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Abstract
The present study aimed to create novel hybrid models to produce groundwater potentiality models (GWP) in the Teesta 
River basin of Bangladesh. Six ensemble machine learning (EML) algorithms, such as random forest (RF), random subspace, 
dagging, bagging, naïve Bayes tree (NBT), and stacking, coupled with fuzzy logic (FL) models and a ROC-based weighting 
approach have been used for creating hybrid models integrated GWP. The GWP was then verified using both parametric and 
nonparametric receiver operating characteristic curves (ROC), such as the empirical ROC (eROC) and the binormal ROC 
curve (bROC). We conducted an RF-based sensitivity analysis to compute the relevancy of the conditioning variables for 
GWP modeling. The very high and high groundwater potential regions were predicted as 831–1200  km2 and 521–680  km2 
areas based on six EML models. Based on the area under the curve of the ROC, the NBT (eROC: 0.892; bROC: 0.928) model 
outperforms rest of the models. Six GPMs were considered variables for the next step and turned into crisp fuzzy layers using 
the fuzzy membership function, and the ROC-based weighting approach. Subsequently four fuzzy logic operators were used 
to assimilate the crisp fuzzy layers, including AND, OR, GAMMA0.8, and GAMMA 0.9, as well as GAMMA0.9. Thus, we 
created four hybrid models using FL model. The results of the eROC and bROC curve showed that GAMMA 0.9 operator 
outperformed other fuzzy operators-based GPMs in terms of accuracy. According to the validation outcomes, four hybrid 
models outperformed six EML models in terms of performance. The present study will aid in enhancing the efficiency of 
GPMs in preparing viable planning for groundwater management.
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Introduction

In all climatic areas across the globe, groundwater is a 
highly significant and stable water source. Groundwater 
resource is depleted because of overexploitation with other 
natural resources (Falkenmark et al. 2019). The agriculture 
for developing countries like Bangladesh relies on irriga-
tion based on groundwater. Therefore, groundwater exploi-
tation is higher, causing the loss of groundwater supplies, 
which is a significant cause of worry (Khan et al. 2021; 
Nzama et al. 2021). In Bangladesh, Groundwater provides 
around 79 percent of the water supply (Shahinuzzaman 
et al. 2021). Groundwater provides 95 percent of irrigation 
supplies in certain sections, like the northwest (Shahinuz-
zaman et al. 2021). Agriculture accounts for around 18 
percent of Bangladesh’s GDP and provides jobs to about 
48 percent of the workforce (Shahinuzzaman et al. 2021). 
As a result, the development of groundwater resources is 
critical to the country's social and economic growth. It is 
also critical for the agricultural policy of the government 
toward attaining food independence and poverty reduction 
(Salem et al. 2017).

Consequently, it is critical to design a tactical plan 
to properly evaluate and manage groundwater resources 
using an assimilated method that considers a variety of 
ecological, socioeconomic, and scientific aspects. For the 
extension of irrigation-based agriculture and the execution 
of government initiatives, a thorough understanding of the 
spatial distribution of groundwater accessibility is critical. 

In order to minimize overdraft, it is also critical to utilize 
groundwater wisely (Benjmel et al. 2020).

Delineation of the areas having groundwater is one of 
the most fundamental aspects of groundwater research. 
Recently, there has been a strong interest in potential 
groundwater mapping among the researchers, especially in 
dry places, where the shortage of safe freshwater is a sig-
nificant issue, and the growth of irrigation, industry, and 
urbanization is nearly entirely dependent on groundwater 
(Portoghese et al. 2021; Zhu and Abdelkareem 2021). The 
geographic information systems (GISs) and remote sens-
ing (RS) technology have been used recently to analyze 
large-scale spatial and temporal databases. These technolo-
gies help delineate the potential groundwater zones with 
high precision and very little time. These technologies 
have replaced the time-consuming and costly groundwater 
research methods, such as drilling and geological and geo-
physical procedures. Now, GIS is crucial for dealing with 
large geographic datasets, such as spring and qanat sites 
(Pham et al. 2021; Nwankwo et al. 2020). By integrating RS 
and GIS, many topographical, hydrological, climatic, pedo-
genic parameters for extensive areas can be extracted with 
very high precision (Arabameri et al. 2020, 2021) (Table 1). 
Also, these technologies help to assimilate multi-parameters 
and are able to produce highly accurate groundwater poten-
tial maps for large to a small areas within a short time (Dau 
et al. 2021; Namous et al. 2021). Therefore, these technolo-
gies have added a new dimension to groundwater research 
(Mallick et al. 2021c; Nguyen et al. 2020). The robust and 
effective models generally rely on the choice of conditioning 
variables and standard assimilation methods (Kumar et al. 

