSM

The combined effects of pH, Fe–CS dosage, initial concen-
tration, temperature, and contact time on the A–N removal 
efficiency were studied using a central composite design. 
Results obtained from the respective experimental runs are 
presented with supplementary material (Table S1). Table 5 
shows the relevant parameters generated from the analysis 
of variance (ANOVA). The ANOVA technique employs p 
value and f-value to determine the adequacy and fit goodness 
of the empirical models. A confidence level of 95% was used 
to analyze the probability of p value; thus, the lower the p 
values (p values < 0.05), the higher the significance of the 
corresponding model term and vice versa (Onu et al. 2021b). 
The full quadratic model and the reduced quadratic model 
obtained after the elimination of the insignificant terms are 
presented in Table 5. Meanwhile, the developed RSM model 
prediction is given in Eq. (32).

Besides the p values, the f-values are also useful in ascer-
taining the significance of each term in the quadratic model. 
This was accomplished by evaluating the ratio between the 
mean square and the residual error of the quadratic model. 
Hence, by comparing the models’ lack of fit parameters for 
the reduced quadratic model, an f-value of 107.96 (Table 5) 
was recorded, an implication that the quadratic model is 
significant, relative to the pure error. The lack of fit f-value 
of 1.09 also implies the lack of fit is not significant relative 
to the pure error. Lack of fit p-value suggests that there is a 
49.35% chance that the f-value for lack of fit is attributable 
to noise. Furthermore, the predicted R–squared of 0.9507 
is in reasonable agreement with the adjusted R–squared 
(R2 = 0.9822), thus, suggesting the reproducibility of the 
RSM model (Ohale et al. 2017; Onu et al. 2020, 2021a; 
Betiku et al. 2018). The adequacy of the quadratic model 
is evaluated using the normal plot of residuals shown in 
Fig. 4a. It was observed that the residuals sustain a close 
alignment with the normality line, thereby, confirming the 
normality of the residual points.

Conversely, the plot of residuals vs. predicted values 
shown in Fig.  4b illustrates the random positioning of 
residuals around the baseline. This observation is a further 
indication of the suitability and accuracy of the developed 
quadratic model. An indication for the signal-to-noise ratio 
is given by the adequate precision value (APR). According 
to Betiku et al. (2018), for a model to effectively navigate 
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the design space, an APR greater than 4.0 is required. There-
fore, an APR of 40.789 recorded in this study (Table 5) 
indicates the occurrence of sufficient signals relative to the 
noise. Also, the obtained coefficient of variance (CV) value 
(3.07%) indicates that the quadratic model was satisfacto-
rily reproducible, judging from the assertions made by Onu 
et al. (2021a). The effect of the respective model term on 
the overall removal efficiency prediction was demonstrated 
using the Pareto effect plot (Fig. 4c), while the influence 
of the corresponding factors was estimated using Eq. (33). 
Figure 4c shows that the Fe–CS dosage ( x2) sustained the 
greatest influence on the A–N removal efficiency, thus but-
tressing its (Fe-CS) adsorptive applicability.

where b is the f-value for the respective model term.

ANN

The graphical expression for the topological analysis of 
ANN is presented in Fig. 5a–Fig. 5d and the data partition-
ing (as a training set and test set) was conducted to eliminate 
over-training and over parameterization (Ohale et al. 2017; 
Onu et al. 2021b). Based on the hidden neurons selection 
criteria described in ″ANN″ Section, seven hidden neurons 
emerged as the most appropriate, because they depicted the 
least root-mean-square error (RMSE = 0.3619) and highest 
correlation coefficient (R2 = 0.9981) values (see Fig. 5e). 
Hence, the developed network was described as a 5–7–1 
(five input neurons, seven hidden neurons, and one output 
neuron) ANN architecture. Furthermore, the correlation 
coefficients obtained from the regression plots were 0.9919, 
0.9625, 0.9447, and 0.9686 for training, validation, testing, 
and overall data sets, respectively, evidence for a high cor-
relation between experimental data and ANN predictions. 
The consistency of the training process was estimated using 
the validation performance plot shown in Fig. 5f. The best 
validation performance of the training network generated a 
mean square error of 1.5061E-04 at the 53rd epoch itera-
tion. The negligible mean square error value recorded for the 
study suggests that the absence of any over-fitting difficulty 
within the network (Onu et al. 2021a; Nwadike et al. 2020). 
The estimated R2 and adjusted R2 of the ANN model were 
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0.9025 and 0.8945, respectively. This suggests that 90.25% 
of the variations in experimental and predicted values can 
be described by the ANN model. Significant R2 value estab-
lished for the ANN model illustrates its capability in captur-
ing the nonlinear nature of the adsorptive process of A–N 
onto Fe–CS.

