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Abstract
Water distribution networks require huge investment for construction. Involved people, especially researchers, are always 
seeking to find a way for decreasing costs and achieving an efficient design. One of the main factors of the network design 
is the selection of proper diameters based on costs and deficit of flow pressure and velocity in the network. The reduction 
in construction costs is accomplished by minimizing the diameter of network pipes which leads to the pressure drop in the 
network. Supplying proper pressure in nodes is one of the important design principles, and low pressure will not provide a 
complete water supply at the consumption site. Therefore, in this research, the problem of optimization in several sample 
networks was defined with the objectives of cost minimization and minimization of pressure deficit in the whole network. 
The EPANET software was used for hydraulic analysis of sample networks, and the multi-objective optimization process 
was performed by coding NSGA-II and MOPSO algorithms in the MATLAB software environment and linking them to 
EPANET. The cost function was initially defined only by considering the relationship between cost and diameter and the 
length of pipes, and in the next definition, the cost resulted by violation of the allowable pressure range was added to this 
function In both cases, the schedule for achieving the optimal answer was executed. The results showed that these algorithms 
have a high ability to find optimal solutions and are able to optimize the network in terms of cost and pressure by finding 
the appropriate pipe diameter. The time for reaching convergence was reduced by considering the cost of violation of the 
allowable pressure limits significantly and the optimal answer is obtained in a small number of repetitions. In NSGA-II and 
MOPSO algorithms in two-looped network with 20 and 30 iterations and run time of 0.66 and 0.8 s, respectively, and in 
Lansey network with 150 and 250 iterations and run time of 5.7 and 9.5 s, the optimal solutions were obtained.
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Introduction

The increasing population of cities and the development 
of industries have made the water supply to cities and the 
design of a distribution network appropriate to them impor-
tant and complicated. Adequate and safe water supply 

required by each population is an important aspect of water 
resources management systems such as urban water distribu-
tion networks (Surendra et al. 2021). An urban water supply 
network must be able to meet the expectations and water 
demands of consumers in terms of quality [physical, chemi-
cal and bacteriological properties of water (Nouiri 2017)] 
and quantity (flow and water pressure) based on existing 
standards. Supplying the required water should be possi-
ble even in the worst temporal and spatial conditions and 
emergencies. The design of a water supply system will be 
satisfactory only if the designers, in addition to sufficient 
preliminary studies on the hydrological facilities of the site, 
the amount of available water, the amount of population 
growth and future industrial development, conduct detailed 
studies on physical and hydraulic constraints, design criteria 
and operating costs. Paying attention to these cases leads 
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to the design of a suitable water supply system that meet 
the needs of that city and region for many years to come. 
Many efforts have been made to optimize water distribution 
networks, which have eventually led to the widespread use 
of modern optimization methods. Haghighi and Asl (2014) 
used the EPANET simulator model and the NSGA-II opti-
mization algorithm to investigate the uncertainty of water 
distribution networks, which showed that small uncertainties 
in input variables can significantly affect network responses 
as well as reliability performance. They also concluded that 
NSGA-II plays an important role in systematically solving 
the problem and improving the computational efficiency of 
the entire network fuzzy analysis process. Abunada et al. 
(2014), by locating demand adjustment reservoirs, examined 
network optimization and reliability. They used a tool called 
NORAT, which determines demand volume adjustment, 
optimizes the pipe diameter and reservoir height, evaluates 
hydraulic reliability of the network and finally calculates the 
total cost. The achieved results proved the ability of the tool. 
Hajebi et al. (2014) analyzed the water distribution network 
using graphical structure partitioning and multi-objective 
optimization and utilized the water distribution clustering 
method to find the best arrangement of nodes. Alvisi and 
Franchini (2014) investigated the optimization of water dis-
tribution systems using linear energy balance equations in 
the framework of ranking-based optimization algorithms and 
found that this improves computational efficiency and speeds 
up reaching a near to optimal solution. Creaco and Pezz-
inga (2015) investigated how incorporating a local search 
algorithm (LS) such as iterative linear programming (LP) 
in multi-objective genetic algorithms (MOGA) could reduce 
search space and then improve the computational perfor-
mance of MOGAs and proved this assertion through two 
case studies. Lan et al. (2015) proposed a sustainable optimi-
zation model for designing a water supply system by consid-
ering the risk of facility failure. The goal was to build facili-
ties that would both save money and stabilize the system. 
The proposed model was equivalent to a large-scale integer 
linear program that had been solved by the Banders decom-
position algorithm. The computational results describe the 
efficiency of the proposed algorithm and show that a fun-
damental improvement in system stability is achieved with 
a minimal increase in system cost. Di nardo et al. (2016) 
figured out that partitioning water supply network improves 
water network management, simplifies water cost calcula-
tions, and consequently identifies and reduces water losses. 
To this end, they used the Swanp software and through two 
different algorithms based on multi-level recursive and com-
munity structure methods, which introduced a multi-objec-
tive function and implemented it on a large Mexican network 
with a certain cost and energy efficiency. Mala-Jetmarava 
et al. (2017), by collecting two thousand journals from the 
last three decades that have been working on optimizing 