Table 1  Literature review 
for groundwater potentiality 
conditioning parameters 
selection

*EL-Elevation, AS-Aspect, CUR-Curvature, SL-Slope, TRI-Topographic roughness index, TWI-Top-
ographic wetness index, SPI-Stream power index, STI-Sediment transport index, ST-Soil types, DR-Dis-
tance to river, LULC-Land use land cover, RF-Rainfall

Reference EL AS CUR SL TRI TWI SPI STI ST DR LULC RF

Namous et al. (2021) * * * * * * * * * *
Mallick et al. (2021c) * * * * * * *
Senapati and Das (2021) * * * * *
Ajibade et al. (2021) * * * *
Pham et al. (2021) * * * * * * * * *
Tolche (2021) * * * *
Al-Djazouli et al. (2021) * * *
Aykut (2021) * * * *
Arabameri et al. (2021) * * * * * * *
Masroor et al. (2021) * * * * * * *
Fadhillah et al. (2021) * * * * * *
Al-Abadi et al. (2021) * * * * *
Bhattacharya et al. (2021) * * *
Zhu and Abdelkareem (2021) * * *
Pathak et al. (2021) * * * *
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2020). The proper parameters choice for GWP modeling 
is challenging because redundant parameters can produce 
the erroneous results (Malik and Bhagwat 2021). However, 
researchers have used several topographical, hydrological, 
climatic, pedogenic parameters for modeling (Tolche 2021; 
Zhu and Abdelkareem 2021). In the present study, we chose 
the conditioning variables for the modeling based on the 
literature survey (Table 2). We chose those variables, which 
many researchers have extensively used. In the plain regions, 
topographic and climatic parameters have been recognized 
as important variables, while in the mountains, along with 
topographic, geological variables have been described as 
critical variables for GWP mapping (Mallick et al. 2021c; 
Al-Djazouli et al. 2021; Pathak et al. 2021; Namous et al. 
2021; Al-Abadi et al. 2021). For example, drainage density 
could be a valid variable in flood plains, not in mountainous 
regions (Bhattacharya et al. 2021; Fadhillah et al. 2021). 
Therefore, researchers should pay attention while choosing 
variables for modeling the spatial features of the study area 
(Pal et al. 2020b). Consequently, as shown in Table 1, the 
groundwater potentiality conditioning factors utilized in 
this study were determined after a comprehensive literature 
review. 

Recently, researchers have found that just the assimila-
tion of several parameters does not provide highly accurate 
and robust GWP maps; therefore, to achieve the accurate 
GWP maps, researchers have to use different methods, which 
can assimilate mathematically all parameters having differ-
ent data patterns and direction (Hembram et al. 2019; Das 
et al. 2021). Therefore, researchers have been paid higher 
interest in developing such accurate GWP modeling meth-
ods (Nguyen et al. 2020). Several approaches have been 
developed and used for GWP modeling (Pande et al. 2020). 
Therefore, we classified all methods as per their operational 
background, such as (1) statistical approaches for zoning 
groundwater potential, which have a long history of use 
(Mallick et al. 2021c; Pham et al. 2021). Statistical pro-
cedures that are now in use include frequency ratio (Abd 
Manap et al. 2014; Guru et al. 2017), logistic regression 
(Rizeei et al. 2019), weight of evidence (Rane and Jayaraj 
2021; Das et al. 2021), certainty factor (Razandi et al. 2015), 
and evidential belief function (Tahmassebipoor et al. 2016). 
However, they have several disadvantages, including a lack 
of precision (Chen et al. 2020). (2) Techniques for multi-
criteria decision analysis (MCDA), such as the analytic hier-
archy process (AHP) (Kumar et al. 2020; Murmu et al. 2019) 
and TOPSIS (Mandal et al. 2021; Zaree et al. 2019). Experts' 
judgment has tuned semiquantitative models (AHP), but for 
comparable geo-environmental elements or locations, the 
models need extensive understanding of groundwater and 
conditioning variables, which is seldom accessible (El Bilali 
et al. 2021; Mogaji et al. 2016). Statistical approaches have 
been widely regarded as the best way for GWP mapping at Ta
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sizes of 1:20,000 to 1:50,000, as they can map springs and 
wells in detail (Mallick et al. 2021a; Arshad et al. 2020). 
Statistical models cannot account for nonlinear interactions. 
Therefore, machine learning (ML) models based on artificial 
intelligence have been created (Mallick et al. 2021a). The 
conditions necessary to enhance groundwater capacity have 
been established using machine learning algorithms based 
on data mining. (3) Machine learning (ML) models include 
CART (Gayen and Pourghasemi 2019), random forest (RF) 
(Golkarian et al. 2018), support vector machine (Panahi 
et al. 2020), artificial neural network (Nguyen et al. 2020; 
Naghibi et al. 2017; Mallick et al. 2021c), neuro-fuzzy (Ter-
meh et al. 2019), and decision trees (Choubin et al. 2019). 
Each has the same goal: to discover the best cost-effective 
and efficient technique. It is also worth noting that utilizing 
field data in GIS-based models enhances outcomes (Phong 
et al. 2021; Zhao and Chen 2020).

