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Abstract
Groundwater vulnerability assessment is critical for the effective groundwater management, particularly in areas with sig-
nificant anthropogenic activities, such as agriculture. In this study, seven different methods, namely, DRASTIC, Pesticide 
DRASTIC, SINTACS, Nitrate SINTACS, GOD, AVI, and SI, were implemented using Geographical Information System 
techniques in Nea Moudania aquifer, Chalkidiki, Greece, to evaluate and identify groundwater vulnerability zones. The 
study area was classified into five categories: very low, low, moderate, high, and very high vulnerability. The southern and 
south-western parts of the study area had the highest pollution potential; the corresponding potential is lower in the northern 
part. Furthermore, single-parameter sensitivity analysis has revealed that the vadose zone and the topography were the most 
influential parameters of the vulnerability indexes, while the hydraulic conductivity exhibited the lowest effective weight. 
Finally, nitrate concentrations, taken from 23 observation wells, were employed for the validation of the aforementioned seven 
methods, using the coefficient of determination (R2). Results showed that Pesticide DRASTIC and Nitrate SINTACS were 
the most accurate and efficient methods for the present study area, which is characterized by intense agricultural activities.

Keywords DRASTIC, SINTACS, AVI, GOD and SI methods · GIS · Groundwater vulnerability assessment · Nitrate · 
Porous aquifer · Sensitivity analysis

Introduction

Groundwater is a significant source of fresh water, and it is 
essential for meeting water demands associated with irriga-
tion, domestic and industrial use (Machiwal et al. 2018). 
According to Shekhar and Pandey (2014), more than 30% of 
the global water needs are met with groundwater. Nonethe-
less, nowadays, the quality and quantity of groundwater are 
at high risk. Particularly, groundwater is being threatened 

directly by many human activities, such as overexploitation, 
intensive agriculture, burgeoning population, rapid urbani-
zation, wastewater leakage, increasing food production, 
changes in land use, and also indirectly, through seawater 
intrusion, climate change, and global warming (Gardner and 
Vogel 2005; Green et al. 2011; Saidi et al. 2011; Haritash 
et al. 2017; Machiwal et al. 2018; Ncibi et al. 2020; Chaud-
hari et al. 2021; Nagkoulis and Katsifarakis 2021).

Furthermore, the extensive use of chemical fertilizers 
contributes to the significant problem of nitrate pollution of 
aquifers. The United States of America Environmental Pro-
tection Agency (EPA) uses nitrate concentration in ground-
water as an indicator for groundwater quality deterioration 
and identification of vulnerable areas (Haritash et al. 2016; 
Shrestha et al. 2016; Houria et al. 2020). Nitrate pollution 
has acute effects on public health and the ecosystems (Li 
et al. 2017). Thus, the prevention of groundwater pollution is 
of crucial importance for efficient groundwater management.

Groundwater vulnerability mapping is an efficient tool 
to prevent groundwater pollution significantly (Oke 2020). 
In order to assess groundwater vulnerability and contami-
nation risk, researchers developed various techniques and 
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methodologies, which can be divided into two major catego-
ries: objective (physically based and statistical) and subjec-
tive rating methods (Wu et al. 2016). Objective methods 
offer a more detailed approach, but require a lot of data 
and complex computational structure for their application. 
However, since data availability is often limited, the use of 
subjective methods is usually adopted. (Kumar et al. 2015; 
Jaunat et al. 2019). Among the most commonly used subjec-
tive methods in porous aquifers are DRASTIC (Aller et al. 
1987), GOD (Foster 1987), AVI (Van Stempvoort et al. 
1993), SINTACS (Civita 1994) and SI (Ribeiro 2000).

DRASTIC is the most popular, reliable and widely 
used empirical rank/score-based index method. It has been 
developed by the US EPA and uses seven hydrogeological 
parameters, namely depth to water (D), net recharge (R), 
aquifer media (A), soil media (S), topography (T), impact of 
the vadose zone (I) and hydraulic conductivity (C), which 
control the movement of contaminants towards and through 
an aquifer (Sener and Sener 2015). The significant advan-
tage of DRASTIC is its simplicity and flexibility in differ-
ent hydrogeological regimes and sources of pollution, such 
as agricultural, urban and industrial (Ahmed et al. 2015; 
Allouche et  al. 2017). However, despite its popularity, 
DRASTIC method introduces human subjectivity, errors and 
uncertainty in the determination of the rating scales and the 
weighting coefficients (Goyal et al. 2021). Hence, attempts 
were undertaken to generally modify the method, in order to 
better evaluate groundwater vulnerability for a specific aqui-
fer, by (1) adjusting factor weights of the original DRASTIC 
through different techniques (e.g., sensitivity analysis, AHP 
method, multiple linear regression) or (2) adding extra fac-
tors, such as land use or irrigation type (Secunda et al. 1998; 
Thirumalaivasan et al. 2003; Ncibi et al. 2020; Saranya and 
Saravanan 2021; Sresto et al. 2021; Lakshminarayanan et al. 
2022). Specifically, Awawdeh et al. (2015) developed a 
modified DRASTIC model by adding two extra parameters, 
namely lineaments density and land use/land cover. Results 
of this model showed a more accurate vulnerability map 
compared with DRASTIC and a strong correlation between 
lineaments density and nitrate concentration. Another vari-
ation of the standard DRASTIC method (DRAMIC) tried 
to eliminate the subjectivity by replacing two parameters 
(soil media and topography) with aquifer thickness (M) and 
contaminant impact parameter (C) (Wang et al. 2007). In 
addition, Kazakis and Voudouris (2015) developed DRAS-
TIC-PA and DRASTIC-PAN models for groundwater vul-
nerability and risk assessment by replacing the qualitative 
parameters, namely aquifer media, soil media and impact of 
the vadose zone, with aquifer thickness, nitrogen loss from 
soil and hydraulic resistance. Furthermore, in order to verify 
the accuracy of a groundwater vulnerability method for a 
specific aquifer, the correlation between chemical param-
eters, such as nitrate concentration (Javadi et al. 2011), TDS 

(Shakoor et al. 2020), chloride concentration (Krogulec 
et al. 2019), sulphide concentration (Ahirwar et al. 2020) 
and manganese concentration (Mogaji 2018) with ground-
water vulnerability values is often used. Notably, the most 
commonly used chemical parameter for validation is nitrate 
concentration, since nitrate is highly associated with various 
anthropogenic activities, such as agriculture (Krishna et al. 
2015; Khosravi et al. 2018).

A special variant of DRASTIC is Pesticide DRASTIC, 
which has the ability to evaluate groundwater vulnerability 
for a specific pollutant. Compared to the original DRAS-
TIC, it uses different parameter weights for the seven factors, 
while the parameters ratings are identical. According to Saha 
and Alam (2014) and Saida et al. (2017), between the two 
methods, Pesticide DRASTIC has a higher correlation coef-
ficient value, which indicates that the method is more suit-
able in areas with agricultural activities and extensive use 
of chemical fertilizers. Another study, comparing DRASTIC 
and GOD methods reveal that DRASTIC is more effective 
in evaluating groundwater vulnerability zones according 
to the correlation (69% and 56%, respectively) with nitrate 
concentrations (Boufekane and Saighi 2017). Moreover, 
Oroji (2019) employed four different methods (SI, GOD, 
SINTACS and DRASTIC) for groundwater vulnerability 
assessment in a porous aquifer in Iran and found out that the 
DRASTIC model is the most accurate.

