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Abstract
Increased sedimentation is the main problem that affects dam efficiency by reducing storage capacity. Planning for dam 
construction and maintenance requires design strategies that heavily depend on integrated basin models, properly identify-
ing principal sediment origins within the watershed and qualifying the sediment production rate. In this research work, the 
physically-based watershed SWAT model, defined as the Soil and Water Assessment Tool, was used to estimate the rate of 
sediment production for future dams in the Tata basin, located in southeast Morocco. The model was calibrated and tested 
for uncertainty by the employment of the algorithm Sequential Uncertainty Fitting-2. The outputs were used for assessing 
critical sediment source areas. Calibration and validation of the model were performed by monthly data. The values for 
Nash–Sutcliffe efficiency coefficient, Percent bias coefficient and determination coefficient (R2), respectively, during the 
calibration period 1990–1998 (0.96, −13% and 0.96) and the validation period 1999–2006 (0.77, + 11% and 0.93) indicate 
the accordance with the results obtained for the measured flow and the simulated flow values. The annual sediment yield of 
the Tata basin extends from 0 to 11 t/ha/y with a mean of 2.3 t/ha/y. The spatial distribution of these sediments varies from 
upstream to downstream. The downstream basin generated more sediment to the river per unit area, though it was less than 
the total amount of the basin for the upstream area. This variation is influenced by the increased downstream surface runoff 
and also by other characteristics of the basin such as slope and lithology. The low erosion places correspond to areas with 
lithological formations that are more resistant to erosion.
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Introduction

Sedimentation is a major environmental concern associ-
ated with soil erosion (Mosbahi et al. 2013; Mallick et al. 
2014). It is extensively known due to the impact it has 
on the quality of water resources, reduction in reservoir 
capacity, and poor agricultural yield through nutrient loss 
(Cai et al. 2012; Yan et al. 2013). The quantity of sedi-
ment produced and transported within drainage basins is 
a result of the combined action of topography, soil texture, 
climate change, geology, and land use (Asres and Awu-
lachew 2010; Tram et al. 2021). Existing studies point out 
the internal link of the production and the transportation 
of sediment to synergistic forces of land use and climate 
(Bussi et al. 2016; Tram et al. 2021). To reliably predict 
the quality of sediment transport from ground soils to 
watercourses and rivers, both for the identification of areas 
with erosion problems and to suggest the best manage-
ment practices to decrease erosional impacts, a modeling 
approach is often used (Yesuf et al. 2015). The watershed 
soil erosion models can represent fluvial transport related 
to the separation, transport, and deposition of soil parti-
cles caused by rainfall and surface flow throughout the 
catchment area (e.g., Lee et al. 2013; Mosbahi et al. 2013; 
Mallick et al. 2014; Tram et al. 2021).

Recently there has been a rise in the development and 
use of these models (Yang and Wang 2010). The Soil and 
Water Assessment Tool model (SWAT) is one of the exten-
sively utilized models (e.g., Arnold et al. 1998; Akoko 
et al. 2021). This model is widely used as it is an ongoing, 
semi-distributed model created to identify critical areas 
of erosion that supply high quantities of sediments as well 
as simulating hydrologic processes within a vast spectrum 
and state of the environment (Arnold et al. 1993; Gassman 
et al. 2007). It is also used as an integrated basin model to 
provide useful planning strategies (Rickson 2014).

Several studies have shown that SWAT is capable of 
modeling data-lacking and ungauged watersheds with rea-
sonable accuracy (e.g., Arnold et al. 2012; Mallick et al. 
2014; Mosbahi et al. 2013; Nyeko 2015; Havrylenko et al. 
2016; Kondo et al. 2021; Tang et al. 2021). Only a few 
studies have employed this model in Morocco (cf. Briak 
et al. 2016; Boufala et al. 2019; Markhi et al. 2019). In 
this context, this study aims to use the SWAT model to (1) 
assess spatial distributions of soil erosion and sediment 
transport for the Tata basin, where there are limitations 
in terms of data availability, and (2) evaluate the potential 
sediment yield entering a future dam reservoir. The spe-
cific study objectives are to calibrate, validate, and per-
form an uncertainty analysis of the SWAT model for the 
Tata basin and identify critical areas of erosion. A feasibil-
ity study of this development allowed us to calculate the 

infiltrated water volume at groundwater level (1.9 Mm3), 
which corresponds to tenfold the infiltrated volume with-
out a dam. It would therefore be reasonable to calculate the 
sediment load entering this dam reservoir through math-
ematical modelling using SWAT software. This calculation 
makes it possible to define the lifetime of this dam and 
its profitability in terms of integrated water management.

