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Abstract
Climate change and global warming are often considered the main reason for water scarcity in Iran. However, there is little 
evidence showing that the arid/wet regions get drier/wetter due to climate change. Some researchers believe that parts of water 
challenges in Iran arise from bad governance and mismanagement of water resources. To address the role of climate change 
on the water scarcity, this study aims to detect the drought trends in the southeast of Iran to investigate drought characteristics 
changes during 1981–2020. The nonparametric Mann–Kendall test was used for this purpose. CHIRPS product was collected 
as an alternative source of ground data for trend analysis of drought characteristics. The evaluation metrics show that the 
CHIRPS product performs better at monthly and annual scales (correlation higher than 0.8) than daily (correlation less than 
0.4). The results also illustrate that the duration and severity of short-term droughts (3, 6, and 9 months) have decreased, 
while their intensity has increased. Conversely, duration, severity, and intensity changes for long-term droughts (12, 18, and 
24 months) are insignificant. The trend in the Standardized Precipitation Index (SPI) showed that, in general, the southeast of 
Iran has not been getting drier during the last four decades. One may conclude that the change in precipitation is not the only 
reason for water challenges in this area, and both natural and anthropogenic drought might cause water scarcity. Accordingly, 
it is suggested that the effects of human activities and governmental plans should be considered as well.
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Introduction

Water scarcity and drying the water bodies in Iran during 
recent years are often considered as the consequences of 
climate change/variability and global warming. The report 
of the World Meteorological Organization, for the period 

2001–2010 indicates that Iran has warmed by about 1 °C 
(WMO 2013) and it will become even drier and hotter in the 
future (Madani et al. 2016). Some previous studies indicated 
that global warming would decrease precipitation rates in 
arid and semiarid regions and increase droughts' intensity, 
duration, and severity (Heathcote 1983; Xu et al. 2005; 
UNFCCC 2007; Mahajan and Dodamani 2015; Sharma 
and Goyal 2020; Pandey et al. 2021). However, Greve et al. 
(2014) implied there is little evidence to show that the arid 
regions become drier and wet areas become wetter due to 
climate change. Some previous studies believed that beside 
climate change/variability, anthropogenic interventions 
should be considered as important drivers for water crisis 
(Ghandehari et al. 2020; Afzal and Ragab 2020; Balist et al. 
2022).

It is worth noting that human and nature are coupled 
(Mianabadi et al. 2015). Considering the climate change/
variability as the only reason for the environmental chal-
lenges and ignoring the role of human activities allow the 
policymakers to avoid their own responsibility for dealing 
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with the causes and consequences of the ecological degrada-
tion (Oliver-Smith 2012; Safaee et al. 2020).

In Iran, during recent decades, overexploitation of natu-
ral resources and the implementation of various develop-
ment plans such as dam construction and inter-basin water 
transfer projects have led to environmental degradation in 
the country (Makhdoum 2008; Kolahi et al. 2012; Eslami 
et al. 2020). These activities resulted in drying water bodies 
and declining groundwater resources which in turn led to 
undesirable consequences such as land subsidence, water 
contamination, and agricultural losses (Madani 2014; Pour-
mohamad et al. 2020).

Two of the most important lakes in Iran are located in 
the southeastern part: Jazmourian wetland on the border 
of Kerman–Sistan and Balouchestan Provinces and Lake 
Hamoun on the border of Iran–Afghanistan (See Fig. 1). In 
recent years, the amount of water in these two lakes has 
decreased, and sometimes they have been thoroughly dried 
up (Mianabadi et al. 2022). Drying the lakes has many unde-
sirable economic, social, and environmental consequences, 
especially in the rural communities (Pourmohamad et al. 
2012). From an environmental point of view, drying the 
lakes causes severe dust storms, which blow toward the 
surrounding villages and cities (Rashki 2012; Alizadeh-
Choobari et al. 2014). It also limits the agricultural activi-
ties, resulting in economic problems, unemployment, and 
migration from rural areas to the cities (Delju et al. 2013; 
Pourmohamad et al. 2019). Abandoning the rural areas 
leads to rural population decrease and security threats in 
both sending and receiving regions (Mianabadi et al. 2021). 
While these consequences mainly arise from bad governance 
and a lack of preparedness plans, the government continu-
ously blames climate variability (besides international sanc-
tions) as the leading cause of the current situation (Madani 

2014). Accordingly, it is essential to investigate the changes 
in climate variables in these getting dry areas to assess the 
role of climate change on the water challenges and drought 
characteristics.