SINTACS method was developed as an adaptation of 
DRASTIC to the particularities of Mediterranean regions, 
such as Italy, Greece, Algeria and Morocco. In this method, 
the definition of parameters’ weights and rates is more flexi-
ble than DRASTIC. A comparative study in Algeria between 
DRASTIC and SINTACS resulted in a significant concord-
ance between the methods (Kaddour et al. 2014). A modified 
method of SINTACS has also been developed by incorporat-
ing Land Use parameter (SINTACS-LU), improve the accu-
racy and efficiency of vulnerability assessment (Eftekhari 
and Akbari 2020; Jesudhas et al. 2021). SI method is another 
DRASTIC adaptation and can be used in areas with diffuse 
agricultural pollution with relatively accurate results (Stigter 
et al. 2006; Ribeiro et al. 2017). Besides, GOD and AVI are 
two practical and simplified index-based methods that can 
be employed in areas with data limitations, providing rapid 
groundwater vulnerability assessment. The application of 
all these methods is discussed in the Methodology section.

In general, the need for groundwater vulnerability assess-
ment is high, particularly in agricultural areas with signifi-
cant nitrate pollution and scarcity of hydrochemical data. 
Nonetheless, the employment of a single groundwater vul-
nerability method in a specific region may sometimes lead to 
inaccurate results, due to the method’s inherent uncertainty 
and limited suitability. Our study focuses on the applica-
tion and validation of an ensemble of models to evaluate 
and identify groundwater vulnerability zones to pollution, 
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in Nea Moudania aquifer, Chalkidiki, Greece, which is a 
typical Mediterranean area with intense agricultural activi-
ties and extensive nitrate pollution. Specifically, seven dif-
ferent index methods, namely DRASTIC, Pesticide DRAS-
TIC, SINTACS, Nitrate SINTACS, GOD, AVI and SI were 
implemented alongside with Geographical Information 
System (GIS) techniques for the sustainable management 
of groundwater resources. The accuracy of outputs of the 
seven methods is validated with the correlation between 
reported nitrate concentration  (NO3

−) in groundwater and 
vulnerability index. The combined approach for vulnerabil-
ity assessment used in this study could support policymak-
ers and planners in decision-making aiming to protect the 
aquifer system of Nea Moudania, from further groundwater 
deterioration. An additional, more general objective of this 
study is to assess the performance, suitability, adaptation and 
limitations of different groundwater vulnerability methods 

in an agricultural area, through comparison with field data 
on nitrate pollution.

Study area description

The study area of Nea Moudania (Fig. 1) is an important 
agricultural land. It is located in the south-western part of 
Chalkidiki peninsula, in the Region of Central Macedo-
nia, Northern Greece. Administratively it belongs to the 
municipalities of Nea Propontida and Polygyros and covers 
an area of approximately 77.86  km2. Generally, the altitude 
in the area is low and ground slopes are mild. The climate 
is semi-arid to humid, while the average annual precipita-
tion is approximately 420 mm (Siarkos and Latinopoulos 
2016). The watershed of Nea Moudania is part of the Peonia 
geological zone and consists of rocky formations (gneiss, 

Fig. 1  Location and geological map of the study area
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ophiolite and clay schists) in the north, while in the south of 
Neogene sediments, such as red clay (Moudania formation) 
and Quaternary alluvial deposits, such as sandstones, con-
glomerates, clays, gravels and sands (Syridis 1990; Svigkas 
et al. 2020). Generally, the rocky formations are considered 
as impermeable, thus hydrogeological interest is primarily 
focused on the recent deposits (important capacity of water 
storage and substantial sediment thickness) (Kirlas 2017). 
The water system shows intense heterogeneity and complex-
ity and consists of successive permeable, semi-permeable 
and impermeable beds (Siarkos and Latinopoulos 2016). The 
unsaturated zone has an average thickness of approximately 
45 m and it mainly consists of semi-permeable materials 
(Veranis et al. 2016).

The study area is intensively cultivated and irrigated, 
while touristic and urban development along its coast is 
extensive (Panteli and Theodossiou 2016). The permanent 
population is approximately 16,000 people, while maximum 
population during the summer (low rain) period exceeds 
40,000 people (Kirlas 2017). Therefore, water demand for 
irrigation and domestic use is high, particularly during the 
summer months. Additionally, the area is characterized by 
scarcity of surface water combined with low annual precipi-
tation and thus groundwater is the only viable water source 
(Kirlas and Katsifarakis 2020). Generally, a basic network 
of private and municipal wells can partially satisfy the total 
water demand (Latinopoulos et al. 2003). Over the years 
water deficit has become a significant problem, as water 
demand exceeds the aquifer’s recharge and consequently, due 
to overexploitation, considerable groundwater level lowering 
has occurred (Kirlas 2021). In addition to the quantitative 
degradation of groundwater, the improvident use of fertiliz-
ers and pesticides has resulted in the qualitative deterioration 
of the aquifer system. Hence, an integrated management of 
this system, including protection of groundwater quality, is 
of pivotal importance.

Methodology

In this paper, seven different methods were applied in GIS 
environment to delineate contamination vulnerability zones 
of Nea Moudania aquifer in Northern Greece. Specifically, 
the groundwater intrinsic and specific vulnerability evalu-
ation includes the implementation of following methods: 
DRASTIC, Pesticide DRASTIC, SINTACS, Nitrate SIN-
TACS, GOD, AVI and SI. GIS techniques are proper tools 
for handling and analyzing large data sets in order to pro-
duce easily comprehensible vulnerability maps. The out-
put maps were created using the inverse distance weighted 
(IDW) method (Chakraborty et al. 2022). The methodol-
ogy employed in this study has the following steps: (1) raw 
data sets collection, (2) GIS map construction for every 

parameter for the different methods, (3) preparation of vul-
nerability maps for each method, (4) sensitivity analysis to 
compare the effective with the theoretical parameters weight, 
(5) validation of vulnerability maps with nitrate concentra-
tion using determination coefficient (R2).

DRASTIC and pesticide DRASTIC methods

The most widely used method for groundwater vulnerabil-
ity evaluation (intrinsic and specific) is DRASTIC. It is an 
overlay index method initially developed in 1987 by the US 
EPA and the American Water Works Association (AWWA). 
According to Barzegar et al. (2018) it is supposed to be the 
most popular, reliable, economical, efficient and easy to use 
method for assessing groundwater vulnerability.