ANFIS

The Sugeno type ANFIS structure for five input parameters 
and one output variable generated by grid partitioning is 
displayed in Fig. S1 (Supplementary data). The ANFIS 
structure was designed using a hybrid learning procedure 
that incorporates the least square and gradient technique. To 
enhance the effectiveness of the system, the raw data were 
normalized using Eq. (5). Among the five tested membership 
functions (trimf, trapmf, gbellmf, gaussmf, and guass2mf), 
gaussmf was selected as the most suitable for the develop-
ment of the fuzzy inference system (FIS). The ANFIS archi-
tecture and training parameters are listed in Table 6.

Plots of the experimental and predicted A–N removal 
rates against run numbers for training, testing, check-
ing, and overall data set are illustrated in Fig. 6(a–d), 
respectively. The significant spread of the interwoven 
data depicted in these plots is indicative of a high cor-
relation between experimental and ANFIS predicted data. 
Furthermore, the calculated values R2 and adjusted R2 of 
the overall model performance were 0.9998 and 0.9978, 
respectively. This high R2 further gave credence to the 
ability of the ANFIS model in predicting the A–N adsorp-
tive removal (Onu et al. 2021a). The adjusted R2 value 
implies that the ANFIS model can describe 99.78% of the 
variability between the experimental and predicted values 
(Betiku et al. 2018).

Model appraisal analysis

The precision of established models (RSM, ANN, and 
ANFIS) in estimating the A–N removal was appraised by 
comparing their error variance using the models presented 
in Table 2 and the results are presented in Table 7. Accord-
ing to Betiku et al. (2018), the value of R should be greater 
than 0.8 for an effective correlation between experimental 
and predicted values. Hence, the high R values (R > 0.95) 
obtained for the three models indicate their significant 
applicability in predicting experimental values. Adjusted 
R2 is applied for testing the extent of R2 overestimation, 
and its values obtained for the three models were satis-
factorily sufficient, thus, validating their importance in 
predicting the A–N adsorptive removal. AARE was used 
to estimate the mean relative error between the model 
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predictions and experimental values. However, the ANFIS 
model yielded negligible AARE values, a demonstration 
of its (ANFIS model) prediction accuracy and superior-
ity over RSM and ANN. MPSED estimates the geomet-
ric error distribution of a system and allows for several 
degrees of freedom. The values of MPSED obtained for 
RSM, ANN, and ANFIS were 23.3%, 27.1%, and 0.03%, 
respectively, which demonstrates the high prediction accu-
racy of the ANFIS model in capturing the nonlinear nature 
of the adsorptive process. Low error magnitudes obtained 
by testing other statistical indicators (RMSE, SSE, SD, 
HYBRID) on the outputs (Table 7) further gave credence 
to the superiority of the ANFIS model in the data predic-
tion accuracy of the present study.

In general, results obtained from statistical analysis 
indicate that ANFIS was the most effective model, while 
ANN was the least effective model in predicting the 
adsorptive removal of A–N from AWW onto Fe–CS. Thus, 
the prediction accuracy of the studied models followed the 
order: ANFIS > RSM > ANN. The results obtained here 
correlate favorably with the findings of Onu et al. (2020) 
and Dastorani et al. (2010).