Previous studies assessed drought trends and their char-
acteristics in some areas worldwide (Pathak and Dodamani 
2020; Derdous et al. 2021; Kassaye et al. 2021; Liu et al. 
2021; Lotfirad et al. 2021; Qaisrani et al. 2021; Zerouali 
et al. 2021). Trend analysis of climatic data series requires 
long-term chronicled data (at least 30 years) (Burroughs 
2003). However, the climatic data may not be available suf-
ficiently on both temporal and spatial scales, or the access 
to the data is restricted. To deal with these limitations, some 
of the studies investigated the use of satellite precipitation 
products for trend analysis of drought characteristics (Brasil 
Neto et al. 2021; Santos et al. 2021). Their results showed 
that the satellites products performed well for drought 
monitoring.

Drought trend analysis using the satellite precipitation 
products did not conduct in any regions in Iran. Thus in 
this study, we applied the CHIRPS precipitation product 
(Funk et al. 2015) for drought monitoring as previously 
used by Guo et al. (2017), Pandey et al. (2021), Najjuma 
et al. (2021), Sandeep et al. (2021), and Ahmad et al. (2021) 
with reasonable performance. The CHIRPS product provides 
long-term precipitation estimates (40 years) and is easily 
accessible. Some previous studies indicated that the prod-
uct performed properly in their study regions (Ayehu et al. 
2018; Dinku et al. 2018; Gao et al. 2018; Rivera et al. 2018). 
Hence, it can be a reliable product for drought assessment 
in the study area. Accordingly, this paper aims to detect the 
trends in drought in southeastern Iran by using the CHIRPS 
product to see how the drought characteristics are changing 
in this area over the last four decades.

Fig. 1  The study area with the spatial distribution of the CHIRPS grids and the rain gauges
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Materials and methods

Study area

The southeast of Iran includes two provinces: Kerman and 
Sistan and Balouchestan (Fig. 1). These two provinces cover 
an area of about 365,000  Km2 and are classified as arid and 
semiarid regions. The Lut desert, the hottest spot in Iran 
(and in the world, according to NASA’s satellite data of land 
surface temperature (Zhao et al. 2021)), is located in this 
area. The mean annual precipitation recorded in the capitals 
of the provinces, Kerman and Zahedan, during 1966–2015 
has been about 136 and 80 mm, respectively (Mianabadi 
et al. 2019). Precipitation occurs mainly in winter, Febru-
ary, and rarely in summer, September (Fig. S1). The mean 
annual temperature at these two stations is about 15.9 °C 
and 18.7 °C, with annual potential evaporation of 2560 
and 2281 mm, respectively (Mianabadi et al. 2019). In this 
region, the elevation ranges from zero on the beach of the 
Oman Sea to more than 4000 m in the mountainous areas in 
Kerman (Fig. 1).

Synoptic data

Due to limited access to the rainfall data and excluding 
the time series with missing data, the daily precipitation 
was only available from 2005 to 2019 for 16 synoptic sta-
tions (Fig. 1). The available data were applied to evaluate 
the accuracy of the CHIRPS product in estimating daily, 
monthly, and annual precipitation over the study area.

CHIRPS

The Climate Hazards Group InfraRed Precipitation with Sta-
tion data (CHIRPS; Funk et al. (2015)) was developed based 
on global Cold Cloud Duration (CCD) rainfall estimates 
calibrated by the TMPA 3B42 v7 (Huffman et al. 2006). 
Funk et al. (2015) used the inverse distance weighting (IDW) 
algorithm to blend the satellite and stations data to reduce 
performance bias. CHIRPS provides daily precipitation at 
both 0.05° and 0.25° spatial resolution from 1981 to the 
present. Previous studies suggested that the 0.05° resolution 
can be used to assess sub-basin and small watersheds (Duan 
et al. 2016; Aadhar and Mishra 2017; Geleta and Deressa 
2021). But at a larger scale, the metrics for both resolutions 
are similar (Duan et al. 2016). According to the large scale 
of the case study, the monthly CHIRPS from January 1981 
to December 2020 at 0.25° spatial resolution was used. The 
data were acquired from ftp:// ftp. chg. ucsb. edu.