Study area

Tata basin is a hydrographic system situated in the mountain 
chain of the Anti-Atlas, in the province of Tata in the south-
eastern part of the Kingdom of Morocco, between Lambert 
coordinates X (200,000 and 280,000) and Y (290,000 and 
360,000) (Fig. 1a). The basin area is 1912.75 km2. The 
sources for the primary stream of the basin are located 
approximately 2000 m in the Anti-Atlas Mountains. The 
basin has a sub-desert and continental climate. The annual 
average rainfall is low (less than 150 mm) and the average 
summer temperature is higher than 32 °C. The gap between 
the average temperatures varies considerably large across the 
seasons (19 °C in winter and 30 °C in summer). The wet sea-
son goes from the beginning of October to March, and the 
period of the dry season is from April to the end of Septem-
ber. Around 18 affluent streams, distributed on both sides of 
the valley, are significantly involved in the flow of the Tata 
River. Rain provides most of the water for the Tata River 
with very poor contribution during the springtime (less than 
1 m3/s). The monthly flow of the Tata River is extremely 
changing due to the high variability of precipitation in the 
Tata River (Fig. 1b) (Echogdali et al. 2018a, 2021). Con-
struction of a dam has been proposed, just upstream of Tata 
city, to limit the impact of floods (Echogdali et al. 2018a, b, 
2022; Ikirri et al. 2021), and to allow for a gradual recharge 
of the alluvial groundwater downstream.

Methods and materials

SWAT model description

The SWAT model is a semi-distributed hydrological 
model operating at an uninterrupted time move (Arnold 
et al. 2012). This model was built for the simulation of 
change effects in the practices of watershed management, 
on the hydrology of surface water and groundwater, pol-
lution expanse, water erosion, and sediment transportation 
(Taylor et al. 2016). It involves two kinds of functional 
units, namely Hydrologic Response Unit (HRU) and Sub-
basin (Neitsch et al. 2011). The first unit, HRU, is spatial 
of the homogeneous property of slope, land use, and soil, 
in every sub-basin (Arnold et al. 2012). The second unit 
partially points out regions comprising the major spring 



Applied Water Science (2022) 12:137	

1 3

Page 3 of 15  137

and the area contributing to it, composing one or many 
HRUs (Vigiak et al. 2017). The model forecast each HRU 
hydrology, from the equation of the water balance, taking 
into account daily rainfall, surface runoff, percolation, lat-
eral flow, irrigation, and evapotranspiration (Neitsch et al. 
2005). The simulation of the land phase is done based on 
the water balance equation as shown below (Neitsch et al. 
2005):

SWt represents the water content in the soil (mm), SW0 
the water available for plants (mm), Qsurf stands for the 
surface run-off (mm), Rday for precipitation (mm), Ea for 
evapotranspiration (mm),Wseep for percolation (mm), and 
t for the time (days).

The water phase in the water cycle portrays the path 
of water in the riverbed through the method of variable 
storage coefficient (Williams 1969) or Muskingum rou-
tine (Linsley and Kohler 1958). In SWAT, sediment yield 

(1)
SWt = SWo +

∑t

i=1

(

Rday − Qsurf − Ea −Wseep − Qgw

)

i

is evaluated with empirical Modified Universal Soil Loss 
Equation (MUSLE) for every HRU (Williams 1975a):

Sed represents sedimentation yield on a given day (t), 
Qsurf is the volume of surface run-off (mm/ha), qpeak is the 
peak run-off rate (m3/s), Areahru for the HRU area (ha), 
KUSLE stands for the universal soil loss equation (USLE) 
factor of soil erodibility, CUSLE for USLE cover and manage-
ment factor, PUSLE for USLE support practice factor, LUSLE 
for USLE topographic factor, and CFRG stands for coarse 
fragment factor.

Soil and Water Assessment Tool Calibration and Uncer-
tainty Procedures (SWAT-CUP) is an independent operation 
containing five different automated calibration procedures 
among which we have validated and performed sensitivity 
analysis functionalities, in addition to visualization of results 
(Abbaspour et al. 2007). The employment of the SWAT-CUP 
model requires ArcSWAT output files (Abbaspour 2011). 

(2)
Sed = 11.8

(

Qsurf × qpeak × Areahru
)0.56

× KUSLE

× CUSLEPUSLE × LUSLE × CFRG

Fig. 1   Geographic location of Tata basin a Digital elevation model (DEM) b Flow hydrograph of Tata basin
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Several algorithm procedures are developed for SWAT-CUP 
simulations. During the study, Sequential Uncertainty Fit-
ting-2 (SUFI) calibration algorithm was used because it is 
frequently applied for hydrological calibration of catchment 
areas (Abbaspour et al. 2007).