Effect of process variables

Figure 7a and b presents the contour plots for the tem-
perature-dosage, and temperature-concentration effects, 
respectively. Both figures illustrate the positive impact 
of temperature on the removal efficiency and the entire 
adsorptive process. At all levels of adsorbent dosage and 
effluent concentration, an increase in the system tempera-
ture resulted in a rapid removal rate, as depicted in the 2D 
contour plots of Fig. 7(a–d). Onu et al. (2021a, b), had ear-
lier reported the augmentation of the adsorbate–adsorbent 
interaction rate and strengthening of the adsorbate ions’ 
mobility due to temperature increase. This phenomenon 
explains the observed increase in the removal efficiency 
upon temperature increase; thus, an endothermic process. 
Figure 7(b–e) depicts the 3D surface plots for the pH-
dosage, and pH-concentration effects, respectively. The 
figures demonstrated that pH has a prominent quadratic 
effect on the A–N removal. At any given adsorbent dos-
age, increasing the pH from 4.0 to 6.8 resulted in a rapid 
A–N removal rate. However, increasing pH beyond pH 
6.8 decreased the A–N removal efficiency (see Fig. 7b 
and e). Under slightly acidic conditions (pH 4.0–6.8), 
high amounts of H + competes with the ionized ammo-
nia (NH4

+) for available adsorption sites on Fe–CS, thus 
resulting in a reduced.

removal rate. Similarly, from Eq. (34), it is evident that 
a large amount of NH4

+ was converted to NH3.H2O mole-
cule in an alkaline medium. The production of non-ionized 

NH3.H2O resulted in adsorption difficulties and reduced 
removal rate of A–N in alkaline medium.

The effect of initial concentration on the removal effi-
ciency was studied via a variation in the A–N initial con-
centration from 1.75 to 87.25 mg/L (see supplementary 
material, Table S1). Figure 7(c–e) shows a continuous 
reduction in A–N removal efficiency due to a progressive 
increase in initial concentration. This trend is attributed 
to the increased occupation of readily available adsorption 
sites on the surface of Fe–CS. Conversely, the effect of 
Fe–CS dosage depicted a reverse trend (Fig. 7f), as more 
active sites were made available upon the Fe–CS dosage 
increase from 1.0 to 2.2 g. This increment subsequently 
enhanced the A-N removal efficiency, as demonstrated in 
Fig. 7f. Similar observations have been reported by other 
researchers (Ohale et al. 2020; Aniagor et al. 2018; Onu 
et al. 2021a, b; Okafor et al. 2015).

Process optimization

Four optimization techniques (RSM-GA, ANFIS-GA, ANN-
GA, and RSM) were applied for optimizing the selected 
input variables (pH, dosage, concentration, temperature, 
and time) used for modeling the adsorptive process. The 
optimization is aimed at maximizing the A–N removal effi-
ciency. The range of constraints used for genetic algorithm 
optimization is given in Eq. (35)–Eq. (39), while optimum 
values for A–N removal efficiency predicted by each method 
are given in Table 8. The graphical solutions for the RSM-
GA, ANFIS-GA and ANN-GA optimization processes are 
given in Fig. 8 (a-c), respectively. Judging by the figures, 
the removal efficiency increased steadily in a stepwise order 
from generation G1–G198 for RSM-GA; generation G1–G110 
for ANFIS-GA; and generation G1–G182 for ANN-GA, and 
subsequently remained constant until termination of the pro-
cess. Such observations suggest the absence of a probable 
crossover or mutation, with a substantive optimization effect 
within the parameters (Betiku et al. 2018, 2016).

Duplicate validation experiments were conducted at 
the predicted optimum conditions, and the average A–N 
removal efficiency was calculated and is recorded as actual 
removal efficiency in Table 8. ANFIS-GA gave the highest 
A–N removal efficiency prediction of 92.60% (at pH 6.5, 
2.2 g, 18.8 mg/L, 317 K, and 156 min). The superiority of 
ANFIS-GA prediction performance over those of RSM-GA 
and ANN-GA is linked to their experimental data captur-
ing accuracy. Therefore, regarding the quality and accuracy 
of the optimized process variables, the observed perfor-
mance of the optimization techniques followed the trend: 
ANFIS-GA > RSM-GA > ANN-GA > RSM.