water distribution systems, found that mainly optimization 
has been done on the pump performance to minimize pump-
ing costs and optimize water quality management to achieve 
standards in nodes. Moosavian (2017) used the multi-linear 
method for the hydraulic analysis of water distribution net-
works in several standard and real networks and the results 
showed that the convergence speed in this method is high 
and the computational efficiency is almost half the time of 
other methods. Awe et al. (2020), through a study, modeled 
and optimized the residential water distribution system of 
Abuja Post Office, in Nigeria, using the EPANET hydraulic 
simulation software and the LINGO optimization software, 
which resulted in a 38% reduction in the total cost of install-
ing, operating and maintaining the water distribution system. 
Sitzenfrei et al. (2020), using combined network analysis, 
optimized water distribution networks through determining 
the optimal decision between costs and performance (e.g., 
flexibility and leakage) and presented a newly developed 
design approach. The results indicated that the obtained 
designs are comparable to the results obtained from evolu-
tionary optimizations, and for large networks (e.g., 150,000 
pipes), the execution time is significantly reduced.

Dai (2021) investigated the optimal location of pres-
sure relief valves (PRVs) in water distribution systems by 
a new optimization model with complementary constraint 
(MPCCS) for two sample networks and one real network in 
Vietnam. The results showed the optimal performance of 
this method in comparison with other optimization methods.

In most researches, the multi-objective optimization of 
water distribution networks has been studied in a limited 
way. Also, in all the used methods, the cost objective func-
tion is calculated only based on the length and diameter of 
network pipes, and the cost of violation of the allowable 
pressure limits in nodes, which is an important factor in 
increasing the convergence speed of the algorithm, has not 
been paid attention. Therefore, the purpose of this research 
is to apply different methods to improve the network perfor-
mance and modify the problem-solving structure in the form 
of the NSGA-II and MOPSO algorithms based on the cost 
and pressure objective functions. Finally, valuable sugges-
tions are provided to extend the proposed method to other 
networks.

Methods and materials

In this research, the hydraulic analysis of water supply 
networks is performed by the EPANET software and cod-
ing of multi-objective NSGA-II and MOPSO algorithms 
by the MATLAB software. EPANET analyzes the net-
work using gradient method and demand-based analysis 
method. The network optimization was conducted by link-
ing the MATLAB software to the body of the EPANET 
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software using appropriate computational tools. The effi-
ciency of multi-objective meta-exploration algorithms in 
solving the problem of the cost optimization and pressure 
deficit of water supply networks was done through two 
sample networks that have been studied in many types of 
research using different algorithms. The use of these two 
sample networks makes it possible to compare the effi-
ciency of the method used in this research with methods 
used by other researchers. The first network, introduced 
by Alperovits and Shamir in 1977, is known as the two-
looped network (Alperovits and Shamir, 1977). The net-
work consists of 8 pipes, 7 nodes and a source. The length 
of all pipes is 1000 m, the Hazen–Williams coefficient 
is 130 m and the height of water at the source is 210 m. 
The numbers in parentheses for each node are the height 
of the node in (m) and the amount of demand in (l/s), 
respectively, and for each pipe, they are the number of 
pipes and the diameter of the pipe in (mm), respectively 
(Fig. 1a). Another sample network was used in 2001 by 
Lansey et al. (2001). This network has 16 pipes, 11 nodes 
and a tank. The numbers in parentheses for each node are 
the height of the node in (m) and the amount of demand 
in (l / s), respectively, and the network pipe information 
is given in Table 1 (Fig. 1b).