The utilization of EML algorithms has been substantially 
increased for higher accuracy in GWP mapping (Al-Abadi 
and Shahid 2015). Ensemble modeling included two or 
more ML algorithms to enhance the prediction accuracy 
(Muavhi et al. 2021; Pham et al. 2021; Farzin et al. 2021). 
Ensemble modeling can mitigate the flaws of an individual 
model (Talukdar et al. 2020, 2021b; Rahmati et al. 2016). 
Susceptibility, vulnerability, hazards, potentiality, and other 
issues can now be studied using a multi-model approach 
and ensemble modeling (Talukdar and Pal, 2019; Islam 
et al., 2021; Mahato et al. 2021; Talukdar et al. 2021a). The 
ensemble models include AdaBoost (Ha et al. 2021), bag-
ging (Yen et al. 2021), Reptree-bagging (Chen et al. 2019a), 
dagging (Talukdar et al. 2021a, b), and rotation forest (Mal-
lick et al. 2021c). Therefore, to increase the model's resil-
ience for GWP mapping, we utilized six ensemble machine 
learning techniques in the present study, including RF, RS, 
bagging, dagging, NBT, and stacking. The EML-based pre-
diction approach is rarely utilized in the Teesta River Basin 
of Bangladesh for GWP mapping.

Experimental hybrid models for GWP mapping have 
now been investigated in recent years, as there is a neces-
sity to investigate contemporary prediction methodologies 
and procedures to collect more scientific knowledge to make 
fair findings (Table 2). Several hybrid approaches have been 
effectively utilized for groundwater potentiality modeling, 
which has been produced by combining statistical techniques 
with machine learning approaches, such as bagging based 
linear discriminant function (Chen et al. 2019b), EML mod-
els with discriminant analysis (Ha et al. 2021), and adaptive 
neuro-fuzzy (Termeh et al. 2019).

To create hybrid models, six EML models were combined 
with four operators of fuzzy logic models and a ROC-based 
weighting technique in the current work. The hybrid models 
have a higher capacity to help researchers in future ground-
water potentiality studies by increasing the popularity of 

this approach. Predictions of GWP utilizing contemporary 
hybrid techniques are significant since the models are more 
accurate in detecting and predicting than machine learning 
models.

Additionally, prior studies devoted minimal emphasis to 
thematic layer sensitivity analysis. This research has treated 
thematic layers with sensitivity tests following creating 
hybrid models. The most significant thematic layers have 
been determined utilizing several machine learning-based 
sensitivity studies to improve the model's predictive perfor-
mance. This technique was utilized to minimize uncertainty 
in other research, such as gully erosion prediction, land 
subsidence prediction, and landslide susceptibility (Forkuor 
et al. 2017; Abdulkadir et al. 2019; Chen et al. 2018). In 
this study, RF-based sensitivity analyses were implemented 
to identify the model's significant thematic layer output. 
In addition, the model's efficiency was assessed using the 
ROC curve. Only a few researchers have used parametric 
and nonparametric ROC curves for validation. Therefore, to 
address the research as mentioned earlier gaps, the study's 
main objectives are to:

1. Develop hybrid algorithm-based GPMs by combining 
EMLs such as RF, RS, bagging, dagging, NBT, and 
stacking with four fuzzy logic operators;

2. Undertake sensitivity analysis; and
3. Apply eROC and bROC curves for validation.

This study will aid governments and scientists in effec-
tively proposing plans for groundwater management.

Materials and methods

Description of the study area

The Teesta River is originated from eastern Himalayas, 
flows across Bangladesh's northern area (Fig. 1), and is rec-
ognized as the lifeblood of Bangladesh's northern area. This 
river covers fourteen percent land, which provides direct 
and indirect livelihood for twenty-one million people of 
Bangladesh, which accounts for seven percent population 
of the Bangladesh (BBS 2016). The floodplain of this river 
is considered as the important geomorphic units, including 
fourteen northern districts. It flows across the five districts 
of Bangladesh (Gaibandha, Kurigram, Lalmonirhat, Nil-
phamari, and Rangpur districts). The basin area of this river 
is around 2,000  km2 and comprises alluvial floodplain hav-
ing fine to medium sand.