Evaluation metrics

The accuracy of the CHIRPS product was evaluated by the 
coefficient of determination  (R2), Pearson Correlation Coef-
ficient (PCC), Root Mean Square Error (RMSE), and Mean 
Error (ME) as follows:

In these equations, xiC and xig are the CHIRPS and the rain 
gauges precipitation, respectively. xC and xg are the averages 
of xiC and xig and n is the number of observations.

Additionally, the ability of the CHIRPS product to distin-
guish between rain and no-rain events can be evaluated using 
Categorical Statistical Indices, including Probability of Detec-
tion (POD), False Alarm Ratio (FAR), and Critical Success 
Index (CSI) (Ebert et al. 2007).

In these equations, “R” and “N” indicate rain and no-rain 
events, respectively. In each combination, the first/second let-
ter represents the station/satellite product. For example, “RN” 
for a given day shows that the station recorded rainfall, but 
the product did not detect any rainfall. POD, FAR, and CSI 
vary between 0 and 1, with the perfect value of 1, 0, and 1, 
respectively.
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Drought characteristic

Drought characteristic is identified by the Run Theory 
(Yevjevich 1967). Based on this theory, drought can be 
investigated by Drought Duration (DD), Drought Severity 
(DS), and Drought Intensity (DI). DD, DS, and DI are identi-
fied according to a drought index. In this study, the Standard 
Precipitation Index (SPI; McKee et al. (1993)) is used. A 
gamma probability density is firstly fitted to the long-term 
precipitation series to calculate the SPI:

In this equation, x is the amount of precipitation, and � 
and � are the shape and scale parameters, respectively. Γ(�) 
is the gamma function presented as follows:

The best values of α and β are estimated by the maximum 
likelihood method:

where A = ln
�
x
�
−

∑
ln(x)

n
 , x and n are the mean and the num-

ber of precipitation observations, respectively.
The cumulative probability for a given month can be 

obtained by the following equation:

And then SPI is calculated as follows:

in which, t =
√

ln
(

1

H(x)2

)
 , H(x) = q + (1 − q)G(x) , and 

q is the probability of zero rainfall.
For 0 < H(x) ≤ 0.5 , S = −1 , and for 0.5 < H(x) < 1 , 

S = 1 . In Eq. 13, c0 = 2.5155, c1 = 0.8028, c2 = 0.0103, 
d1 = 1.4327, d2 = 0.1892, and d3 = 0.0013.

SPI is calculated by monthly precipitation for different 
timescales (from 1 to 48 month(s)). In this study, we calcu-
lated the SPI for short-term (SPI3, SPI6, and SPI9) and long-
term (SPI12, SPI18, and SPI24) droughts. Drought events 
are characterized by the period with SPI ≤ 0. The severity of 
drought events is classified as shown in Table 1.

(8)g(x) =
1

𝛽𝛼Γ(𝛼)
x𝛼−1e

−
x

𝛽 , forx > 0

(9)Γ(�) = ∫
∞

0

x�−1e−xdx

(10)α =
1

4A

(
1 +

√
1 +

4A

3

)

(11)� =
x

α

(12)G(x) = ∫
x

0

g(x)dx =
1

��Γ(�)∫
x

0

x�−1e
−

x

� dx

(13)SPI = S

(
t −

c0 + c1t + c2t
2

1 + d1t + d2t
2 + d3t

3

)

Based on the SPI and Run Theory, DD is defined as the 
number of months between the start and end of a drought 
event (when SPI ≤ 0), DS is the cumulative SPI during DD, 
and DI is the ratio between DS and DD (i.e., DI = DS

DD
).

Trend analysis and Sen’s slope estimator

The nonparametric Mann–Kendall test (Mann 1945; Ken-
dall 1975) analyzes the trend in a data time series. The test 
can be applied to all probability distributions. Thus, the 
data do not have to meet the assumption of normality. The 
Mann–Kendall (MK) test is defined as follows:

where

In these equations,xj and xk are the sequential data val-
ues,  V(S) is the variance of S , ti is the number of ties for 
the i-th value, n and m are the number of data points and 
tied groups, respectively. The positive/negative value of 
zMK indicates an upward/downward trend in the series.