DRASTIC is an acronym for the seven most significant 
hydrogeological parameters, which predominantly control 
groundwater flow and pollution, namely, depth to water (D), 
net recharge (R), aquifer media (A), soil media (S), topog-
raphy (T), impact of the vadose zone (I) and hydraulic con-
ductivity (C). The method is based on the following four 
assumptions: (1) pollution occurs at the ground surface, (2) 
pollutants seep into the water table by precipitation, (3) pol-
lutants have the same mobility as water, (4) the study area 
must be at least 0.4  km2 (Hamza et al. 2014). According to 
its importance, each parameter is assigned with a weight 
between 1 and 5. The least important parameter has a weight 
equal to 1, while 5 is allocated to the most important one 
(Salih and Al-Manmi 2021). The weights and the ratings are 
based on the Delphi technique (Gogu and Dassargues 2000). 
Standard DRASTIC is used for normal conditions, whereas 
pesticide DRASTIC is adopted in agricultural areas with 
extensive use of pesticides and fertilizers and for this reason 
the respective weight classification is different (Aller et al. 
1987). Moreover, the rating of each parameter depends on its 
relative significance on pollution potential and ranges from 1 
to 10 (Table 1). The final DRASTIC Index (DI) is a weighted 
linear combination of the aforementioned parameters and is 
calculated using Eq. (1).

where D, R, A, S, T, I and C indicate the seven parameters 
of the method, while indices w and r represent the weight of 
each parameter and the corresponding rating, respectively.

Standard DRASTIC Index varies from 23 to 230, while 
the Pesticide DRASTIC Index varies from 26 to 256. In 
general, higher values of DRASTIC Index are equivalent 
to greater aquifer vulnerability. Commonly, DRASTIC 
Index above 200 indicates very high vulnerability (Ncibi 
et al. 2020). Aller et al. (1987) did not suggest any specific 
classification for Pesticide DRASTIC index results and thus 
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Table 1  Weight, ranges and ratings of DRASTIC and Pesticide DRASTIC parameters

DRASTIC parameter Range/type Rating Standard weight Pes-
ticide 
weight

D: depth to water (m) 0–10 10 5 5
10–20 7
20–30 5
30–40 3
 > 40 1

R: net recharge 3–5 1 4 4
5–7 3
7–9 5
9–11 8
11–13 10

A: aquifer media Massive shale 2 3 3
Metamorphic/igneous 3
Weather metamorphic/igneous, clay with sand 4
Glacial till, clay with gravel 5
Bedded sandstone, shale sequences, massive sand-

stone, massive limestone
6

Sand 7
Sand and gravel 8
Basalt 9
Karst limestone 10

S: soil media No shrinking clay 1 2 5
Muck 2
Clay loam 3
Silty loam 4
Loam 5
Sandy loam 6
Shrinking clay 7
Peat 8
Sand 9
Gravel 10
Thin or absent 10

T: topography (%) 0–2 10 1 3
2–6 9
6–12 5
12–18 3
 > 18 1

I: impact of vadose zone Confining layer 1 5 4
Silt/clay 3
Shale 3
Limestone 3
Sandy clay 4
Sandstone 6
Sand, gravel and silt 7
Sand and gravel 8
Basalt 9
Karst limestone 10

C: hydraulic conductivity (m/day) 0.04074–4.074 1 3 2
4.074–12.222 2
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most scientists define the boundary of each according to 
their own judgment.

SINTACS method

SINTACS method was proposed by Civita (1994) for the 
particularities of Mediterranean regions and is composed 
of the same parameters as the DRASTIC method, namely it 
includes the following parameters (their names are given in 
Italian, as well, to explain the name of the method): depth 
to water (Soggiacenza), effective infiltration (Infiltrazione), 
unsaturated zone (Nonsaturo), soil media (Tipologia della 
copertura), aquifer media (Acquifero), hydraulic conductiv-
ity (Conducibilità idraulica) and topographic slope (Super-
ficie topografica) (Gogu et al. 1996; Ikenna et al. 2021). 
Although SINTACS uses the same parameters as DRASTIC, 
the assigned ratings of each parameter are different as shown 
in Table 2. Notably, due to the fact that the weights in SIN-
TACS are given in a more inclusive manner for the consid-
eration of all possible environmental conditions, this method 
can be applied in different hydrogeological zones (Kumar 
et al. 2013). The string of weights is given in Table 3. The 
vulnerability classes and the corresponding ranges are given 
in Table 4. The SINTACS index ranges from 26 to 260 and 
is calculated as the weighted sums of the seven parameters, 
using Eq. 2.

   

GOD method

GOD method is a commonly used parametric vulnerability 
method developed in United Kingdom (Foster 1987). It con-
sists of three parameters only, namely, the type of ground-
water confinement (G), overall lithological character of the 
vadose zone (O) and depth to groundwater table (D); thus 
the method is useful when data availability is small (Boufe-
kane and Saighi 2017; Mfonka et al. 2018; Duarte et al. 
2019). The ranges and ratings of the GOD parameters are 
given in Table 5, while the vulnerability ranges are shown 
in Table 6. The GOD index is calculated according to the 
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following Eq. 3, and it ranges from 0 (negligible vulnerabil-
ity) to a maximum of 1 (extreme vulnerability).

AVI method

AVI method (Van Stempvoort et al. 1993) is based on two 
primal physical parameters: (1) thickness of every sedimen-
tary layer deposit above the uppermost saturated aquifer 
surface d, and (2) its estimated hydraulic conductivity K 
(Table 7). Using these two parameters AVI method calcu-
lates the theoretical factor, namely, hydraulic resistance c, 
as given below (Eq. 4):

This factor represents the approximate time for water to 
move by advection downward through the porous media above 
the aquifer surface. However, it does not indicate the actual 
duration of water or contaminants flow, since diffusion and 
sorption are not considered (Wachniew et al. 2016). The rela-
tionship of the hydraulic resistance c to the aquifer vulner-
ability is shown in Table 8. A limitation of this method is 
that it does not consider many significant parameters, such as 
climatic conditions, hydraulic gradient and porosity. Moreo-
ver, it is not suitable for karst aquifers (Kumar et al. 2015).

SI method

The Susceptibility Index (SI) is an adaption of the DRAS-
TIC method and was developed by Ribeiro (2000) to assess 
diffuse agricultural pollution in hydrogeological settings 
mainly found in Portugal. The method is based on four 
DRASTIC parameters, namely depth to water (D), net 
recharge (R), aquifer media (A) and topography (T) and one 
additional parameter which defines the land use (LU) (Noori 
et al. 2019). The rest of the DRASTIC parameters (S, I, C) 
were not included, because the original quality characteris-
tics of natural soils often change during cultivation of land 
due to ploughing, tillage and other techniques (Stigter et al. 
2006). The SI is calculated by Eq. 5.