This river is a vital supply of water in the northern 
drought-prone area, and millions of people rely on it for their 
lives. The study area is in a subtropical monsoon climatic 
zone where rainfall occurs only during monsoon months 
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(June to September), dry for the rest of the year (Akter et al. 
2019). Although the northern region stays dry throughout 
the post- and pre-monsoon seasons, the area receives over 
1900 mm of annual rainfall on average. Summer and winter 
mean temperatures in the Teesta River basin are about 35 °C 
and 15 °C, respectively (Islam et al. 2014).

Preparation of groundwater inventory

In the present research, GWP was predicted using ML and 
EML algorithms with conditioning parameters. To create 
the inventory, we used well locations of the study area. The 
inventory map for the study area contains 230 well points 
gathered across multiple sources and a thorough field exami-
nation. First, non-groundwater data should be generated that 
is comparable to the groundwater data used in GWP mod-
eling. The field survey has been used to make the selection, 
along with an equal quantity of non-groundwater data (230 
points). All datasets have been separated into 80 percent 
(368): 20 percent (92 points) training and testing datasets 
based on arbitrary partitioning (Fig. 11). Groundwater and 
non-groundwater training data are used to calibrate the 
model, while groundwater and non-groundwater testing data 
are used to validate it (Mallick et al. 2021b).

Data preparation

In the present study, we selected 12 conditioning variables 
based literature review, availability of data, and technologi-
cal setup (Table 1). Therefore, the variables are elevation, 
aspect, TWI, SPI, STI, LULC, TRI, distance to the river, 
curvature, soil condition, slope, and rainfall. Employing a 
resampling approach, all relevant factors have been con-
verted to a spatial resolution of 30 m.

Topographic factors, derived from ASTER GDEM, are 
important for GWP modeling since they influence the study 
region's hydrological properties both directly and indirectly 
(Bui et al. 2020b).

Elevation

The elevation primarily shows surface terrain irregularity, 
crucial to groundwater potentiality. There is a reduced infil-
tration rate in locations connected with steep elevation due 
to increased surface runoff. In contrast, plain land with lower 
elevation has an extended water retention period, increasing 
the water infiltration rate for higher groundwater recharge 
(Arulbalaji et al. 2019). We created the elevation map of the 
research region using an SRTM-DEM. The research area's 
elevation ranges from 18 to 69 m (Fig. 2a). The majority of 
the region (about 70% of the total area) has elevations rang-
ing from 18 to 40 m, while fewer than 10% of the entire area 
has elevations over 60 m.

Curvature

Curvature values describe the shape of regional topography 
(Ginesta Torcivia and Ros López 2020). A positive curva-
ture indicates that the surface is convex, whereas a negative 
curvature indicates that it is concave (Costache and Tien Bui 
2020). The value zero denotes a fat surface. Convex slopes, 
on the other hand, drain more runoff water than concave 
slopes. The concave down regions have been the most vul-
nerable to groundwater recharge (Fig. 2b).

TRI

Riley et al. (1999) created TRI (Fig. 2c) by computing the 
discrepancy between the elevation values of a given cell in 

Fig. 1  The location of the study 
area
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a DEM (Arabameri et al. 2021). Each of the numbers is 
squared to keep them all positive, and then, the squares are 
averaged. To obtain the TRI, the square root of this average 
is calculated. The TRI value in the study area ranges 0–27.

Aspect

Aspect is the direction in which a slope faces, and it impacts 
the physical properties of a slope such as lineament, and 
exposure to sunlight (Masroor et al. 2021). DEM was used 
to construct aspect data (Fig. 2d), which were divided into 
nine categories: north, east, south, west, northeast, north-
west, southeast, southwest, and flat.

Slope

Slope is the magnitude of inclination of a surface in refer-
ence to a horizontal plane that affects water flow under 
the influence of gravity, thereby determining subsurface 
lateral transmissivity rate (Bhattacharya et al. 2021; Al-
Abadi et al. 2021). It controls the quantity of water that 
collects in a certain area, and hence plays an essential role 
in groundwater recharge. Lower slopes and flat regions 
define the research area, which contribute to good ground-
water recharge. The study area belongs to flat regions, 
therefore, has a high probability of groundwater (Fig. 2e).