The trend magnitude in hydroclimatic data is estimated 
by the nonparametric Sen’s slope estimator test (Sen 1968) 
as follows:

where xj and xk are the time-series value at time j and k 
( j > k ). The positive/negative value of � denotes an upward/
downward trend (Xu et al. 2010).

(14)zMK =

⎧
⎪⎨⎪⎩

S−1√
V(S)

if S > 0

0 if S = 0
S+1√
V(S)

if S < 0

(15)S =

n−1∑
k=1

n∑
j=k+1

sign(xj − xk)

(16)V(S) =

�
n(n − 1)(2n + 5) −

∑m

i=1
ti(ti − 1)(2ti + 5)

�
18

(17)� = Median

(
xj − xk

j − k

)

Table 1  Classification of drought conditions according to the SPI val-
ues

SPI value Drought category

0 to − 0.99 Mild drought
 − 1 to − 1.49 Moderate drought
 − 1.5 to − 1.99 Severe drought
 ≤ -2 Extreme drought
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Results and discussion

Evaluation of the CHIRPS product

Figures 2 and 3 show that the CHIRPS product provides 
a reasonable estimation of precipitation at monthly and 
annual scales; however, it does not perform well on the 
daily scale. The amount of POD and CSI are less than 0.2 
and FAR is higher than 0.6. It shows that CHIRPS could 
not discriminate between rain and no-rain events.  R2 and 
PCC at daily scales are less than 0.2 and 0.4, respectively. 
At monthly and annual scales,  R2 and PCC show higher 
values (higher than 0.6 and 0.8, respectively), indicating 
the excellent performance of CHIRPS in monthly and 

annual precipitation estimation. The previous studies also 
found that the satellite products, including CHIRPS, per-
form better at monthly and annual scales rather than the 
daily scale (Dembélé and Zwart 2016; Guo et al. 2017; 
Rivera et al. 2018; Ghozat et al. 2021; Nawaz et al. 2021; 
Oliveira-Júnior et al. 2021). The precipitation satellite 
products often use infrared images to detect the tempera-
ture of the top of the clouds as part of their algorithm for 
precipitation estimation. In dry regions, the sensors do not 
have enough time to detect the temperature of the top of 
the clouds, because in this regions the clouds disappear 
very quickly after formation. Hence, the satellite products 
have a better estimate of precipitation in the wet areas than 
in the dry areas (Zambrano et al. 2016; Bai et al. 2018). 
Funk et al. (2015) incorporated the stations’ data for bias 

Fig. 2  Categorical Statistical Indices for evaluation of CHIRPS precipitation estimation

Fig. 3  Comparison of CHIRPS precipitation estimation with rain gauge data using  R2 and PCC
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correction by using the IDW algorithm. They believed 
that the lack of uncertainty information of IDW is a con-
siderable weakness of the CHIRPS algorithm. Thus, they 
plan to use more rigorous geostatistical models for future 
CHIRPS releases. They also suggested that the low cor-
relation in parts of Asia, Africa, and South America would 
be improved by providing more rain gauges (Funk et al. 
2015). Moreover, the number of stations used to retrieve 
precipitation varies significantly from one year to another, 
and some stations in some countries are located outside the 
country (Montes et al. 2021). This discrepancy can lead 
to the inappropriate performance of the CHIRPS product.

Figure  4 shows that RMSE mainly varies between 
4–5 mm/day on the daily scale, 10–15 mm/month on the 
monthly scale, and 40–60 mm/year on the annual scale. 
The figure also illustrates that ME ranges between -0.2 
and + 0.2 mm/day on the daily scale, -4 and + 4 mm/month 
on the monthly scale, and -50 and + 50 mm/year on the 

annual scale. Positive and negative ME values indicate that 
the model overestimated and underestimated precipitation, 
respectively. Generally, CHIRPS overestimates precipita-
tion in mountainous stations and underestimates in lowland 
stations. These results are consistent with previous studies 
(e.g., Messmer et al. 2021; Nawaz et al. 2021; Geleta and 
Deressa 2021) and might be because of either local climate 
or the quality of the rain gauge data (Dinku et al. 2018). 
However, Saeidizand et al. (2018) showed that compared 
to the rain gauges rainfall, CHIRPS overestimated precipi-
tation during 2005–2014 in Iran. Figure 5 illustrates the 
two-dimensional kernel density distribution of the two sets 
of CHIRPS and rain gauges data. It indicates that for both 
Kerman (Fig. 5a) and Sistan and Balouchestan (Fig. 5b) 
Provinces, the CHIRPS-estimated rainfall data captured the 
rainfall pattern on the monthly scale. Hence, the CHIRPS 
products work reasonably on the monthly scale and can be 
applied for drought monitoring over the study region.