Optimization of water supply networks

The problem of multi-objective optimization in this study 
is defined in such a way that the first goal, i.e., minimiz-
ing the cost of network design versus the second goal, 
i.e., minimizing the total pressure deficit in the entire 
network.

Objective 1: minimizing network design costs

In order to evaluate the efficiency of the algorithms, the cost 
function is defined in two ways. In the first method, accord-
ing to the conventional method in previous research, this 
function is defined as relation (1) and only considering the 
cost, diameter and length of pipes, which according to the 
mathematical relationship between diameter and cost per 
unit length according to Table 2, is converted to Eq. (2). 
In the second method, according to Eq. (3), the penalty 
for exceeding the allowable pressure range is added to the 
equation.

Fig. 1   (a) Two-looped network. (b) Lansey network

Table 1   Pipe data for Lansey network

Pipe number Diameter (mm) Length (m) Roughness

1 609.6 3048 110
2 457.2 1524 110
3 406.4 1524 100
4 355.6 1676.4 100
5 304.8 1066.8 120
6 355.6 1676.4 120
7 304.8 1371.6 90
8 152.4 762 90
9 304.8 1066.8 90
10 406.4 670.6 90
11 457.2 1981.2 110
12 355.6 1524 100
13 304.8 1676.4 120
14 355.6 914.4 100
15 304.8 1219.2 100
16 406.4 1219.2 90
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where Ci

(

Di

)

 is the cost of each unit length of pipe with 
the diameter Di, Li is the length of the pipe i and NL is the 
number of pipes in the network (Atiquzzaman et al. 2006).

r is the penalty for violation of the allowable pressure 
range, which is a random number between zero and one hun-
dred. First, different intervals are considered for generating 
r; then, by implementing algorithms in many iterations and 
examining the results obtained from different values of r, 
the best interval (i.e., range 0–100) that leads to the produc-
tion of the desired optimal solution and higher convergence 
speed of the problem is chosen. Finally, the selection of r in 
this selected interval is done randomly each time the model 
is run. Cp is the cost resulted from the violation of the maxi-
mum allowable pressure, and Cm is the cost due to pressures 
lower than the minimum allowable limit.

CP˳ and Cm˳ are considered to be zero, because accord-
ing to the formula, for a situation where the pressure at the 
node is considered equal to the minimum or maximum pres-
sure, the cost of exceeding the maximum allowable pressure 
and the cost resulted by pressures lower than the minimum 
allowable limit become zero. Pmax and Pmin are considered 
to be 60 and 30 m, respectively. P is the pressure at the node.

(1)Minimize F1 =

NL
∑

i=1

Ci

(

Di

)

× Li

(2)

Minimize F1 =

NL
∑

i=1

(

3.5712 × exp
(

0.0081 ×
(

Di

)))

× Li

(3)Minimize F1 = ((

NL
∑

i=1

(

3.5712 × exp
(

0.0081 ×
(

Di

)))

× Li)∕1000) +
(

r ×
(

cp + cm
))

(4)Cp = Cp
◦

+

(

max(

(

p

pmax

)

− 1

)

, 0)2

(5)Cm = Cm
◦

+

(

max

(

1 −

(

p

pmin

))

, 0

)2

Objective 2: minimizing the total pressure deficit 
in the network

For this purpose, Eq. (6) is used

Pjmin is the minimum pressure required at node j, Pj is 
the computational pressure at node j and NP is the number 
of nodes in the network.

Constraints of the problem of the optimization of water 
distribution networks are divided into two categories. The 
first category, which is in the form of equations, is the 
continuity equation and the energy conservation equation, 
which are implemented automatically in the EPANET soft-
ware and do not need to be defined explicitly in the evalua-
tion function. The second category is unequal and includes 
diameter and velocity in pipes.

Velocity constraint  The velocity relationship should be as 
follows in network pipes (Montesinos et al. 1999).