(3)GOD = G × O × D

(4)c =

n
∑

i=1

d
i

K
i

Table 1  (continued)

DRASTIC parameter Range/type Rating Standard weight Pes-
ticide 
weight

12.222–28.518 4
28.518–40.74 6
40.74–81.48 8
 > 81.48 10
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where D, R, A, T and LU indicate the initials of the param-
eters, while indices w and r represent the weight of each 
parameter and the corresponding rating, respectively. The 
assigned weights for each SI parameter are shown in Table 9. 
The rating for land use parameter, derived from Corine Land 
Cover, ranges between 0 and 100 and is shown in Table 10. 
Vulnerability ranges and classes are shown in Table 11.

Sensitivity analysis

In general, sensitivity analysis measures the uncertainty and 
the robustness of the output results obtained from various 
methods. In this study, the single-parameter sensitivity anal-
ysis is implemented to assess the effect of each parameter on 
the vulnerability index, by comparing its assigned (theoreti-
cal) weight with the real (effective) weight (Napolitano and 
Fabbri 1996; Brindha and Elango 2015; Oke 2020). This 
technique helps the researcher to evaluate the importance 

(5)

Susceptibility Index (SI) =D
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w
+ LU

r
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Table 2  Ranges and ratings of SINTACS parameters (Civita and De 
Maio 1997)

SINTACS parameters Range Rating

S (m) 0–1 10
1–4 9
4–6 8
6–8 7
8–10 6
10–20 5
 > 20 4

I (mm)  < 50 1
50–60 2
60–75 3
75–100 4
100–125 5
125–150 6
150–175 7
175–250 8
250–325 9

N Coarse alluvial deposits 6–9
Karstified limestone 8–10
Fractured limestone 4–8
Fissured dolomite 2–5
Medium fine alluvial deposits 3–6
Sand complex 4–7
Sandstone, conglomerate 5–8
Turbiditic sequences 2–5
Fissured volcanic rocks 5–10
Marl, clay stone 1–3
Clay, silt, peat 1–2
Pyro-clastic rock 2–5
Fissured metamorphic rocks 2–6

T Clay 1–1.5
Silty-clay 1.5–2
Clay loam 2–3
Silty clay loam 3–4
Silt loam 3.5–4
Loam 4–5
Sandy clay loam 4.5–5
Sandy loam 5.5–6
Sandy clay 6.3–7
Peat 7.5–8
Sandy 8–8.5
Clean sand 9–9.5
Clean gravel 9.5–10
Thin or absent 10

A Coarse alluvial deposits 8–9
Karstified limestone 9–10
Fractured limestone 6–9
Fissured dolomite 4–7
Medium fine alluvial deposits 6–8
Sand complex 7–9

Table 2  (continued)

SINTACS parameters Range Rating

Sandstone, conglomerate 4–9
Turbiditic sequences 5–8
Fissured volcanic rocks 8–10
Marl, clay stone 1–3
Clay, silt, peat 1–3
Pyro-clastic rock 4–8
Fissured metamorphic rocks 2–5

C (m/day)  < 0.1 1
0.1–0.43 2
0.43–0.86 4
0.86–4.32 5
4.32–8.64 6
8.64–43.2 7
43.2–86.4 8
86.4–432 9
432–864 10

S (%) 0–2 10
3–4 9
5–6 8
7–9 7
10–12 6
13–15 5
16–18 4
19–21 3
22–25 2
 > 26 1
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of subjectivity elements in the vulnerability methods (Gogu 
et al. 2003; Djémin et al. 2016; Noori et al. 2019). The effec-
tive weights for all parameters were calculated using the 
following Eq. 6.

where W is the effective weight of each parameter, Pr and 
Pw are the rating value and the weight of each parameter, 
and V denotes the overall vulnerability index (Ouedraogo 
et al. 2016). All thematic maps that were used in the single-
parameter sensitivity analysis were prepared in the GIS envi-
ronment. When a parameter has an effective weight greater 
than the theoretical one, it has a higher significance on the 
results of the groundwater vulnerability model.

Vulnerability assessment parameters—data 
preparation

Depth to water

This parameter is supposed to be of great importance for 
groundwater quality degradation. It represents the actual 
depth from ground surface to the water table and its thick-
ness works as a resistive force for the pollutant until it reaches 
the saturated aquifer. Higher values of depth to groundwater 
indicate smaller chance of pollution, thus less vulnerability, 
because of the higher potential for natural attenuation. In this 
study the groundwater level of 42 observation wells were 
used during spring period and they were interpolated using 
the inverse distance weighted (IDW) technique of ArcGIS 
spatial analyst software to the data (Tirkey et al. 2013; Shahab 

(6)W =

(

PrPw

V

)

× 100

Table 3  String of weights in 
SINTACS method (Civita and 
De Maio 1997)

Parameter S I N T A C S

Normal 5 4 5 3 3 3 3
Severe 5 5 4 5 3 2 2
Seepage 4 4 4 2 5 5 2
Karst 2 5 1 3 5 5 5
Fissured 3 3 3 4 4 5 4
Nitrates 5 5 4 5 2 2 3

Table 4  Vulnerability index 
rating classes for SINTACS 
method (Civita and De Maio 
1997)

Vulnerability classes Ranges

Very low 26–80
Low 80–105
Medium 105–140
High 140–186
Very high 186–210
Extremely high 210–260

Table 5  Ratings of GOD parameters

GOD parameters Rating Range

G: groundwater occurrence 0 None
0 Overflowing
0.2 Confined
0.4 Semi-confined
0.6 Uncovered (confined)
0.7–1.0 Unconfined

O: lithology of the vadose 
zone

0.4 Residual soils

0.5 Alluvial silt, loess, glacial till
0.5 Mudstones
0.5 Shales
0.6 Aeolian sands
0.6 Siltstones
0.6 Igneous/metamorphic forma-

tions
0.6–0.7 Volcanic tuffs
0.7 Alluvial and fluvio-glacial 

sands
0.8 Alluvial fan gravels
0.7–0.8 Sandstones
0.8 Recent volcanic lavas
0.9 Chalky limestone calcarenites
0.9–1.0 Calcretes + karst limestones

D: depth to groundwater 
table

0.9 All depths (karst limestones)

0.9  < 5 m
0.8 5–20 m
0.7 20–50 m
0.5 50–100 m
0.4  > 100 m

Table 6  Vulnerability ranges 
corresponding to the GOD 
index

Vulnerability Ranges

Negligible 0–0.1
Low 0.1–0.3
Moderate 0.3–0.5
High 0.5–0.7
Extreme  > 0.7
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et al. 2018; Yankey et al. 2020; Bera et al. 2021; Chakraborty 
et al. 2022). The rating varies from 1 (for D > 40 m) to 10 
(for 0–10 m) and the classification of D values for DRASTIC 
and Pesticide DRASTIC was made according to Sener et al. 
(2009) and Khan and Jhariya (2019). Alongside the coastline, 
in the southern part of the study area the aquifer is generally 
shallow (depth to water varied from 8 to 20 m) and thus it is 
more vulnerable to pollution, since the reduced percolation 
time allows the pollutants to mix up with the groundwater 
(Bera et al. 2021). On the other hand, the least effect of the 
depth to water on groundwater vulnerability occurred in the 
central and northern part of the area, where the aquifer is 
deeper (> 40 m).