Fig. 4  Comparison of CHIRPS precipitation estimation with rain gauge data by RMSE and ME at daily, monthly, and annual scales



Applied Water Science (2022) 12:183 

1 3

Page 7 of 13 183

Fig. 5  Two-dimensional kernel density estimate plots for CHIRPS and rain gauge monthly precipitation over a Kerman and b Sistan and 
Balouchestan

Fig. 6  Spatial distribution of a trend and b Sen’s slope of the SPI time series over the southeast of Iran
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Trends in SPI

Figure 6 shows the spatial distribution of the trend and Sen’s 
slope of the SPI time series over the southeast of Iran. It 
indicates that SPI has been significantly increasing in this 
area at all timescales except in some places in the southeast 
of Sistan and Balouchestan Province, where both increasing 
and decreasing trends are insignificant (Fig. 6a). However, 
SPI has been significantly decreasing in the northeast of 
Sistan and Balouchestan, where Lake Hamoun is located. 
The results indicate that, generally, the receiving precipita-
tion in southeastern Iran has been increasing during the last 
four decades. This figure also shows that Sen’s slope val-
ues and the areas with significant SPI trends increase as the 
timescale increases (Fig. 6b). It indicates that the long-term 
droughts show a steeper slope for the SPI time series than 
the short-term droughts. The spatial distribution of SPI over 
the four ten-year periods in the southeast of Iran (Fig. S2) 
confirms this result, as it shows that for all timescales, the 
fourth decade (2011–2020) is the wettest and the first decade 

(1981–1990) is the driest. It is also illustrated by Figs. 7 
(Hovmöller diagram) and S3 which provide a visual tempo-
ral change in SPI at different timescales during 1981–2020. 
According to these figures, the shorter timescales exhibit 
alternating periods of dryness and wetness, since they 
aggregate periods of lesser drought durations (Qaisrani 
et al. 2021). In contrast, the longer timescales show more 
severe and prolonged droughts (Pandey et al. 2021; Qais-
rani et al. 2021). The most severe and prolonged drought in 
both provinces occurred during 1985–1993 and 2000–2004, 
confirmed by previous studies (Asadi Zarch et al. 2011; 
Mianabadi et al. 2020). These figures indicate that 2005 to 
2020 are the wettest period during the last 40 years. Hence, 
it may have affected the spatial distribution of Sen’s slopes 
and SPI trends. It may be worth noting that drought events in 
this area coincide with La Nina, as also confirmed by Nikraf-
tar and Khaniani (2018), Alizadeh-Choobari et al. (2018), 
Alizadeh-Choobari and Najafi (2018), Amini et al. (2020), 
and Mohammadrezaei et al. (2020). However, the effect of 

Fig. 7  Hovmöller diagram of 
SPI-1 to SPI-24 for a Kerman 
and b Sistan and Balouchestan
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this phenomenon on drought in the southeast of Iran is not 
remarkable.

Trends in drought characteristics

Figure 8 demonstrates the ZMK value for DD, DS, and DI. It 
shows that the DD over the southeast of Iran has decreased 
during these 40 years for short- and long-term droughts. In 

the mountainous areas in Kerman, the decreasing trend in 
DD is significant, especially for SPI-3, SPI-6, and SPI-9. In 
the north of Sistan and Balouchestan, where Lake Hamoun 
is located, DD has been increasing, which this increasing 
trend is mostly insignificant. The results of DS are similar 
to those of DD; however, the latter have more accentuated 
trends. Such results were also found by Brasil Neto et al. 
(2021). They argued that if DD and DS time-series trends 
are the same, it probably indicates that the trend in DI would 