Vi is the velocity in the pipe, Vmin
i

 is the minimum veloc-
ity in the pipe i, and Vmax

i
 is the minimum velocity in the 

pipe i. The minimum and maximum velocities in the pipes 
were considered to be 0.3 and 2 m/s, respectively.

Diameter constraint  The diameter of each pipe must 
belong to the set of commercial diameters available in the 
market (Sedki and Ouazar 2012)

Di is the diameter of the pipe i, and D is the set of avail-
able commercial diameters shown in Table 2.

(6)Minimize F2 = Minimize

NP
∑

j=1

(

Max
((

Pmin
j

− Pj

)

, 0
))

(7)Vmin
i

≤ Vi ≤ Vmax
i

i = 1, 2,… , NL

(8)D
i
∈ {D} ∀ i ∈ NL

Table 2   Cost and size of 
available pipes for network

Number Diameter (mm) Cost ($/m) Number Diameter (mm) Cost ($/m)

1 25.4 2 8 304.8 50
2 50.8 5 9 355.6 60
3 76.2 8 10 406.4 90
4 101.6 11 11 457.2 130
5 152.4 16 12 508 170
6 203.2 23 13 558.8 300
7 254 32 14 609.6 550
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Continuity equation  The sum of the inflow to the node is 
equal to the sum of the outflow from the node (Sedki and 
Ouazar 2012).

Qin is the inflow to the node, Qout is the outflow from the 
node, and Qe is the demand at the node.

Energy conservation equation: The sum of head drops 
within each loop must be zero (Sedki and Ouazar 2012).

ΔHi is the head drop within the pipe i.

NSGA‑II algorithm

This algorithm was proposed by Deb et  al. (2002) and 
addressed the weaknesses of classical optimization meth-
ods such as computational complexity, non-elitism and the 
need to specify a sharing parameter. It uses elitism to create 
an optimal Pareto front. The elitist method preserves the 
good members of the previous generation when applying 
the operators of the genetic algorithm to produce the new 
generation, which, in addition to accelerating the conver-
gence to the optimal answer, also makes the search process 
more efficient. This algorithm, by observing the principle 
of elitism and with selective function, creates a new pop-
ulation from the combination of the parent and offspring 
populations by applying mutation and combination opera-
tors, and selects the best answers according to their fit and 
dispersion. In fact, in this algorithm, the responses are first 
ranked based on dominance and then sorted by the crowding 
distance (Ahmadianfar et al. 2017). In NSGA-II algorithm, 
the parameters maximum number of iterations, number of 
population, percent of crossover and percent of mutation 
were determined by trial and error. For example, the final 
value of these parameters in the two-looped network after 
repeated executions of the model was considered equal to 
20, 16, 95 and 5, respectively.

The main structure of the algorithm is shown in Fig. 2 
(Deb et al. 2002):

The implementation steps of the NSGA-II algorithm are 
as follows:

(1)	 Creating a random initial population of P˳ with the size 
of N (initial generation of parent)

(2)	 Sort the initial population based on non-dominated 
answers

(3)	 Rank each non-post answer based on non-dominated 
balance

(9)
NP
∑

i=1

Qin −

NP
∑

i=1

Qout = Qe

(10)
∑

i∈loop l

ΔH
i
= 0 ∀l ∈ NL

(4)	 Apply the selection, combination and mutation opera-
tors on P˳ in order to create an offspring population of 
Q˳ with the size of N.

(5)	 After the production of the first generation, which 
includes parent and offspring chromosomes, the new 
generation is produced as follows:

•	 Combination of P˳ parent chromosomes and Q˳ off-
spring and production of the Rt generation with the 
size of 2 N.

•	 Sorting the Rt generation based on the non-domi-
nated classification method and identifying and clas-
sifying non-dominated fronts (F1, F2,…)

•	 Generating the parent generation with the size of N 
for the next repetition ( Pt+1 ) using non-dominated 
fronts. At this stage, according to the number of 
chromosomes required for the parent generation (N), 
first the number of chromosomes of the first front for 
the parent generation is selected, and if this number 
does not correspond to the total number required by 
the parent generation, it is taken from fronts 2, 3, 
etc. to reach the number (N). If we need to select a 
limited number of chromosomes on one front, the 
ones with larger crowding distance are selected.