Net recharge

This parameter represents the amount of surface water that 
infiltrates through soil into the ground surface and reaches the 
aquifer system. Infiltration plays a vital role for the movement 
of surface pollutants into groundwater and within aquifer 
media. Hence, higher infiltration values lead to increased pol-
lution potential, because the downward movement of pollut-
ants is promoted (Aller et al. 1987). In this study net recharge 
was estimated using Piscopo method that integrates the slope, 
rainfall and soil permeability maps as follows (Piscopo 2001; 
Awawdeh et al. 2015; Muhammad et al. 2015; Baghapour 
et al. 2016; Khan and Jhariya, 2019; Yankey et al. 2020).

The slope map was prepared by using the Advanced 
Space borne Thermal Emission and Reflection Radiometer 
Digital Elevation Model (ASTER-DEM) data in raster file 
format with 30 m spatial resolution. Rainfall was calculated 
in a previous research in the study area, and it was esti-
mated approximately 420 mm/year (Siarkos and Latinop-
oulos 2016). Soil permeability was calculated based on the 
results of a soil survey (0–30 cm of soil samples) that was 
carried out in the study area (Misopolinos et al. 2015). The 
soil mainly consists of clay loam in the northern part (very 
low permeability), clay to silty loam in the central (low 
permeability) and loam to sandy loam in the southern part 
(moderate to mod-high permeability). The weighed grids 
of the above three maps have been integrated to give the net 
recharge index values (Eq. 7). The respective ratings accord-
ing to this method are given in Table 12. Recharge for the 
southern part was assigned with 5, whereas the rest of the 
study area had 3 (Fig. 2).

(7)
Recharge value = Slope + Rainfall + Soil permeability

Table 7  Rating values of 
the hydraulic conductivity K 
parameter for the AVI method

K Lithology Gravel Sands Marls Loams Clays

K (m/d) 103 10–2–102 10–3–10–1 10–4–10–1 10–7–10–5

Table 8  Relationship of aquifer vulnerability index to hydraulic 
resistance (Van Stempvoort et al. 1993)

Hydraulic resistance (c) 
[years]

Log c Aquifer vulner-
ability index 
(AVI)

0–10  < 1 Very high
10–100 1–2 High
100–1000 2–3 Moderate
1000–10,000 3–4 Low
 < 10,000  > 4 Very low

Table 9  Weights for each 
parameter in SI method

Parameter Weight

D: depth to water 0.186
R: net recharge 0.212
A: aquifer media 0.259
T: topography 0.121
LU: land use 0.222

Table 10  Ratings for land use parameter according to SI method

Land use Rating

Industrial discharge, landfill, mines 100
Irrigated perimeters, paddy fields, irrigated and non-irrigated 

annual culture
90

Quarries, shipyards 80
Artificial covered zones, green zones, continuous urban 

zones
75

Permanent cultures (vines, orchards, olive trees, etc.) 70
Discontinuous urban zones 70
Pastures and agro-forest zones 50
Aquatic milieu (swamps, saline, etc.) 50
Forest and semi-natural zones 0

Table 11  Vulnerability classes 
for SI method

Vulnerability classes Ranges

Extremely low  < 30
Very low 30–40
Low 40–50
Moderate to low 50–60
Moderate to high 60–70
High 70–80
Very high 80–90
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Aquifer media

It represents the characteristics of the saturated zone, which 
controls the process of the pollutant attenuation. The aquifer 
media depends on the porosity and the particle size of its 
constituent materials. Generally, larger grain size results in 
higher vulnerability. When pollutants reach the water table 
they get dispersed in groundwater and thus they get diluted 
(Jesudhas et al. 2021). The rankings of aquifer media were 
assigned based on the lithological profile of 16 wells. The 
major constituents of the aquifer media were clay, sand and 
gravels.

Soil media

Soil media refers to the uppermost weathered layer of the 
unsaturated zone, which controls the amount of recharge 
that can infiltrate downward, depending on soil porosity 
and permeability (Babiker et al. 2005). This layer can play 
a significant role in the movement of possible pollutants 
(Ifediegwu and Chibuike 2021). Coarse texture soils lead to 
higher vulnerability, compared to fine texture soils, because 
of the fact that the pollutants can move faster into the aquifer 
system. Soil map was obtained from a recent research about 
soil geographic data and delineation of agricultural zones, 
funded by the Greek Ministry of Agricultural Development 
and Food (Misopolinos et al. 2015). The type of soil found 
in the study area was mostly clay loam and silty loam in the 
northern and central part, which was assigned with 3 and 4, 
respectively; silty loam, loam and sandy loam in the south-
ern part, which was assigned with 4, 5 and 6, respectively 
(Fig. 3).

Topography

Topography represents the slope variability of the land sur-
face. In general, low slope areas exhibit higher groundwater 
pollution vulnerability, because surface run-off flow moves 
at a low velocity, while water infiltration is high, enhancing 
pollutants migration to the aquifer (Fig. 4). On the other 
hand, infiltration in high slope areas usually encountered at 
high elevations is reduced and thus vulnerability to pollution 
decreases (Ifediegwu and Chibuike 2021). The slope map 
of the study area was derived from ASTER DEM using a 
spatial analyst tool in ArcGIS. The slope percentage ranged 
between 0 and 24%. Specifically, the slope of almost 20% 
of the total area ranged between 0 and 2%, while more than 
58% of the total area ranged between 2 and 6%. Therefore, 
the gentle slope on most of the area indicated a maximum 
effect of topography on the aquifer vulnerability.

Vadose zone

It is the unsaturated or discontinuously saturated zone 
between the soil cover and the water table or aquifer (Aller 
et al. 1987; Arya et al. 2020). The soil materials of this zone 

Table 12  Net recharge ratings 
according to Piscopo method

Slope Rainfall Soil permeability Recharge value

Range (%) Factor Range (mm/year) Factor Range Factor Range Rating
 < 2 4  > 850 4 High 5 11–13 10
2–10 3 700–850 3 Mod-high 4 9–11 8
10–33 2 500–700 2 Moderate 3 7–9 5
 > 33 1  < 500 1 Slow 2 5–7 3

Very slow 1 3–5 1

Fig. 2  Recharge of the study area
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play a considerable role in decreasing groundwater poten-
tial pollution due to different debilitation processes, such as 
dispersal and chemical reactions (Elmeknassi et al. 2021). 
In general, the higher the materials' grain sizes, the greater 
the vulnerability potential. The lithological data for this 
parameter were collected from 16 wells and then they were 
sub-classified according to their ability to allow and trans-
mit water. The northern part, which mainly consists of red 
clay, was assigned with the lowest rating. On the contrary, 
alongside the coast the influence of this parameter on aqui-
fer vulnerability is more significant, as the area consists of 
alluvial deposits, such as sand and gravel with some clay.