Fig. 8  Trends in DD, DS, and 
DI
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be constant. This result can be observed in some parts of the 
study area as well (Fig. 8). Nevertheless, drought events will 
be more intense when the duration decrease with a greater 
rate than severity. DS has been increasing for SPI-3 in some 
regions in Sistan and Balouchestan. This increasing trend is 
primarily insignificant. At other timescales, DS has an insig-
nificant negative trend. Figure 8 indicates that, in general, 
DI has been increasing according to SPI-3, SPI-6, and SPI-9 
and decreasing according to SPI-12, SPI-18, and SPI-24. It 
means that the intensity of short-term droughts is increasing, 
and that of long-term droughts is decreasing. The increasing 

trend of DI for SPI-3 is significant, especially over Sistan 
and Balouchestan. For other scales, both increasing and 
decreasing trends are insignificant.

In general, the results show that while the duration and 
severity of short-term droughts (SPI-3, SPI-6, and SPI-9) 
have been decreasing (i.e., shorter drought events with less 
severity), their intensity has been increasing. However, 
changes in duration, severity, and intensity of long-term 
droughts (SPI-12, SPI-18, and SPI-24) are insignificant. 
These results are not similar to the results of the SPI trend 
(Fig. 6a). It is firmly because trend analysis is conducted 

Fig. 9  Sen’s slopes for DD, DS, 
and DI
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with less data in the long-term series than in the short-term 
series (Brasil Neto et al. 2021). Brasil Neto et al. (2021) 
argued that a positive trend in SPI does not necessarily lead 
to a negative trend in the DD time series. Indeed, they com-
plement each other. For example, the results of this study 
indicate that in some parts of the study area, the long-term 
events are becoming wetter over time, while their duration 
tends to be constant.

Figure 9 shows the spatial distribution of Sen’s slope 
for the DD, DS, and DI time series. Regarding the time-
scales, the foremost remarkable results of Sen’s slopes were 
observed for long-term droughts. However, trends in DD, 
DS, and DI are more significant at short-term scales. Such 
results were found by Brasil Neto et al. (2021) and Qaisrani 
et al. (2021). Brasil Neto et al. (2021) discussed that reduc-
ing the amount of data for these time series may render the 
series without a high level of significance (e.g., α > 0.10), 
albeit Sen’s slopes are rather more accentuated.

Generally, the results of the current study using CHIRPS 
are similar to the previous studies conducted by Asadi 
Zarch et al. (2011), Sobhani et al. (2019), and Sharafati 
et al. (2020), which used rain gauge data for trend analysis 
of SPI, DD, DS, and DI. Thus, the CHIRPS product can be 
a reliable alternative data source for drought monitoring in 
the study area.

Conclusion

The main goal of this study was to detect the drought trends 
in the southeast of Iran to investigate drought characteristics 
changes. The nonparametric Mann–Kendall test was used 
for trend analysis of drought characteristics. Long-term 
historical precipitation data were collected by applying 
the CHIRPS satellite precipitation product as independ-
ent and alternative sources of ground data. Evaluation of 
the CHIRPS product showed that it performed better at 
monthly and annual scales than daily scale. The product 
also detects the prolonged drought during 1985–1993 and 
2000–2004. Thus, it can be applied for drought monitoring, 
as the monthly precipitation is the primary input for cal-
culating the SPI. The results of drought monitoring during 
1981–2020 illustrate that short-term droughts (SPI-3, SPI-
6, and SPI-9) have been getting shorter with less severity, 
while their intensity has increased. However, the increas-
ing trend in DI has been only significant for SPI-3. In con-
trast, duration, severity, and intensity changes in long-term 
droughts (SPI-12, SPI-18, and SPI-24) are insignificantly 
decreasing. In general, it concluded that there had been no 
significant changes in drought characteristics in the south-
east of Iran during the last four decades. The results of this 
study indicate that the CHIRPS product is a valuable tool for 

precipitation estimation and drought monitoring in the study 
area. Future work can focus on applying other precipitation 
satellite products to have more reliable results in the study 
area. It would help the scientists, experts, and decision-mak-
ers better distinguish between the role of climate change and 
human activities on changes in precipitation rate and drought 
characteristics. It also can lead the policymakers to provide 
appropriate preparedness plans for dealing with water chal-
lenges in the area.
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