TWI

The topographic wetness index (TWI) was first established 
by Beven and Kirkby (1979) as part of the runoff model 

Fig. 2  Thematic parameters for GWP modeling such as a elevation, b curvature, c TRI and d aspect, e slope, and f TWI
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TOPMODEL (Arulbalaji et al. 2019). This index is an 
indicator of availability of water in an area as a result of 
topographic effects on water accumulation (Mokarram 
et al. 2015). This index represents the amount of water 
contained in the region at each pixel scale (Saha et al. 
2021) and is calculated using Eq. (1):

As and β denote, respectively, the same catchment area 
(m2m1) and slope (in degrees). High TWI values and GWP 
have a strong association in general (Shit et al. 2020). TWI 
values range from − 1.54 to 7.72 in the research region (See 
Fig. 2f.)

SPI

The slope and contributing area are used to determine SPI, 
which is a measure of the erosive strength of flowing water 
(Namous et al. 2021). The SPI is calculated using Eq. 2.

As indicates the catchment area, while � denotes the 
slope. The SPI in the study area ranges between 0 and > 3 
(Fig. 3a).

STI

The sediment transport index (STI) represents the quan-
tity of erosion and depositions that might affect infiltration 
and recharging (Pham et al. 2021). The channel's bed alters 
owing to silt deposition, limiting the channel's capacity to 
retain water and creating groundwater potentiality. The STI 
is calculated from the DEM using Eq. 3.

where each pixel of the slope  of the upstream region 
is defined by As. The STI value in the study area varies 
between 0 and 140.64. (See Fig. 3b.)

Rainfall

Rainfall, collected from meteorological stations of Bang-
ladesh, has been identified as a critical component in influ-
encing the possibility for groundwater to be recharged 
(Arulbalaji et al. 2019). In part, an excessive amount of rain 
in a short period may cause a low groundwater potential 
(Fadhillah et al. 2021). The kriging interpolation method 
constructed a rainfall map in the ArcGIS software version 
10.3 environment using recorded rainfall data from four 

(1)TWI =
ln(As)

tan �

(2)SPI = As tan �

(3)STI =

(

As

22.13

)0.6
(

sin

0.0896

)1.3

Bangladesh meteorological stations. The data were imported 
into ArcGIS 10.3 and processed. Because of the tiny quan-
tity of information available, this strategy is highly recom-
mended (Zhu and Abdelkareem 2021). The yearly rainfall 
in the study region, on the other hand, varies from 361 to 
550 mm each year (Das 2021; Das and Wahiduzzaman 2021) 
(Fig. 3c).

Soil types

Soil type affects the rainfall-runoff process (Tolche 2021). 
Soil qualities directly regulate water penetration, therefore 
affects rainfall-runoff production. If the degree of pen-
etration seems to be high, groundwater incidents are more 
likely to happen. According to USDA soil classification, the 
research area comprises 12 different types of soil (Fig. 3d).

Land use/land cover

The influence of LULC on surface runoff and sediment flow 
has a substantial effect on the incidence of groundwater 
potentiality (Senapati and Das 2021). Usually, the LULC 
has a complete control over surface runoff production and 
penetration. The built-up regions prohibit water from access-
ing and creating surface water, and groundwater potential-
ity is quite low. The forest environment, on the other hand, 
favors water infiltration, resulting in lower groundwater 
potentiality (Elmahdy et al. 2020). The association between 
GWP and plant density is inverse when evaluating hydro-
logical responses at different time scales (Senapati and Das 
2021). We collected Landsat 8 OLI (path/row: 138/42) for 
LULC mapping. The ANN model was used to produce a 
LULC map in ENVI software (version 5.3). The LULC map 
was categorized into six classes: bare land, forest, sand bar, 
built-up, agricultural land, and water body (Fig. 3e).

Distance to the river

The majority of groundwater potentiality-inundation regions 
are often located around the river's edge. Because river dis-
tance effects groundwater potentiality and river flow to river 
aspect, it is an important factor for finding basin regions 
with high groundwater potential (Namous et al. 2021). The 
greater the distance between a place and a river, the less 
probable it is that the area has a big amount of groundwa-
ter capacity. The basin-scale storage of terrestrial water 
accounts for regional groundwater potentiality. In this 
investigation, we used a topographic map with a scale of 
1: 50,000 and Google Earth to compute the distance to the 
river map (Fig. 3f).
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Methods for information gain ratio 
and multicollinearity test

Before using ML models to measure GWP in this study, two 
preliminary tests have been executed, such as multicollinear-
ity and feature selection. When two or more variables in an 
analysis have a linear correlation, multicollinearity arises. 
If there is multicollinearity, slight adjustments in the model 
or data might cause considerable variations in the multiple 
regression coefficient estimations. This circumstance may 
impair the precision of the generated models' predictions. 
The feature selection (FS) test is the other preliminary test, 
and it seeks to pick the appropriate characteristics for utili-
zation in model creation. The FS minimizes the complexity 
of a model while also improving the predictors' effective-
ness. It also allows for a deeper grasp of the underpinning 
mechanism that produced the data (Tien Bui et al. 2020). 
The information gain ratio (IGR) approach was employed in 
this investigation. IGR measures the information gain with 
regard to the class to determine the value of a feature. The 
IGR measures the value of a characteristic in relation to 
the class, with a larger information gain ratio indicating a 
stronger prediction power of the utilized models. Tien Bui 
et al. (2020) provide more information on this approach.