Hydraulic conductivity

The ability of aquifer materials to transmit groundwater 
is described as hydraulic conductivity. Hence, pollutants 
migration depends on hydraulic conductivity (Aller et al. 
1987). Higher hydraulic conductivity portends a higher 
potential danger for groundwater pollution because pol-
lutants can move faster through the aquifer. In this study, 
hydraulic conductivity was obtained from pumping tests and 

the corresponding map was prepared using the inverse dis-
tance weight (IDW) interpolation of ArcGIS. The hydraulic 
conductivity of the study area is rather low, and its values 
range from 1 ×  10–6 m/s to 2 ×  10–5 m/s (Latinopoulos et al. 
2003; Kirlas and Katsifarakis 2020; Kirlas 2021).

Land use

Land use represents the natural and human activities that 
happen on the land surface. In many areas, groundwater is 
substantially affected by different land use types, such as 
agricultural, urban and industrial. For instance, in agricul-
tural land, intensive application of chemical fertilizers and 
pesticides is responsible for the severe problem of the nitrate 
pollution of aquifers (Wu et al. 2016). Land use data are 
based on the classes of Corine Land Cover 2012 and its rat-
ings have been assigned according to Table 10. In the study 
area, the agricultural use predominates, namely complex cul-
tivation patterns (19.26%), fruit trees and berry plantations 
(26.49%), olive groves (16.61%) and non-irrigated arable 
land (29.89%).

Fig. 3  Soil media of the study area
Fig. 4  Topography of the study area
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Results and discussion

Vulnerability assessment methods

DRASTIC vulnerability map

In Nea Moudania aquifer the final DRASTIC vulnerability 
map (Fig. 5a), calculated using Eq. 1, varied from 46 to 
159. The study area was divided according to Jenks natural 
breaks method (Ersoy and Gültekin 2013; Thapa et al. 2018; 
Kumar and Pramod Krishna 2019; Wei et al. 2021) into the 
following classes: very low (< 76), low (76–98), moderate 
(98–117) and high (117–159). DRASTIC vulnerability map 
distribution showed that about 29.21%, 23.52%, 30.23% and 
17.04% of the area was classified as very low, low, moderate 
and high vulnerability, respectively.

Specifically, the area of high vulnerability was mainly 
concentrated in the southern and south-western part of the 

study area and alongside the coastline where the depth to 
water is generally low, the topography is flat (0–2%) and 
recharge and soil permeability are slightly higher compared 
to the northern part. On the other hand, the northern part of 
the basin showed very low vulnerability, because the topog-
raphy and the depth to water are higher as well as the thick-
ness of the vadose zone and thus decreasing the pollution 
process. The central part of the area was classified as low to 
moderate vulnerability.

Pesticide DRASTIC vulnerability map

The range of the final Pesticide DRASTIC vulnerability 
index was between 50 and 180 and it was higher than that 
of the standard DRASTIC (Al-Abadiet al. 2017; Al-Mallah 
and Al-Qurnawi 2018) (Fig. 5b). The values of the Pesticide 
DRASTIC were classified according to Jenks natural breaks 
method into: very low (< 90), low (90–111), moderate 

Fig. 5  a DRASTIC vulnerability map (left) and b Pesticide DRASTIC vulnerability map (right)



Applied Water Science (2022) 12:123 

1 3

Page 13 of 21 123

(111–133) and high (133–180). Very low, low, moderate and 
high classes occupied an area of 26.23%, 21.60%, 34.48% 
and 17.69%, respectively. Pesticide DRASTIC resulted in 
four vulnerability classes similar to the standard DRAS-
TIC model results. The difference between the two mod-
els was that in the Pesticide DRASTIC the very low and 
low classes covered a smaller area (47.83% compared to 
52.73%), whereas the moderate class a larger one (34.48% 
compared to 30.23%). This difference is due to the different 
weights assigned to the parameters. The high class displayed 
no significant difference.

SINTACS vulnerability maps

The SINTACS index was estimated using Eq. 2 for two 
different scenarios, namely normal and nitrate. The first 
scenario represented the normal impact of the weights on 
the parameters, as illustrated in Table 3. The final normal 
SINTACS vulnerability index (Fig. 6a) varied from 77 to 

160 and was classified into four vulnerability categories in 
accordance with Table 4: very low, low, moderate and high, 
which covered a 0.06%, 23.32%, 47.16% and 29.45% of the 
total area, respectively.

The second scenario represented the nitrate impact on the 
study area and each parameter weight was assigned accord-
ing to Table 3. The final nitrate SINTACS vulnerability 
index (Fig. 6b) ranged between 77 and 157 and was clas-
sified again into four vulnerability classes as follows: very 
low, low, moderate and high. Each class occupied a total area 
of 0.01%, 24.29%, 63.92% and 11.78%, respectively.

In both scenarios the very low and low vulnerability 
classes were detected in the northern part of the basin and 
occupied the same percentage of the total area (24%). None-
theless, the moderate class, mainly located in the central 
part, in nitrate SINTACS covered a significantly larger area 
(63.92%) compared to the normal SINTACS (47.16%). 
Moreover, high vulnerability zones were detected in the 
south and south-western part of the study area.

Fig. 6  a SINTACS vulnerability map with Normal impact assigned weights (left) and b SINTACS vulnerability map with Nitrate impact 
assigned weights (right)



 Applied Water Science (2022) 12:123

1 3

123 Page 14 of 21

GOD vulnerability map

The GOD index is calculated using Eq. 3 and according to 
the method classification (Table 6) only two vulnerability 
zones were defined in the area, which correspond to low 
(0.1–0.3) and moderate vulnerability (> 0.3) respectively 
(Fig. 7). The GOD map showed a homogeneous distribution 
as the largest area of the basin (98.12%) was classified as 
low vulnerability and only a small part in the south (1.88%) 
belonged to the moderate vulnerability. Furthermore, the 
GOD index did not manage to detect any very low, high and 
very high vulnerability zone.

AVI vulnerability map

The AVI vulnerability index (logc), obtained using Eq. 4, 
had a range between − 0.7 and 5.1. According to the meth-
od’s classification (Table 8) the study basin was divided into 
five vulnerability classes (Fig. 8) with their respective areas 
(%): very low class (27.72%), low class (35.83%), moder-
ate class (25.91%), high class (7.13%) and very high class 
(3.42%).

Areas with very low vulnerability were mainly found in 
the northern and northwestern part with some smaller parts 
in the south; low vulnerability zone was concentrated in the 
central and western part of the basin; moderate vulnerability 
zone covered the eastern part; high and very high vulner-
ability class was detected in south-western and southeastern 
parts of the area, along with a small part in the northeast that 
no other method classified in this class.