The simulated streamflow and the measured monthly 
flow values for the Tata River were compared to perform 
calibration and validation (Moriasi et al. 2007). The sim-
ulation period for which the model was run is from May 
1st, 1985 to October 2006 with the first 5 years, from 1985 
to 1989, as a warm-up period, 9 years of streamflow data 
(1990–1998) were used for the calibration, whereas the last 
8 years (1999–2006) was used for the validation.

The accordance between measured and simulated flows 
was assessed using the determination coefficient (R2), the 
Nash–Sutcliffe efficiency coefficient (NSE), and the Percent 
bias coefficient (PBIAS). The equations used to calculate 
these coefficients are the following:

where Oi is the observed variable, Si the simulated variable, 
and O mean observed variable.

NSE shows to what extent the graph of the observation 
against the simulation fits the 1:1 line (Nash and Sutcliffe 
1970). The PBIAS measures the average simulated values 
trend to be greater or lesser than the observations (Gupta 
et al.1999).

Input data used in SWAT​

SWAT demand two kinds of input data: spatial and tem-
poral data (Halefom et  al. 2017; Boufala et  al. 2019). 
Land use map, soil map, and slope map (Digital Elevation 
Model–DEM) are included in the spatial data. Hydrological 

(3)NSE = 1 −

∑n

i=1
(Oi − Si)2

∑n

i=1

�

Oi − O
�2

(4)PBIAS =

∑n

i=1
(Oi − Si)

∑n

i=1
Oi

× 100

data (streamflow and sediment yield) and climate data (solar 
radiation, relative humidity, air temperature, precipitation, 
and wind speed) are included in the temporal data. See 
Table 1 for the details of the databases.

Hydro‑meteorological data

The principal input data for the hydrological process in 
SWAT is climate data. For that, daily precipitation, maximal 
and minimal air temperature, wind speed, solar radiation, 
and relative air humidity, data from the meteorological sta-
tion were used. The daily flow data from the Kasbah Zolite 
stream gauging station was used to evaluate the performance 
of the SWAT simulation. These meteorological and hydro-
logical data covered 22 years from May 1985 to October 
2006. The Hydraulic Basin Agency of Souss Massa (Agadir, 
Morocco) provided those data.

Spatial data

Digital elevation model (DEM)

A DEM of the Tata basin was utilized to represent the 
relief of the study area (Fig. 1a), which was extracted from 
the ASTER-GDEM data (Global Digital Elevation Model 
from the ASTER) with a spatial resolution of 30 by 30 m. 
The DEM was integrated into the SWAT model and used 
to delineate the sub-basins. DEM was used to derive topo-
graphic parameters such as slope, length of slope for the 
sub-basins.

Land use map

Land use map is used in ArcSWAT to divide the sub-water-
sheds into small units (Boufala et al. 2019). A land use 
map was created from an overseen classification of Senti-
nel-2 satellite imagery using Envi 5.3 software (Fig. 2a). 
The classification showed 4 different categories: Bare soil 
(96.34%), Watercourses (2.62%), Agricultural (0.84%) and 
Urban (0.20%).

Table 1   Sources and descriptions of data used for the Tata River basin

Data type Resolution Description

DEM 30 × 30 m The ASTER-GDEM data (Global Digital Elevation Model), USGS earth explorer
Land use data 10 × 10 m Land use classification collected from Sentinel-2 images, taken on June 08, 2016, from ESA
Soils data 1/1 500 000 Soil map collected from the National Institute of Agronomic Research in Morocco

HWSD (Harmonized World Soil Database) by FAO (Food and Agriculture Organization)
Weather data Daily Daily precipitation, maximum and minimum air temperature, relative air humidity, wind 

speed, and solar radiation data collected at Tata meteorological station
Streamflow data Daily Daily streamflows measured at Kasbat Zolite Stream gauging station
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Soil map

Soil map was produced by the National Institute for Agro-
nomic Research (Rabat, Morocco). Besides, we used the 
Harmonized World Soil Database (HWSD) developed by 
the Food and Agriculture Organization (FAO). This data-
base consists of a digital map layer coupled to an attribute 
table containing the main characteristics of the soil types 
(Nachtergaele and Velthuizen 2009). HWSD provides all 
of the information describing the physical and chemical 
properties of the soil, such as texture, depth, hydraulic con-
ductivity (Ksat), saturated hydraulic conductivity (SOL_K), 
and soil hydrologic group (HYDGRP), which play a large 
role in determining the movement of water and air within 
the HRU (Fig. 2b). The classes fall into 3 main categories, 
skeletal and stony soils on eruptive rocks (52.58%), forest 
and chestnut soils (28.64%), and sandy and stony red-brown 
soils (5.05%).