(34)NH+

4
+ OH−

→ NH3.H2O
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Mechanistic modeling

The adsorption kinetic data interpretation from a mechanis-
tic viewpoint is an important step in describing the sorption 
process, and the accurate identification of the predominant 
sorption mechanism is also paramount for design purposes 
(Ohale et al. 2020). Generally, for an adsorption system, 
the solute transfer mechanism is typically characterized by 
either boundary layer diffusion (film) or intraparticle diffu-
sion (pore), or both. Meanwhile, the final adsorption stages 
are mostly regarded as the equilibrium step, provided the 
adsorptive.

process was sustained to the termination point (Onu et al. 
2021b). The overall mechanism is usually controlled by the 
slowest occurring step during the adsorption process. There-
fore, the effect of the final step (equilibrium stage), which is 
assumed to be rapid, is considered negligible (Aniagor et al. 
2018). The data used in kinetic modeling was obtained by 
studying the temporal variation of adsorption capacity (qt) 
with time at different A–N concentrations (See supplemen-
tary material, Fig. S2). The different mechanistic models 
applied in the study (Table 3) were independently discussed 
in the preceding subsections.

Double exponential model (DEM)

The double exponential model (DEM) describes the mecha-
nism of a sorption process in two-step kinetics. The first 
phase entails a rapid uptake of adsorbate involving external 
and internal diffusion. Afterward, a slow step controlled by 
intraparticle diffusion dominates the sorption mechanism, 
and finally, the process attains equilibrium. The DEM plot 
and extracted mechanistic parameters are given in Fig. 9a 
and Table 9, respectively. From the obtained parameters, 
the overall kinetic constants (KD1 and KD2) for the rapid and 
slow steps were relatively identical. This indicates that both 
film and intraparticle diffusion influenced the adsorption of 
A–N from AWW using Fe–CS.

(35)5.0 ≤ pH ≤ 9.0

(36)1.0(g) ≤ Fe − CSdosage ≤ 2.2(g)

(37)16
(mg

L

)

≤ A − Nconcentration ≤ 73
(mg

L

)

(38)308(K) ≤ Temperature ≤ 318(K)

(39)60(min .) ≤ time ≤ 180(min .)

Weber–Morris intraparticle diffusion model

Weber–Morris plot (qt vs. t1/2) is presented in Fig. 9 (e), 
while the generated mechanistic parameters are presented 
in Table 9. Obtained results illustrated that three distinct 
regions were involved during the sorption mechanism. The 
first linear region of film diffusion was recorded within the 
sorption period of 0–90 min. This period was characterized 
by bulk diffusion of the A–N ions onto the external surface 
of Fe–CS active sites. The second stage of intraparticle diffu-
sion was recorded within the sorption period of 91–178 min. 
This second stage was dominated by the distribution of the 
A–N ions onto the macropore, mesopore and micropores of 
Fe–CS active sites. The third stage (179–300 min) repre-
sents the equilibrium period. The high R2 value (0.92–0.99) 
depicted by the model denotes a significant influence of both 
film and pore diffusion in the adsorption process. Similarly, 
the Weber–Morris adsorption capacity (qipd) was observed to 
increase with increasing A–N concentration, an indication of 
increased film diffusion resistance. The improved adsorption 
capacity is attributed to the presence of high A–N concentra-
tion, which provided a favorable driving force to the external 
mass transfer process (Dotto and Pinto 2012). Meanwhile, 
none of the trend lines crossed the point of origin (Fig. 9e), 
thus confirming the fact that both film and intraparticle diffu-
sion contributed significantly to the adsorptive mechanism.

Liquid film diffusion model (LFDM) and Homogeneous solid 
diffusion model (HSDM)

To estimate the film diffusion coefficient (kf) and the intra-
particle diffusion coefficient (Ds), the experimental data of 
the first region of the Weber–Morris plot was fitted with 
the liquid film diffusion model, LFDM (Eq. 28), while the 
experimental data of the second region was fitted with the 
homogeneous solid diffusion model, HSDM (Eq. 29). The 
model plots are presented in Fig. 9b and c for LFDM and 
HSDM, respectively, while the estimated mass transfer coef-
ficients (kf and Ds) and the associated R2 values are pre-
sented in Table 9. From the results, it was concluded that 
LFDM and HSDM produced a good fit (R2 > 0.96) with the 
tested experimental data, thus illustrating the significance of 
both film and intraparticle diffusion in the adsorptive mecha-
nism. Furthermore, the kf values decreased with increasing 
A–N concentrations, an observation that corroborates the 
earlier obtained result of decreased and increased sorp-
tion rate and film diffusion resistance, respectively, due to 
increased A–N concentration. Conversely, a reverse trend 
was observed with the HSDM, where intraparticle diffusion 
coefficient (Ds) was noted to increase with increasing A–N 
concentration (Fig. 9c). This indicates a reduction in the 
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effect of the intraparticle diffusion mechanism as the A–N 
concentration increased. Similar observations have been 
reported by other researchers (Aniagor and Menkiti 2018; 
Dotto and pinto 2012).