SI vulnerability map

The SI vulnerability map was created by summing up all the 
assigned parameters according to Eq. 5. The final groundwa-
ter vulnerability index (Fig. 9) varied from 31 to 80 and was 
classified into five vulnerability classes: very low (30–40), 
low (40–50), moderate to low (50–60), moderate to high 
(60–70) and high (70–80). The covered area for each vul-
nerability class was 2.40%, 38.43%, 32.38%, 20.52% and 
6.27%, respectively. Very low vulnerability only covered a 
very small region in the northern of the study area. Low vul-
nerability covered the largest part of the studied area and was 
distributed from the center to the northern parts of the basin. 
Moderate to low vulnerability was significantly spread from 
the center to the southern and southeastern parts of the area. 
Finally, moderate to high and high vulnerability classes were Fig. 7  GOD vulnerability map

Fig. 8  AVI vulnerability map
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mainly located in the south and south-western regions of the 
area, covering together more than 25% of the study basin.

Finally, a comparison between the various groundwater 
vulnerability methods is useful and it is recommended, as it 
shows the similarities and the dissimilarities of the models, 
assisting researchers to select which of the applied methods 
is the most suitable and performs the best in a specific aqui-
fer. Results summarized in Table 13 show that: regarding the 
very low vulnerability, the DRASTIC, Pesticide DRASTIC 
and AVI methods indicate the same results (≈27.5%), while 

the two SINTACS methods and GOD do not attribute any 
area in this class; regarding the low vulnerability the DRAS-
TIC, Pesticide DRASTIC, Normal SINTACS and Nitrate 
SINTACS cover the same area (≈24%), while AVI and SI 
methods show exactly the same result (38%) but relatively 
higher than the other methods; moderate vulnerability class 
covers approximately the same area (≈33%) in Pesticide 
DRASTIC and SI method; DRASTIC, Pesticide DRASTIC 
and SI result approximately in the same percentage (≈18%) 
of high vulnerability area.

Single‑parameter effect of weight‑rating factors 
on DRASTIC and SINTACS methods

The single-parameter sensitivity analysis was carried out for 
the seven input parameters of the methods DRASTIC and 
Pesticide DRASTIC (Table 14) as well as for the parameters 
of Normal SINTACS and Nitrate SINTACS (Table 15). The 
effective (real) weight of the parameters of the aforemen-
tioned methods is a function of the assigned (theoretical) 
weight and the reciprocal influence with the other param-
eters of each method (Babiker et al 2005).

According to Table  14, in this study the weights of 
DRASTIC parameters exhibited some deviations from the 
theoretical weights. Impact of the vadose zone tends to be 
the most effective parameter in this model, with an effec-
tive weight value (32.26%) significantly higher than the 
theoretical one (21.74%). This result is in agreement with 
several studies (Muhammad et al. 2015; Sener and Sener 
2015; Djémin et al. 2016; Ouedraogo et al. 2016; Allouche 
et al. 2017; Oke 2020; Phok et al. 2021). This is followed 
by Aquifer Media, which has an effective weight (19.84%) 
higher than the theoretical one (13.04%) and this value is 
also in agreement with other researches (Muhammad et al. 
2015; Neshat and Pradhan 2017). Moreover, the effective 
weight of Topography (8.81%) is significantly higher com-
pared with its low theoretical value (4.35%) (Berhe Zenebe 
et al. 2020). Nevertheless, Depth to water and Hydraulic 
conductivity have considerably higher theoretical weights 
(21.74% and 13.04%) than their effective weights, 10.59% 
and 3.23%, respectively (Allouche et al. 2017). The influence 

Fig. 9  SI vulnerability map

Table 13  Percentage of aquifer vulnerability in seven methods

Groundwater vulnerability methods

Vulnerability classes DRASTIC Pesticide 
DRASTIC

Normal SINTACS Nitrate SINTACS GOD AVI SI

Very low 29.21% 26.23% 0.06% 0.01% 0.00% 27.72% 2.40%
Low 23.52% 21.60% 23.32% 24.29% 98.12% 38.83% 38.43%
Moderate 30.23% 34.48% 47.16% 63.92% 1.88% 25.91% 32.38%
High 17.04% 17.69% 29.45% 11.78% 0.00% 7.13% 20.52%
Very high 0.00% 0.00% 0.00% 0.00% 0.00% 3.42% 6.27%
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of Recharge and Soil media is almost the same, since theo-
retical and effective weights have similar values. In general, 
the results of DRASTIC show the importance of the param-
eters on vulnerability as follows I > A > R > D > S > T > C, 
compared with the theoretical D ~ I > R > A ~ C > S > T.

In Pesticide DRASTIC model the Topography and the 
Impact of the vadose zone parameters seem to be the most 
effective, with a mean value of 21.37% and 20.87% instead 
of their theoretical 11.53% and 15.38% ones, respectively 
(Table 14). The effective weight of Aquifer media (16.04%) 
indicates a greater impact in this study compared to its 
theoretical value (11.53%). Additionally, Recharge and 
Soil media have slightly lower impact compared to their 
theoretical values. The least effective parameters are Depth 
to water and Hydraulic Conductivity with weight values 
8.57% and 1.74%, respectively. In this study the impact 
of parameters contribution for this method is the follow-
ing: T > I > S > A > R > D > C instead of the theoretical 
S > D > I > R > T > A > C.

In SINTACS method with normal impact assigned 
weights the most effective parameter, likewise with DRAS-
TIC, is N (unsaturated zone), having a mean value equal 
to 24.12%, instead of the theoretical 19.23% (Table 15). 
The second most influential parameter is S (slope), having 
a mean weight equal to 20.14%, which is higher than its 

theoretical value (11.53%). Aquifer media (A) has a higher 
mean effective weight (14.83%) compared to its theoreti-
cal (11.53%). On the contrary, the remaining parameters 
Depth to water (S), effective infiltration (I), Soil media (T) 
and Hydraulic conductivity (C) have lower effective weights 
than their assigned weights.

Finally, in SINTACS method with nitrate impact the most 
effective parameters are Slope (S) and Unsaturated zone (N) 
with assigned weights 20.58% and 19.72%, respectively, 
larger than their theoretical weights 11.53% and 15.38% 
(Table 15). Except from Aquifer media which has a higher 
effective weight (10.11%) compared with its assigned 
(7.69%) the rest of the parameters recorded lower effective 
weights.

In general, results show that the first two most effec-
tive parameters in Pesticide DRASTIC, Normal SINTACS 
and Nitrate SINTACS are the same, namely, impact of the 
unsaturated zone and topography and thus it is important 
to acquire accurate, detailed and representative data about 
these parameters (Muhammad et al. 2015; Shahab et al. 
2018). Furthermore, in all applied vulnerability methods the 
Hydraulic conductivity recorded the lowest effective weight, 
due to its low value in the study area.