Slope map

The slope map, the drainage plan of the catchment area, 
slopes, the lengths of the stream, and the widths of the riv-
ers into the catchment area were derived from the ASTER 
DEM (Chaemiso et al. 2016). The spatial distributions of 
slope classes in the Tata basin showed 4 classes: 0–20% 
(39.50%), 20–40% (32.72%), 40–60% (18.52%) and > 60% 
(9.26%). As the slope increases, sediment transport acceler-
ates downstream (Fig. 2c).

Delineation of sub‑basins and HRU definition

The basin has been divided into 33 sub-basins (Fig. 3). To 
avoid landscape heterogeneity, the sub-basins were also sub-
divided into 218 HRUs using 10% as the threshold for the 
physical parameter, namely land use, type of soil, and slope 
(cf. Her et al. 2015).

Sensitivity analysis

SWAT input parameters are based on processes and ought 
to be kept within a realistic range of uncertainty. The first 
thing to do before starting a calibration is to determine the 
parameters that are more sensitive for a given basin or sub-
basin (Arnold et al. 2012). The process of determining the 
change of rate in model output relative to the change of 
rate in model input defines the analysis of sensitivity. The 
identification and understanding of the influence of param-
eters are essential to reduce their number in the calibration 
phase (Holvoet et al. 2005). The capacity of the model to 
sufficiently simulate streamflow and sediment rate gener-
ally depends on the accurate calibration of parameters (Xu 
et al.2009).

The SWAT Hydrological input parameters were chosen 
based on the authorsʼ knowledge (environmental, geomor-
phological, topographical, and geological reasons) of the 
basin. The sensitivity analysis of SWAT parameters has been 
related by Malagò et al. (2015) and Abbaspour et al. (2007). 
The results found 11 important parameters in the Tata basin 
(Table 2).

Fig. 2   Thematic maps used to discretize HRUs in Tata basin a Land use b Soil c Slope map
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Fig. 3   Delineated sub-basins of 
the Tata basin

Table 2   Sensitive parameters and fitted values after calibration using SUFI-2

v: Means the existing parameter value is to be replaced by the fitted parameter value
r: Means an existing parameter value is multiplied by (1 + fitted parameter value)

Parameter name Description Rank Adjusted value Min value Max value Range

r_CN2.mgt Curve number 1 0.17756 0.17499 0.179886 39–92
r_EPCO.hru Plant uptake compensation factor 2 0.019266 0.011923 0.031503 0.81–0.96
r_OV_N.hru Manningʼs 'n' value for overland flow 3 3.584584 3.264844 3.652408 0.01–0.15
r_SOL_BD.sol Moist bulk density 4 0.012938 0 0.039809 1.3–1.83
v_ALPHA_BF.gw Base flow alpha factor 5 0.973035 0.970711 0.976909 –
v_CH_K2.rte Channel effective hydraulic conductivity 6 2.286209 2.135731 8.15484 –
v_CH_N2.rte Manningʼs 'n' value for main channel 7 0.042591 0.040147 0.045897 –
v_DEP_IMP.hru Depth to impervious layer for modeling 

perched water tables
8 3151.363281 2916.91284 3240.29273 –

v_GW_DELAY.gw Groundwater delay time 9 29.256178 28.637705 31.386473 –
v_GW_REVAP.gw Groundwater revap co-efficient 10 0.139277 0.137979 0.148361 –
v_SURLAG.bsn Surface runoff lag coefficient 11 9.816657 8.247377 10.04084 –



Applied Water Science (2022) 12:137	

1 3

Page 7 of 15  137

Calibration and validation

The better action to parameterize a model for a given set of 
the local condition is the calibration. For this work, the cali-
bration was carefully applied to the SWAT model by using 
the SUFI-2 method to reduce the uncertainty and to provide 
the best representation of hydrologic and sediment trans-
port processes in the Tata basin. During the calibration, we 
checked different model components to ensure that reason-
able predictions were made in the study area. The valida-
tion of a model is a process that demonstrates the capability 
of a given model to properly and satisfactorily reproduce 
observations. Validation consists of running the model 
with the optimal parameters resulting from the calibration 
and comparing simulated values to observed (Arnold et al. 
2012). In this case, the validation of the SWAT model was 
performed during the 8 years (1999–2006) after the calibra-
tion (1990–1998) by comparing the observed and simulated 
streamflow values.