•	 Applying the selection, combination and mutation 
operations on the new parent generation ( Pt+1 ) and 
the production of the offspring generation ( Qt+1 ) 
with the size of N

•	 Repeating from step 5 until reaching the stop condi-
tion

MOPSO algorithm

The MOPSO algorithm was introduced in 2002 by Coe-
llo et al. (2002). This algorithm is a generalized particle 
swarm optimization (PSO) algorithm that is used to solve 
multi-objective problems. In the MOPSO algorithm, there 
is a concept called an archive or storage, in which a set 

Fig. 2   Main structure of the NSGA-II algorithm
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of unsuccessful answers which is an approximation of 
the Pareto front is archived. The particle swarm optimi-
zation algorithm acts based on collective intelligence. In 
this algorithm, each particle has specific characteristics of 
position, speed and direction of motion. Motion is impor-
tant in this algorithm because it exchanges information 
and creates convergence between particles. Each particle 
has three sources of information to move, including the 
behavior that the particle has already shown and is trying 
to repeat its last activity, the best place it has experienced 
in the search space and the best place experienced by the 
whole particles in the search space. In MOPSO algorithm, 
the parameters of maximum number of iterations, num-
ber of population, number of repository and mutation rate 
were determined by trial and error. The final value of these 
parameters for two-looped network was (30, 16, 10 and 
0.03) and for Lansey network was (250, 32, 10 and 0.03), 
respectively. The equations describing the particle behav-
ior are as follows:

xi(t) represents the position of the particle i at the moment t, 
vi(t)  represents the velocity of the particle i at the moment 
t, xbest i indicates the best previous position of the particle 
i, and xgbest indicates the position of the best particle in the 
whole space, so far r1 and r2 are random numbers between 
0 and 1, c1 and c2 are the acceleration coefficient and w 
denotes the inertia coefficient.

The steps of implementing the MOPSO algorithm are 
as follows:

(1)	 Creating an initial population
(2)	 Separating undefeated members of the population and 

storing them in the storage
(3)	 Tabulating the discovered target space (meaning that 

according to the minimum and maximum amount of 
obtained objective functions, divide each of these inter-
vals according to the need into 5–10 equal parts).

(4)	 Selecting a leader from among the storage for each par-
ticle and moving it

(5)	 Updating the best personal memory of each particle
(6)	 Adding undefeated members of the current population 

to the storage
(7)	 Removing defeated members of the storage
(8)	 Due to the lack of memory in the storage, we must 

reduce their number. If the number of storage members 
exceeds the specified capacity, we remove the extra 
members. Cells with larger populations are prioritized 

(11)
vi(t + 1) = w × vi(t) + c1r1(xbesti(t) − xi(t)) + c2r2(xgbest(t) − xi(t))

(12)xi(t + 1) = xi(t) + vi(t + 1)

for deletion because it is a priority for us to maintain a 
variety of responses.

(9)	 If the termination conditions are not met, we return to 
step 3, otherwise the end.

In this algorithm, the selection is done based on 
regions. The probability of the selection from each cell is 
calculated from the following equations:

Boltzman Method

Inverse proportional Method

pi is the probability of the selection from the cell i, ni rep-
resents the number of members in cell i, and β denotes the 
selection pressure parameter.

To compare the new situation and the best memory of each 
particle (to update the personal memory in step 5), the follow-
ing is done:

If the new situation overcomes the best memory, then the 
new situation replaces the best memory.

If the new situation is defeated by the best memory, nothing 
will be done.

If none of them defeats each other, one is randomly consid-
ered as the best memory.

Optimization–simulation process

EPANET is used for the system simulation and hydraulic 
analysis of networks. To optimize the network, the EPANET 
model is linked to each of the NSGA-II and MOPSO algo-
rithms separately using communication tools and mathemati-
cal relations in the MATLAB environment. After defining 
the objective functions and problem constraints, the model 
is run to reach the set of optimal answers and extract the goal 
exchange curve until the last iteration of the algorithm. For 
more information on how to run the model, a summary of the 
implementation steps of each of these algorithms in linking 
with the EPANET hydraulic simulator is shown in Fig. 3.