Table 14  Statistics of single-
parameter sensitivity analysis 
for DRASTIC and Pesticide 
DRASTIC

* Values for Pesticide DRASTIC

Parameter Theo-
retical 
weight

Theoretical 
weight (%)

Effective weight (%)

Mean Min Max SD

D 5 5* 21.74 19.23* 10.59 8.57* 5.38 4.35* 53.76 43.48* 9.68 7.83*
R 4 4* 17.39 15.38* 16.26 13.15* 4.30 3.48* 21.51 17.39* 3.44 2.78*
A 3 3* 13.04 11.53* 19.84 16.04* 12.90 10.43* 25.81 20.87* 2.58 2.09*
S 2 5* 8.70 19.23* 9.10 18.39* 6.45 13.04* 12.90 26.09* 1.29 2.61*
T 1 3* 4.35 11.53* 8.81 21.37* 1.08 2.61* 10.75 26.09* 1.94 4.70*
I 5 4* 21.74 15.38* 32.26 20.87* 16.13 10.43* 43.01 27.83* 5.38 3.48*
C 3 2* 13.04 7.69* 3.23 1.74* 3.23 1.74* 3.23 1.74* 0.00 0.00*

Table 15  Statistics of the 
single-parameter sensitivity 
analysis for SINTACS methods

* Values for Nitrate SINTACS

Parameter Theo-
retical 
weight

Theoretical 
weight (%)

Effective weight (%)

Mean Min Max SD

S 5 5* 19.23 19.23* 16.24 16.60* 16.08 16.43* 36.18 36.98* 4.02 4.11*
I 4 5* 15.38 19.23* 9.65 12.33* 9.65 12.33* 9.65 12.33* 0.00 0.00*
N 5 4* 19.23 15.38* 24.12 19.72* 12.06 9.86* 32.16 26.29* 4.02 3.29*
T 3 5* 11.53 19.23* 10.20 17.38* 7.24 12.33* 14.47 24.65* 1.45 2.47*
A 3 2* 11.53 7.69* 14.83 10.11* 9.65 6.57* 19.29 13.15* 1.93 1.31*
C 3 2* 11.53 7.69* 4.82 3.29* 4.82 3.29 4.82 3.29* 0.00 0.00*
S 3 3* 11.53 11.53* 20.14 20.58 2.41 2.47* 24.12 24.65* 4.34 4.44*
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Validation of the vulnerability maps

Validation is an important procedure in order to verify the 
results of the seven vulnerability models that were applied 
and to check which model is the most appropriate in Nea 
Moudania aquifer (Saidi et al. 2011; Hamza et al. 2014; 
Khan and Jhariya 2019). The criterion used to test the 
authenticity of the applied methods was computation of R2 
value between nitrate concentration (actual pollution) in 
groundwater and the vulnerability index produced by each 
method. Nitrate is a typical groundwater pollutant and is 
associated with intensive agricultural activity, fertilizers and 
urbanization. Nitrate has high solubility and mobility and 
as a result can easily reach and pollute an aquifer (Khos-
ravi et al. 2018). Thus, the local policymakers and planners 
should determine a threshold or a specific amount of chemi-
cal fertilizers that can be employed on agricultural fields 
(Khosravi et al. 2021). A higher correlation with nitrate 
concentration results in a more efficient and precise vulner-
ability model.

Nitrate concentration, taken from 23 observation wells, 
was used for the validation of the aforementioned seven 
models. The calculation of correlation is seen in Table 16. In 
this study the least reliable models were AVI (R2 = 0.5045) 
and GOD (R2 = 0.5348). Notwithstanding, these two meth-
ods require fewer parameters (two and three, respectively) 
compared to the other methods, they are simple to imple-
ment and they can be used for a quick evaluation of ground-
water vulnerability. The SI method, which uses five param-
eters, showed a greater correlation (R2 = 0.6084) and it is 
considered more accurate than AVI and GOD. Regarding 
the DRASTIC, Pesticide DRASTIC, Normal SINTACS 
and Nitrate SINTACS models, the R2 value accomplished 
a progressive improvement. Results showed that the most 
efficient and precise models in the study area were Pesti-
cide DRASTIC and Nitrate SINTACS with R2 = 0.6475 
and 0.6438, respectively (R2 improved by 14% compared 
to AVI). Both methods have a slightly higher determina-
tion coefficient compared with the DRASTIC and Normal 
SINTACS, a fact that indicates a better applicability of the 
methods for a specific pollutant (nitrate) in an agricultural 
area like Nea Moudania. In addition, both methods detect 

that high and very high pollution areas are mainly located in 
the south and south-western side of the basin. Summarizing, 
in this study the DRASTIC methods (standard and typical) 
and the SINTACS methods (normal and nitrate) indicate 
stronger correlation compared to the other three vulnerabil-
ity methods (AVI, GOD and SI).

Conclusion

This study is the first endeavor to delineate the groundwa-
ter vulnerability in Nea Moudania aquifer, Greece, using 
a comparative assessment of various methods. The evalu-
ation and identification of the groundwater vulnerability 
zones was accomplished by using seven different vulner-
ability methods, namely DRASTIC, Pesticide DRASTIC, 
SINTACS, Nitrate SINTACS, GOD, AVI and SI alongside 
with Geographical Information System (GIS) techniques. 
These methods employ the inherent geological and hydro-
geological parameters, which affect the vulnerability of the 
aquifer, giving an insight about the potential groundwater 
pollution and its spatial distribution. In general, the south-
ern and south-western part of the study area has the highest 
pollution potential; in the northern part, the corresponding 
potential is lower. Single-parameter sensitivity analysis has 
revealed the significance of the unsaturated zone and the 
topography in vulnerability assessment, highlighting the 
importance of accurate, detailed and representative data of 
these parameters.

Conversely, the hydraulic conductivity recorded the low-
est effective weight in all models due to its low value in the 
study area. The seven aquifer vulnerability maps were vali-
dated with nitrate concentrations in groundwater by using 
the R2 coefficient. Results showed that, among the methods 
used, the Pesticide DRASTIC and the Nitrate SINTACS 
were the most efficient and precise methods for predic-
tion of groundwater vulnerability in Nea Moudania aquifer 
(R2 = 0.64), which is mainly characterized by agricultural 
activities. On the contrary, the least efficient and accurate 
models were AVI (R2 = 0.50) and GOD (R2 = 0.53). The rest 
of the models, namely SI, DRASTIC and Normal SINTACS 
performed 0.60, 0.62 and 0.63, respectively. Notably, these 
results could provide a useful spatial tool that could sup-
port policymakers and planners in regional decision-making. 
The main limitation of groundwater vulnerability methods 
is the uncertainty associated with parameters’ values, which 
might overlook local variability on a specific area, and opti-
mal weights estimation. In this study, the elaboration of an 
ensemble of vulnerability estimations combined with a sen-
sitivity analysis on the weights’ significance and a nitrate 
data validation is performed to increase the reliability of the 
assessment results.

Table 16  R2 values of the 
various methods

Model name R2

DRASTIC 0.6264
Pesticide DRASTIC 0.6438
Normal SINTACS 0.6392
Nitrate SINTACS 0.6475
GOD 0.5348
AVI 0.5045
SI 0.6084
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In a more general framework, the results of the compar-
ative assessment of the seven methods, can serve for the 
selection of the most appropriate tools for estimating aquifer 
vulnerability in other agricultural areas. Moreover, the com-
ments on the effective weights of the parameters used can 
help improve final estimates.
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