Results and discussion

Model calibration and validation

Model calibration results indicate a good match between 
the simulated monthly discharge and the observed Tata 
River (Fig. 4a). Following the SWAT model, recommended 
performance assessment criteria (Moriasi et al. 2007), the 
calibration allowed us to reproduce streamflow with a coeffi-
cient of NSE = 0.96, R2 = 0.96, and PBIAS = −13% (Fig. 4b), 
which is evaluated as very good simulation. Fitting quality 
indices were satisfactory for the monthly period of calibra-
tion. In another study of a semi-arid river in the Sbaihia 
basin in Tunisia, Khelifa et al. (2017) found the coefficient 
of NSE to be 0.89 and the R2 to be 0.89. Gyamfi et al. (2016) 

reported NSE = 0.88, R2 = 0.89 and PBIAS = −11.49% for 
the monthly flow calibration in the Olifants basin in South 
Africa. Therefore, the calibrated SWAT model can be used 
successfully to predict the volume of inflow into the poten-
tial dam for the Tata basin.

The validation (1999–2006) of the module shows that 
the observed streamflow values are slightly lower compared 
to the simulated values at peak flow for December 2002, 
September 2003, and December 2004 (Fig. 5a). There are 
numerous reasons for the slight-over and under-prediction 
of the streamflow. For example, poor performance has been 
noted in the case of inadequate representations of precipita-
tion due to the lack of rainfall stations (Bouraoui et al. 2005; 
Cao et al. 2006), the variability of other climatic parameters 
such as the atmospheric temperature and the solar radiation 
(Shirmohammadi et al. 2006) and data inaccuracy (Harmel 
et al. 2006). Data processing can also contribute to the 
uncertainty of measured data due to missing data, assump-
tions for estimating missing data, and errors in the manage-
ment and data input. But it is most likely to be associated 
with errors in observed data.

According to the model performance indicators recom-
mended for a given monthly period (Moriasi et al. 2007), 
the period of validation evinces that the achieved model is 
quite appropriate between simulated and observed monthly 
streamflow in the Tata basin with an NSE coefficient in 
order of 0.77, PBIAS on the order of + 11% and 0.93 for R2 
(Fig. 5b). Other research in semi-arid regions of Morocco 
have also found similar results for monthly flow validation 
with NSE = 0.88 and R2 = 0.91 in the Rʼdom basin in North-
Western Morocco (Brouziyne et al. 2018) and NSE = 0.89, 
R2 = 0.90 in the Tleta basin in North Morocco (Choukri et al. 
2019). Although the calibration results show a better match 
than the validation results, the good agreement between sim-
ulation and observation in the validation phase indicates that 
the SWAT model was adequately calibrated and provides 

Fig. 4   a Observed and 
simulated monthly streamflow 
b Correlation of observed and 
simulated monthly streamflow 
during the calibration phase 
(1990–1998)
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confidence for further assessment of streamflow hydrologic 
response of the Tata basin.

Evapotranspiration

The SWAT model estimates evapotranspiration by the Pen-
man–Monteith method (PMM). Of all the 11 parameters, 
curve number (CN2), plant uptake compensation factor 
(EPCO), and moist bulk density (SOL_BD) are the most 
sensitive factors for the simulation of evapotranspiration. 
The evapotranspiration (Fig. 6a) varied between 60 and 
600 mm, it is around 120 mm over the entire basin except 
for sub-basins 4, 14, 18, and 31 (200–600 mm), which are 
characterized by small surfaces. Evapotranspiration comes 
from the transpiration and evaporation of water from the 
plant canopy. In the study area, the reduction of agricultural 
land, plant surfaces, and forests has led to a drop in evapo-
transpiration over the entire basin. Pan et al. (2021) showed 
that as transpiration and evaporation of water trapped by 
plant leaves increases, the amount of evapotranspiration 
increases. Similarly, Stancalie et al. (2010) found that evap-
otranspiration is about 100 mm lower on bare soil surface 
than on covered soil.

Surface runoff

A gradient of surface runoff can be distinctly observed from 
upstream to downstream in Fig. 6b. In the upstream part of 
the basin, the surface runoff is mainly reduced, while runoff 