(13)pi ∝ exp(−�ni)

(14)pi =
e−�ni

∑

i e
−�ni

(15)pi ∝

(

1

ni

)�

(16)pi =
(
1

ni
)�

∑

i(
1

ni
)�
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Results and discussion

The results of the optimization of sample networks using 
the NSGA-II and MOPSO algorithms are obtained in two 
ways. In the first method, the implementation of these algo-
rithms is performed by defining cost functions based on the 
relationship between the diameter, cost and length of pipes 
and with the number of repetitions of 10,000 and 20,000. In 
the second method, the algorithms are implemented by con-
sidering the penalty of violation of the allowable pressure 
limit in the cost function with the number of repetitions that 
lead to the optimal answer, and the results of both methods 
are compared with each other and finally with the results of 
other researchers.

Results of two‑looped network optimization

Results of two-looped network optimization in the first 
method by implementing the NSGA-II and MOPSO algo-
rithms with 10,000 and 20,000 iterations and results of 
network optimization in the second method by implement-
ing NSGA-II algorithm with 20 iterations, and MOPSO 

algorithm with 30 iterations by selecting the top 10 answers 
are shown in the form of Pareto diagrams (Fig. 4). According 
to Table 3, the selected solutions obtained from the imple-
mentation of the NSGA-II algorithm with both methods 
have a zero pressure deficit that the pressure at the nodes 
and the velocity in the pipes in the whole network are within 
the allowable range. The algorithm in the second method has 
the lowest cost, number of repetitions and execution time, 
and also has a higher number of near-optimal answers than 
the first method.

The selected solutions obtained from the implementa-
tion of the MOPSO algorithm with both methods have a 
zero pressure deficit that the pressure at the nodes in the 
whole network is within the allowable range. The veloc-
ity in the pipes in the second method with 30 repetitions 
is within the allowable range and in the first method with 
10,000 and 20,000 repetitions in pipe number 8 and pipe 
number 4, respectively, and is less than the minimum allow-
able velocity. The minimum cost amount, number of repeti-
tions and execution time, and maximum number of near-
optimal answers are obtained in the second method with 30 
repetitions.

Fig. 3   Flowchart steps for run metaheuristic algorithms in connection with the EPANET model
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Fig. 4   Pareto graphs NSGA-II and MOPSO algorithms in two-looped network
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This network has been optimized by many researchers 
with different algorithms. The minimum cost in this study 
is $ 419,000, and the pressure deficit is zero, which is also 
found in the present study, with the difference that in this 
study, in addition to the cost objective function, considering 
the pressure deficit as an objective function and considering 
the cost of exceeding the allowable pressure range in the 
cost function, the convergence rate increased significantly, 
and with a low number of repetitions, the optimal answer 
is obtained that demonstrates the superiority of the method 
used in this research over other research. Table 4 shows the 
comparison of the results of this study with the results of 
other researchers.

Results of Lansey network optimization

The results of the NSGA-II and MOPSO algorithms in the 
Lansey network in the first method with 10,000 and 20,000 
iterations and the results of the NSGA-II algorithm in the 
second method with 150 iterations and the MOPSO algo-
rithm with 250 iterations are shown as the top 10 answers in 
the form of Pareto diagrams (Fig. 5). According to Table 5, 
the selected solutions obtained from the implementation of 

the NSGA-II algorithm in both methods have a zero pressure 
deficit that the pressure at the nodes in the whole network 
is within the allowable range. In the implementation of the 
algorithm in the first method, the velocities in pipes 5, 8 
and 13 are less than the minimum allowable limit. In the 
implementation of the algorithm in the second method, the 
velocity in all network pipes is within the allowable range 
and the lowest cost, number of iterations and execution time 
are related to this method.

The selected solutions obtained from the implementation 
of the MOPSO algorithm in both methods have zero pres-
sure deficit. In the implementation of the algorithm in the 
first method with 10,000 repetitions, the velocity in pipes 4, 
7 and 13 is less than the minimum allowable velocity in the 
network. In the implementation of the algorithm in the first 
method with 20,000 repetitions, the velocity in pipes 4, 7, 
8, 13 and 15 is less than the minimum allowable velocity. In 
the implementation of the algorithm in the second method, 
the velocity in all network pipes is within the allowable 
range and the lowest cost, number of iterations and execu-
tion time are related to this method. The Lansey sample grid, 
selected by Lansey et al. to reduce the effect of uncertainty 
on the various conditions of consumption in the grid using 
the genetic algorithm, with the diameter of the considered 
pipes costs $ 3,119,022, which after the optimization by the 
NSGA-II and MOPSO algorithms, a cost of $ 1,137,942, 
without any network pressure deficits and also high conver-
gence speeds is achieved.