Method for groundwater potentiality modeling

RF

A random forest model is an ensemble machine learning 
approach that may build many decision trees to elucidate 
the spatial link between landslides. It operates by training 
many decision trees and then generating classes that repre-
sent the mode of classification or regression of individual 
trees (Breiman 2001). A decision tree is used to output the 
class in the classification process. The average of the find-
ings is used to predict the dependent variable in the regres-
sion process. There are no preconceptions regarding the con-
nection between explanatory factors and response variables 
in the random forest. This is an effective way to investigate 
hierarchical relationships and nonlinearities in big data. As 
a result, a random forest method may be used to anticipate 
new data cases more accurately.

Random subspace

Random subspace is a successful EML algorithm developed 
by Ho (1998) that uses a pseudo-randomly selected subset 
of characteristics to separate classifiers and combines their 
outputs via voting. RSS is a forest creation approach that 
uses an ensemble classifier to enhance the performance of 
individual classifiers that are underperforming (Kotsiantis 
2011). The RS method includes selecting samples from the 

original training set at random to create a bootstrap sample, 
which would then be utilized to construct the decision tree 
(Kotsiantis 2011). A subset of features gets picked at ran-
dom for each node of the decision tree, and the best split 
gets determined. Attributes, predictors, and independent 
variables are all included in an RS model. The correlation 
between estimators is reduced when randomly chosen fea-
tures are used instead of the whole feature set. Ultimately, 
the tree is constructed to its full potential. As a result of 
leveraging random subspaces in both creation and aggrega-
tion, this strategy generates an effective hybrid model for 
minimizing over-fitting difficulties and managing datasets 
with a large number of repetitive variables. Ho (1998) has 
detailed information of the RS model.

Dagging

Ting and Witten (1997) pioneered the dagging technique. 
The dagging approach divides the training dataset into a 
number of disjoint, stratified folds and uses the given base 
learner to train each fold. Predictions are produced using a 
majority vote approach for classification issues and an aver-
aging procedure for regression problems.

Bagging

The bagging (Bootstrap aggregating) EML algorithm is 
a fundamental group learning model to manufacture and 
aggregate (Quinlan 2006). It was offered as a way to reduce 
variation without raising bias error too much. Hong et al. 
(2019) found that bagging is a useful strategy for simulating 
a variety of environmental concerns. Bagging combines the 
bootstrap technique with the auxiliary approach to create 
several sets of samples, which are referred to as bootstrapped 
subsets. Each subgroup trains a base classifier on its own till 
the outputs get combined into a unified strong classifier via 
majority voting approach.

NBT

The machine learning classifier naive Bayes (NB) produces 
a probability-based model, which operates using the Bayes' 
theorem. The NB's structure is based on a decision tree 
(DT), and it arranges an NB model on each of the DT's leaf 
nodes (Jiang and Li 2011). The NBT performs well in terms 
of categorization and reliability (Arabameri et al. 2020).

The influence of a feature values on a given class through-
out the NB process is independent of the value of another 
feature, which is referred to as class conditional independ-
ence. NB's conditional independence speeds up the training 
of datasets by treating all vectors as independent and using 
the Bayes rule.
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Stacking

Stacking is an ensemble model in which the training data 
are utilized to generate a variety of algorithms. This method 
was developed by Wolpert (1992), and it works by comput-
ing the raw classifiers of the poor performance in relation 
to independent or bootstrapped reference data. Ensemble 
stacking is also known as blending since all of the statistics 
may be blended to create an estimation or classification. The 
stacking method increases the classifier's predictive power 
over the bagging and boosting procedures. Remote sensing, 
computer science, and finance are just a few of the fields 
where this ensemble method has shown potential. Table 3 
shows the parameters that have been optimized.

Validation of the models

The ROC curve has been employed to evaluate the precision 
GWP models. The ROC is a relative factor that indicates 
the probability of a class employing the Boolean method. 
The vertical axis of the ROC curve shows the actual posi-
tive proportion, while the horizontal axis represents the false 
positive percentage. AUC stands for the area under the ROC 
curve, and value ranges from 0 to 1. The high values indicate 
good performance of the models. If the value is close to 1.0, 
the predicted model's accuracy will be very high.