increases in many downstream sub-basins. Runoff was cal-
culated based on parameters classified by sensitivity analy-
sis, namely curve number (CN2), plant uptake compensation 
factor (EPCO), baseflow alpha-factor (ALPHA_BF), chan-
nel effective hydraulic conductivity (CH_K2), manningʼs 'n' 
value for the main channel (CH_N2) and surface runoff lag 
coefficient (SURLAG). The CN2 factor, which controls the 
runoff process, appears as the most sensitive parameter. It is 
sensitive for both the simulation of surface runoff and evapo-
transpiration. At the sub-basin scale, annual surface runoff 
varied between 0 and 7.149 mm. The highest runoff rates are 
located in sub-basins 18, 20, and 33, downstream of Tag-
mout village due to the type of land use, slope, and type of 
soil. Runoff is average in the western and eastern parts of the 
city of Tagmout and the central part of the basin. This is due 
to the type of land use, which shows land consisting of bare 
soil, occupying most of the study area (96.34%), the geo-
logical formation represented by limestone, and the degree 
of slope, which can exceed 30% in certain areas promoting 
surface runoff. Zhao et al. (2004) showed that there is a 
strong relationship between runoff volume and land cover, 
where high runoff volume was observed due to vegetation 
removal and urbanization. As a result, surface runoff occurs 
more easily under these conditions. This is consistent with 
the results of Pan et al. (2021), who showed that reduced 
vegetation cover reduces evapotranspiration, soil water con-
tent and increases surface runoff and water yield. On the 
other hand, low rates are observed in the northwestern part 
of the basin at sub-basins 1, 2, 3, 5, and 6. Even if the ground 

Fig. 5   a Observed and simulated monthly streamflow b Correlation of observed and simulated monthly streamflow during the validation phase 
(1999–2006)
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seems not to be very permeable, the geological formations, 
in particular ignimbrite, gabbro and conglomerate are quite 
weathered and fissured allowing water to infiltrate. Ignim-
brite and gabbro can indeed be highly fractured under the 
effect of local or regional tectonics (Cavazos-Álvarez et al. 
2020; Okudaira et al. 2015). The tectonic deformation thus 
favors infiltration through joints and faults (Antonellini and 
Mollema 2019).

Percolation

Percolation indicates a vertical flow of water into the 
alluvial layer. It depends on precipitation, land use, soil 
type, lithological structure, and relief. Figure 6c shows 
the spatial distribution of the yearly average percolation 

rate in the Tata basin. The rate of percolation ranged from 
0 to 11.57 mm. The highest values (5.80 to 11.57 mm) 
were located in the Tagmout alluvial plain (sub-basins: 
14, 15, 16, 18, and 20), which consists of alluvial forma-
tions, regs, and encrusted deposits. These formations have 
a very high permeability that is favorable for percolation. 
For moderately permeable formations, the average perco-
lation rate ranges from 2.90 to 5.79 mm (sub-basins: 4, 
13, 19, and 33). For moderately permeable formations, 
the average percolation rate ranges from 2.90 to 5.79 mm 
(sub-basins: 4, 13, 19, and 33). A lower infiltration rate, 
which was observed elsewhere, is due to topographic 
conditions. These areas have higher relative relief and 
hence, the slopes are steeper as shown in Fig. 1a. These 
are also areas where water availability is low due to a 

Fig. 6   Map showing a evapotranspiration (mm) b surface runoff (mm) c percolation (mm) for every sub-basin (1990–2006)
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sparse hydrographic network. To have significant infiltra-
tion amounts, it is indeed necessary to have enough water.

The area around Tagmout village is characterized by a 
relatively important runoff, but also by an important infil-
tration. This seeming paradox is due to the geomorphology 
and hydrography of this alluvial plain. It is a water assembly 
area from the hydrographic network. The 3 main tributaries 
of the basin gather here and make it possible to have condu-
cive conditions to water flow, in contrast to the watershed 
periphery. This potential availability of water allows a por-
tion to infiltrate and increases the percolation rate of the 
area. Moreover, it is an inhabited zone. The villagers’ activi-
ties have made it possible to develop vegetation, although 
sparse, which slows down water flow and favors infiltration.

Spatial distribution of erosion

The SWAT model simulation shows that the range of sedi-
ment yield delivered by the different spatial units of the 
Tata basin varies from negligible erosion to more than 11 
t/ha/y (Fig. 7a). A comparison of the analysis of the sedi-
ment yield on the Tata basin with other studies carried out 
in the same mountain chain (Anti-Atlas) shows that the aver-
age sediment yield obtained in this study (2.3 t/ha/y) is in 
close agreement with the estimate established by Elmouden 
et al. (2017) for the Souss-Massa basin, which is 2.5 t/ha/y. 
Compared to other semi-arid regions in the Middle East and 
North Africa (MENA) region, these values seem to be much 
lower than the average of 5.18 t/ha/y obtained by Bouguerra 

et al. (2016) for the Boumessaoud basin in Algeria, 6.10 t/
ha/y obtained by Elahcene et al. (2013) for the Bellah basin 
in Algeria, 7.50 t/ha/y calculated by Snoussi (1988) for the 
Sebou basin in Morocco and 3.73 t/ha/y by Haida et al. 
(1996) for the Tensift basin in Morocco.