Boyd (Richenberg) model

The contributions of film and intraparticle diffusion 
have been established in the previous discussion. How-
ever, none of the discussed models confirmed the actual 

Fig. 9   Mechanistic model plot for a Double exponential model b Liquid film diffusion c Homogeneous solid diffusion model and d Boyd (Rich-
enberg) model e Weber–Morris model
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rate-controlling step involved in the adsorption of A–N 
onto Fe–CS. To determine the actual rate-controlling 
step, experimental data were further analyzed with Boyd 
kinetic model as done by other researchers (Aniagor and 
Menkiti 2018; Dotto and Pinto 2012; Tavliev et al. 2013). 
Boyd model [Eqs. (30) and (31)] and the model parameters 
obtained from the plot of Bt vs t is presented in Table 9. 
The linearity of the Boyd plot (Fig. 9d) was applied for 
determining the rate-controlling mechanism. The plot 
of Bt vs. t (at 15 mg/L A–N concentration) produced a 
straight line passing through the origin. Meanwhile, higher 
A–N concentrations (30 mg/L–75 mg/L) produced straight 
lines that did not pass through the origin. According to 

Tavlieva et al. (2013), if the plot of Bt vs. t produces a 
straight line passing through the origin, it illustrates an 
intraparticle diffusion mechanism; otherwise, film or 
external diffusion dominates. Hence, at a low A–N con-
centration (Conc. ≤ 15 mg/L), intraparticle diffusion domi-
nated the adsorption process, while film diffusion mainly 
controlled the sorption process at higher concentrations 
(Conc.≥15 mg/L).

Thermodynamics

Thermodynamic studies were used to demonstrate the effect 
of change in temperature on the adsorption system (Ohale 

Table 9   Mechanistic parameters 
of studied models at varying 
concentrations of A–N

Models 15 mg/L 30 mg/L 45 mg/L 60 mg/L 75 mg/L

Double exponential model
Dexp.1 (m2/s) 2.1913 5.2731 11.4961 17.6318 23.2245
KD1 (L/g) 0.0342 0.0339 0.0329 0.0322 0.032
R1

2 0.9484 0.9461 0.9381 0.9342 0.9312
Dexp.2 (m2/s) 2.4121 5.8014 12.6341 19.3618 25.5006
KD2 (L/g) 0.0341 0.0337 0.0326 0.0319 0.0318
R2

2 0.9585 0.9568 0.9507 0.9477 0.9452
Weber–Morris
Kipd-1 (mg/g/min1/2) 0.8825 1.9909 3.8729 5.7414 7.5162
qipd-1 (mg/g) 0.0136 0.1024 0.2642 0.3103 0.3264
R1

2 0.9262 0.9305 0.9601 0.9676 0.9655
Kipd-2 (mg/g/min1/2) 0.0677 0.2386 0.7818 1.2944 1.8061
qipd-2 (mg/g) 6.0135 10.243 15.415 20.386 26.1661
R2

2 0.9418 0.9984 0.9621 0.9673 0.9584
Kipd-3 (mg/g/min1/2) 0.0156 0.0392 0.0989 0.1681 0.2242
qipd-3 (mg/g) 6.7287 12.9001 24.3841 35.1971 46.9211
R2 0.952 0.952 0.952 0.9519 0.9519
Liquid film diffusion model
Kfd (min− 1) 0.031 0.0298 0.0266 0.0258 0.0245
R2 0.9622 0.9618 0.9685 0.9782 0.977
Homogeneous solid diffusion model
Ds (m2/s) 5.03E–13 8.44E–13 1.46E–12 1.92E–12 2.0E–12
R2 0.9627 0.9628 0.9626 0.9601 0.9629
Boyd (Richenberg) model
B (min−1) 0.0238 0.0265 0.0247 0.0236 0.0234
R2 0.9899 0.9901 0.9854 0.9852 0.9822