Both nonparametric and parametric methodologies 
were used to determine the area under the ROC curve. In 
this study, we applied nonparametric and nonparametric 
approaches for validation.

Proposing fuzzy logic‑ROC weighting‑based hybrid 
EML models for GWP mapping

We combined the fuzzy logic model with previously utilized 
EMLs to increase the accuracy of GPMs. A variety of proce-
dures were taken to achieve this. The EML algorithms (six 
models) were utilized as parameters to build GPMs using 
a fuzzy logic model. Zadeh (1965) was the first to propose 
the concept of fuzzy sets. It makes it possible to grasp non-
discrete natural events mathematically. The following are the 
specifics of fuzzy logic-based hybrid models:

We combined different operators of FL model with 
already developed six EML models to enhance the precision 

of the GWP models. To do so, we followed several steps, 
such as first we considered six EML models as input of the 
FL model. Then, we applied linear fuzzy membership func-
tion to the six EML models as the value of EML models 
showed the monotonic trend of potentiality like low potential 
to high potential.

We did not use conditioning factors directly in this inves-
tigation; instead, we used six GPMs that had already been 
created using conditioning variables. The concept behind 
using six GPMs is that each GPM was created using distinct 
ensemble machine learning models and numerous param-
eters. As a result, the GPM result revealed the intricate func-
tioning of algorithms, conditioning parameters, and existing 
inventories. After converting the input variables (six EML 
models) into fuzzy crisp layers, the subsequent process is the 
integration of the parameters.

For integrating several input variables, fuzzy operators 
have been used. Five operators, such as AND, OR, SUM, 
PRODUCT, and GAMMA, have been extensively used 
(Chung and Fabbri 2001). To obtain very high precision 
prediction, a suitable operator should be selected for integra-
tion. In the present study, we used all the operators for com-
bining the input variables. Based on the initial screening, we 
excluded the final output of AND and PRODUCT operators. 
The following formulas have been used to integrate the input 
variables using fuzzy operators:

where fRF , fRS , fBagging , fDagging , fNBT , fStacking are fuzzy crisp 
layers of RF, RS, bagging, dagging, NBT, and stacking, 

(4)[fAND = MIN
[

fRF, fRS, fBagging, fDagging, fNBT, fStacking
]

(5)fOR = MAX
[

fRF, fRS, fBagging, fDagging, fNBT, fStacking
]

(6)Fuzzy Algebraic Product =

n
∏

i=1

Ri

(7)Fuzzy Algebraic Sum = 1 −

n
∏

i=1

(1 − Ri)

(8)
f� = (Fuzzy Algebraic Sum)� × (Fuzzy Algebraic Product)1−� )

Table 3  The optimization parameters of the EML algorithms employed for GWP mapping

Models Description of parameters

RF Batch size-100, seed-7, number of iteration-200, max depth-3, calc out of bag-TRUE
RS Classifier-RF, max depth- 3, minimum number-2, minimum proportion of the varience-0.001, executions slots-2, 

seed-5, iteration- 100, subspace size-0.5
Dagging Classifier-Random tree, minimum number-2, max depth- 3, minimum varience-0.001, fold- 10, seed-6,verbose-TRUE
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respectively. Also Ri represents the fuzzy membership func-
tion of the ith map, i = 1, 2, ..., n.

For GAMMA operator, we used six coefficients, such 
as 0.7, 0.75, 0.8, 0.85, 0.9, and 0.95. After screening, we 
excluded the final output of 0.7, 0.75, 0.8, and 0.85 coef-
ficient. The value of final output after integration ranges 
from 0 to 1, where close to 1 indicates the higher potential-
ity. Then, we applied natural break algorithm to classify the 
models into five classes, such as very low, low, moderate, 
high, and very high potentiality.

Sensitivity analysis

In the present study, we performed machine learning 
algorithm (RF)-based sensitivity analysis to compute the 

relevancy of the conditioning variables. The mean decrease 
in accuracy (MDA) and mean decrease in Gini (MDG) coef-
ficient are two measures based on RF for evaluating the 
sensitivity power of the input variables. To determine a 
variable's MDA, their values are permuted arbitrarily for 
the OOB data, whereas the other variables' values remain 
unchanged. The variable's relevance is determined through 
evaluating the resultant misclassification rate to the rate 
obtained without arbitrarily permuting the variable's values. 
This process is carried out for each parameter. Using the 
Gini splitting criteria, a variable's MDG is calculated con-
sidering the number of trees in the forest as a normalization 
factor. (For details of RF, see method section.)

The methodology of this research is summarized in 
Fig. 4.