According to our simulated results in Fig. 7a, the down-
stream basin supplied more sediment to the river per unit 
area (11 t/ha/y), whereas the erosion in the upstream basin 
is lower compared to the average for the total basin. Sedi-
ment loss depends on the local influence of many factors. 
The extreme sediment yield occurred in sub-basin 33 
(11 t/ha/y), which corresponds to the highest runoff zone 
reaching 7.14 mm and thus, participating in the process 
of uprooting soil particles. In addition, the dominance of 
bare soil shows the sensitivity of this basin to erosion. 
In less covered areas, the soil is bare and more affected 
by erosion (Hughes et al. 2015). This basin corresponds 
also to areas with a low covered rate, weak slopes, and 
especially having recent lithological formations, which are 
easily transportable by rivers (regs, encrusted deposits, 
and alluvial alternating clay) (Fig. 7b). Medium risk areas 
show erosion rates ranging from 1.58 to 2.45 t/ha/y. The 
latter occupy sub-basins 8, 9, 16, 17, 24, 25, and 26.The 
lowest values are recorded in sub-basins 1, 2, 3, 5 and 6 
(0 to 0.14 t/ha/y). Their low values are caused by the pres-
ence of consolidated conglomerate, sandstone, and dol-
erite. Hard rock provides considerable protection against 
erosional processes and this makes their erosion by sur-
face water very difficult. The different soil types induce 

Fig. 7   a Distribution of Sediment yield of the Tata basin b Geological map of Tata basin
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different characteristics on runoff and sediment loss. The 
spatial distribution of the soil type upstream of the basin 
consists essentially of a forest type soil with increased 
forest biomass that could better protect soils against ero-
sion during rainy episodes (Zuazo and Pleguezuelo 2008), 
while the downstream part is formed by sierozem soils, a 
type of soil contributed to a higher rate of erosion high, 
which concur with what was found by Toubal et al. (2018).

In general, runoff and erosion increase significantly 
from upstream to downstream, the highest values occurring 
mainly on bare soils accentuated by topography. Sediment 
loss is influenced by both runoff rates and soil properties 
(Benchettouh et al. 2017; Mapes and Pricope 2020; Nehai 
et al. 2021). Several similar studies carried out in semi-arid 
regions have shown that sediment losses are much greater 
on bare soils due to increased runoff (Hughes et al. 2015; 
Benchettouh et al. 2017; Nehai et al. 2021).

The slopes are very steep in the south-eastern (sub-basins 
28 and 30) and southern (sub-basin 32) portions of the basin 
(Fig. 7a). There are a few areas with a slope above 40% in 
the central part of the basin but take place more often at the 
edges. The slope affects significantly the transport capacity 
of sediment, for instance, the slope has a significant effect on 
sediment transport capacity, e.g. slope with higher friction 
and therefore the great capacity of transport is generally at 
a steeper gradient (Wei et al. 2017). Thus, steep slope areas 
are usually more susceptible to erosion. The results of our 
study show that the sediment yield in sub-basins with slopes 
greater than 40% was between 2.45 and 4.47 t/ha/y. The 
loss in soil rises generally with the steepness of the slope 
on uncultivated soils (Ziadat and Taimah 2013). Topogra-
phy largely influences the mechanism of erosion and several 
factors must be taken into consideration to judge the role 
of this factor (Battany and Grismer 2000). Thus, its effect 
is more amplified depending on the type of land use, plant 
cover, and erosion prevention practices (Battany and Gris-
mer 2000). The variation in land cover also corresponds to 
the pedological variation. This variation in soil characteris-
tics is an indicator of erosion. In the study area, the consid-
erable presence of bare soil and the lack of forest cover in 
high slope areas can contribute to the sediment outflow from 

these sub-basins. These are also areas where skeletal soils 
are present, indicating a high susceptibility to water erosion.

This result shows that surface runoff is not the only factor 
that plays an important role in the movement of soil parti-
cles, but the loss of sediments is strongly conditioned by 
other factors, such as topography, land use category, and soil 
type. In general, no work has been done in these mountain-
ous regions to assess the ability of the SWAT model to pre-
dict surface runoff, evapotranspiration, percolation, and sedi-
ment loss. There are gaps in hydrological modeling in the 
Tata Basin due to little or no observational data to validate 
the results. The presence of a single weather station allows 
the SWAT model to simulate sediment loss; this limited 
number of stations affects the accuracy of the simulation, 
even if the validation results are reasonable. Consequently, 
the improvement of these data will increase the reliability 
of this model (cf. Panagopoulos et al. 2011; Polanco et al. 
2017; Zhang et al. 2021; Rumph Frederiksen and Molina-
Navarro 2021).