Conclusion

In this study, the optimization of two sample networks 
of water distribution was performed using the NSGA-II 
and MOPSO multi-objective algorithms. These algorithms 
were implemented with two objectives including minimiz-
ing cost functions and pressure deficit through two meth-
ods (once defining the cost function based on the relation-
ship between diameter, cost and length of pipes, and again, 
considering the cost of exceeding the allowable pressure 
limits in the cost function). Their performance was evalu-
ated based on the best response generation and conver-
gence time for both sample networks. The results showed 
the high ability of algorithms to find optimal solutions. If 
these algorithms are implemented, by considering the cost 
of exceeding the minimum and maximum standard pres-
sure threshold in the cost function, the convergence speed 
will increase significantly, and, in a low number of repeti-
tions, the optimal answer is obtained. This approach will 
increase the number of near-optimal answers in the last 
iteration. The modification of the cost function structure 
in the body of optimization algorithms resulted in optimal 
results in less time and fewer repetitions in both sample 

Table 3   Top solution NSGA-II and MOPSO algorithms in two-
looped network

Method Iteration Algorithm Cost ($) Pressure 
deficit 
(m)

Run 
time(min)

(1) 10,000 NSGA-II 442,890.4 0 28.35
MOPSO 488,785.9 0 56.92

20,000 NSGA-II 442,890.4 0 59.1
MOPSO 468,608 0 96

(2) 20 NSGA-II 419,000 0 0.66
30 MOPSO 419,000 0 0.8

Table 4   Results from different methods for two-looped network

Algorithm Cost ($) Pressure 
deficit (m)

Iteration

SA (Cunha and Sousa 1999) 419,000 0 25,000
SFLA (Eusuff and Lansey 2003) 419,000 0 11,323
SS (Lin et al. 2007) 419,000 0 3215
PSO (Sedki and Ouazar 2012) 419,000 0 3120
PSO-DE (Sedki and Ouazar 2012) 419,000 0 3080
GA (Siew and Tanyimboh 2012) 419,000 0 2200
Self-adaptive PSO-GA (Babu and 

Vijayalakshmi 2012)
419,000 0 1300

JayaNet (Palod et al. 2020) 419,000 0 1560
NSGA-II (This Study) 419,000 0 20
MOPSO (This Study) 419,000 0 30
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Fig. 5   Pareto graphs NSGA-II and MOPSO algorithms in Lansey network



Applied Water Science (2022) 12:133	

1 3

Page 11 of 12  133

networks than the results of other researchers. In the two-
looped network, using the NSGA-II algorithm with 20 
repetitions and a run time of 0.66 min, and in the MOPSO 
algorithm with 30 repetitions and a time of 0.8 min, the 
lowest cost and lack of pressure (419,000 and zero) are 
achieved. In the Lansey network, the NSGA-II algorithm 
after 150 repetitions and execution time of 5.7 min and the 
MOPSO algorithm with 250 repetitions and the execution 
time of 9.5 min reached the optimal cost and total lack 
of zero pressure in the network. Both algorithms offered 
a lower cost compared to the cost of the diameters pro-
posed by Lansey et al. The results showed that modifying 
the cost objective function according to Eq. 3 in NSGA-
II and MOPSO algorithms limits the search space and 
significantly reduces the problem-solving time. In this 
approach, adding a penalty of violation the allowable pres-
sure range to the cost objective function by considering 
a random parameter in the structure of this function will 
achieve the optimal solution in the least iteration. This is 
very important in reducing problem-solving time in larger 
and more complex water distribution networks and is one 
of the achievements of this research. By extending this 
method to real networks with more pipes and more com-
plex structures, the time to achieve the optimal design and 
modification of the network structure can be significantly 
improved.
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