Table 10   Thermodynamic 
parameters

Temperature −ΔG
0

ΔH
0

ΔS
0 E

A R
2
R
2

kJ∕mol kJ∕mol J∕mol k kJ∕mol

Deg. C Deg. K

30 303 2.8452
35 308 2.9601 4.1150 22.971 3.7454 0.9531
40 313 3.0749
45 318 3.1898
50 323 3.3406
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et al. 2020). To illustrate this relationship, thermodynamic 
parameters such as a change in enthalpy ( ΔH0 ), change in 
Gibbs free energy ( ΔG0 ), change in entropy ( ΔS0 ), and acti-
vation energy ( EA ) were calculated using Eqs. (40)–(43).

From the plot of ln(Kc) vs. 1
T
 , ΔH0 and ΔS0 were obtained 

from the slope and intercept, respectively. Calculated values 
of ΔH0 , ΔG0 , ΔS0 and EA are presented in Table 10. Positive 
ΔH0 values showed that the adsorption process was endo-
thermic. Also, negative ΔG0 values indicate that the adsorp-
tion of A–N onto Fe–CS was spontaneous at all temperature 
levels. The reduction in ΔG0 values with a corresponding 
increase in temperature depict improved adsorption rate at 
a higher temperature (Hashem et. al. 2021b).

The physisorption nature of the system was confirmed 
by the values of activation energy and enthalpy. According 
to Ohale et al. (2020) and Onu et al. (2021b), a physisorp-
tion process dominates if EA the range between 0 < EA < 40 
kJ∕mol or if ΔH0 < 80kJ∕mol . The values of EA and ΔH0 
obtained in this work were 3.7454 kJ∕mol and 4.1150 
kJ∕mol , respectively, which corroborates a physisorption 
process. The positive entropy value of 22.9710 kJ∕mol indi-
cates minor randomness around the surface of Fe–CS.

Limitations and recommendations for future studies

This study has modeled and optimized the adsorption of 
ammonia–nitrogen from abattoir wastewater. For accurate 
design and fabrication of adsorption tower, the results pre-
sented in this work are limited to the use of iron-functional-
ized crab shell as efficient adsorbent for high performance 
A-N removal. For more comprehensive treatment of AWW, 
additional developments in this research area are recom-
mended as follows:

Taking into consideration the complex nature of AWW, a 
more robust optimization route such as multi-objective optimi-
zation is needed to include not just A-N, but other pollution 
control indices that are important for waste reduction from 
slaughterhouse industry. The GA optimization employed in this 
study considerably enhanced the efficiency of the A-N removal; 
however, more optimization algorithm such as particle swarm 
optimization, vector support mechanism, etc., is recommended.

(40)ln(Kc) =
ΔS0

R
−

ΔH0

R

1

T

(41)Kc =
qe

Ce

(42)ln(Kc) = ln (A) −
EA

RT

(43)(ΔG0
) = ΔH0

− TΔS0

Conclusion

The present study investigated the predictive accuracy of 
RSM, ANN, and ANFIS in modeling the adsorptive removal 
of A–N from AWW using novel Fe–CS prepared from CS. 
The characterization results established that the properties 
of CS were improved after chemical and thermal activation. 
The post-adsorption characterization demonstrated that 
Fe–CS was very effective in the adsorptive uptake of A–N. 
Experimental design illustrated the applicability of RSM, 
ANN and ANFIS in predictive modeling of A–N uptake 
from AWW. Model comparative analysis using statistical 
indices showed that the predictive accuracy of the studied 
models followed the order: ANFIS > RSM > ANN. Process 
optimization gave optimum values of 92%, 91.58%, 92.6%, 
and 91.8% for RSM–GA,

ANN–GA, ANFIS–GA and RSM, respectively. Results 
obtained from mechanistic modeling revealed that intraparti-
cle diffusion dominated the adsorption process at a low con-
centration of A–N, while film diffusion mainly controlled the 
sorption process at A–N concentration higher than 15 mg/L. 
Thermodynamic parameters indicated that the process was 
spontaneous, physical, and endothermic.
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