The simulation results also indicate that sub-basins with 
high surface runoff increase downstream sediment yield 
as a larger surface runoff has a greater transport capacity 
(Fig. 8a). Total sediment yield increases even faster down-
stream, which is due to the cubic (approximate) relation-
ship between sediment discharge and streamflow (Mak-
kaveev 1955). The increase in total sediment yield exceeds 
the increase of the Tata basin area (Fig. 8b). Therefore, 
specific sediment yield values increase downstream. It has 
been shown by de Vente and Poesen (2005) that the relation 
between the area of the basin and the yield of the sediment 
is divided into three or four groups. The specific sediment 
yield of the basins of Morocco and the largest basins of 
Tunisia represents the highest group, whereas the intermedi-
ate group is represented by Algeria and Spain and the low-
est specific sediment yield is represented by Israel. This is 
not an easy way to explain the differences. However, the 
vegetal cover, the lithology, and the topography, or in other 
words the local environmental condition, which could be 
more favorable to erosion and sedimentation in basins of 
Morocco and Tunisia than the other basins, which are men-
tioned above, could be a plausible explanation. This positive 

Fig. 8   Relationship between 
basin area increases a surface 
runoff increase b sediment yield 
increase
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relationship between specific sediment yield and basin area 
(Fig. 8b) is characteristic for uncultivated basins or basins 
with limited cultivation such as the Tata basin, where agri-
culture accounts for less than 1% of the basin area (Fig. 2b).

Estimation of sediment inputs to the future dam

The yearly average contribution of sediments transported 
by the Tata River to a potential future dam was 66,000 tons 
from 1990 through 2006 (Fig. 9). The highest sediment load, 
approximately 711,000 tons, was recorded in 1999. This 
peak, ten times higher than the average, was because in the 
summer of 1999 there were 3 days of severe thunderstorms 
(24, 25, and 26 August 1999) with a cumulative precipitation 
of 104 mm during 72 h and rainfall of 76 mm in the first day 
(August 24). These unusual severe storms were followed by 
a second major rainfall event on October 9 and 10 (33 mm 
each day), though less anomalous than the August event. 
These two exceptional events increased the sediment load 
calculated by the MUSLE method.

The sediment yield was estimated using the MUSLE (de 
Vente and Poesen 2005) from rainfall and surface runoff 
(Arnold et al. 1998). The relationship between sediment 

yield, surface runoff, and rainfall was evaluated by a sedi-
ment rating curve analysis (Fig. 10a, b). The results show 
that the sediment yield rate correlated better with runoff than 
rainfall, with R2 of about 0.99 (Fig. 10) (ASCE 1970; Wil-
liams 1975a, b; Hrissanthou 2005).

To reduce the loss of sediments and their transport and to 
extend the life of this future dam, which is 80 years, several 
methods of combating the siltation of dams have been used, 
namely (Bracmort et al. 2006; Remini 2008; El Mahi et al. 
2012; Elahcene et al. 2013; Guesri et al. 2020): (1) filter 
strips that reduce runoff, (2) raising the dam embankment, 
(3) reforestation, which allows reducing surface flow and 
rainfall erosivity and (4) stone bunds that reduce surface 
flow, sheet erosion, and slope length.

Conclusion

The hydrological model SWAT was successfully calibrated 
(1990–1998) and validated (1999–2006) using climatic 
conditions in this study. The monthly simulation values for 
R2, PBIAS and NSE were 0.96, -13% and 0.96 during the 
calibration period and were 0.93, + 11% and 0.77 during 

Fig. 9   Yearly sediment inputs to 
the future dam
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the validation period. The Tata basin has a sediment yield 
ranging from 0 to 11 t/ha/y and an average yield of 2.3 
t/ha/y. This value is lower than for other Mediterranean 
areas. The downstream part of the basin where surface 
runoff increases are indicated by the model results as areas 
of critical sediment yield. This is due to the direct relation-
ship between sediment yield and surface runoff. This work 
shows basin characteristics such as lithology, soil type, 
and slope influences sediment yield. According to these 
results, it was estimated that the average sediment load 
carried by the Tata River to a potential future dam site is 
about 66,000 t/y. Proper calibration of the SWAT model 
led to a perfect agreement between simulation and obser-
vation in the validation phase and provides confidence in 
the analysis of erosion and yield for the Tata basin and a 
future dam reservoir.

It can be deduced that the SWAT model is a reliable and 
accurate scientific method to provide a spatial distribution 
of erosion at the level of the Tata basin. These results can be 
exploited by decision-makers and managers to ensure sus-
tainable management of natural resources and for soil man-
agement and conservation measures. Furthermore, installing 
a capping dam that will increase the artificial recharge of the 
alluvial aquifer of the Tata River, which makes it possible to 
overcome the scarcity of groundwater in the region.
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