Fig. 3  Thematic layers for GWP conditioning variables such as a SPI, b STI, c rainfall d soil types, e LULC, and f distance to river
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Results

Computation of the multicollinearity analysis 
and importance of the parameters

In multicollinearity diagnostics tests, the highest VIF is dis-
covered in elevation (2.71) and rainfall (2.67), followed by 
STI, SPI, and slope. The lowest VIF has been found in the 
case of aspect, curvature, and TWI (Table 4). The results 
also show that the variables have no collinearity among 
themselves; therefore, we can use them for modeling GWP.

Table 4 also provides the results of the tenfold cross-vali-
dation method used to calculate each parameter's InGR. The 
InGR data indicated that the LULC (0.516), distance to river 
(0.124), and elevation (0.114) have the high InGR value that 
indicates the most influential parameters for modeling GWP. 
The TRI (0.031), SPI (0.027), and STI (0.015) have just a 
slight impact on the GWP models. The TWI (0.008) and 
curvature (0.011) are all statistically insignificant. It is worth 
noting that the aspect factor has a value of InGR = 0.007, 
suggesting that it has the least impact on groundwater poten-
tial zones prediction.

GWP modeling and their validation

We created GWP models in Fig.  5 utilizing six EMLs, 
including RF, RS, bagging, dagging, NBT, and stacking. 
We classified GWP models into five classes, as illustrated in 
Fig. 5, as follows: very high to very low. The possible GWP 
areas follow the drainage route of the watershed, running 
northwest–southeast. Zones with high GWP dominate the 
south and southeast part of the study area, whereas zones 
with low GWP comprise the north and northwest part of 
the study area.

According to the RF model, 2.26 percent and 36.69 per-
cent area predicted as very high GWP and high GWP zones 
(Table 5). While the RS, bagging, dagging, NBT, and stack-
ing models categorized roughly thirty percent of the entire 
basin area as having a high GWP zone. The NBT model 
revealed the lowest area for extremely low class, whereas 
RF, bagging, and RS covered the maximum area (Table 5). 
All the models identified the river catchment region as pos-
sessing many possibilities for groundwater storage. How-
ever, since the size of the area varies, it is crucial to describe 
the most appropriate model.

Using the obtained GPS coordinates, the AUC of ROC 
has been utilized to verify the GWP models (Meten et al. 
2015; Nahayo et al. 2019). NBT (AUC: 0.892 and 0.928) 
seemed to be the best model for both ROC curves, preceded 
by stacking (AUC: 0.889 and 0.931), RS (AUC: 0.889 and 
0.912), dagging (AUC: 0.87 and 0.882), RF (AUC: 0.882 
and 0.936), and bagging (AUC: 0.861 and 0.87) (Fig. 6). 
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However, according to the binormal ROC curve, RF was the 
finest model (bROC: 0.936), followed by stacking (bROC: 
0.931), NBT (bROC: 0.928), RS (bROC: 0.912), dagging 
(bROC: 0.882), and bagging (bROC: 0.87) (Fig. 6).

Sensitivity analysis using machine learning 
algorithms

Advanced EML models showed the zonation of GWP areas 
for the present study area. Furthermore, none of these mod-
els include the influence of any variables to the prediction 
of GWP modeling. The problem emerges in developing and 

implementing management plans without a thorough grasp 
of the link between parameters and GWP models.

If the influence of the conditioning variables is not pos-
sible to compute, it would be very unclear how management 
strategies would be developed and implemented. Identify-
ing factors linked with GWP models could sometimes help 
reduce the exploitation of groundwater resources and for-
mulation of groundwater management plans. As a conse-
quence, determining which elements have the most influence 
is crucial. For this, we used RF-based two error matrices, 
such as MDG and MDA to compute the influence of the 
variables to the GWP models (Hollister et al. 2016). The 
results showed that the distance to the river, TWI, aspect, 

Fig. 4  Flowchart shows the steps for preparing the hybrid GWP map
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STI, slope, elevation, and rainfall were the most relevant 
parameters for GWP modeling (Fig. 7). The least significant 
factors in defining the relative importance of the 12 variables 
included in EML models were soil kinds, LULC, and SPI, 
with soil types, LULC, and SPI being the least important.

Development of FL and ROC weighting‑based 
hybrid models and their validation

The GWP models must be very resilient and precise before 
providing sustainable management approaches. As a result, 
we attempted to increase the robustness and accuracy of 
EML-based GWP models to provide highly effective sustain-
able management strategies in this work. Integrating fuzzy 
logic and a ROC-based weighting technique has enhanced 
the EML models even further. Before using fuzzy logic, the 
ROC-based weighting technique was used to weight the 
EML-based GWP layers in this work. The rationale for using 
a ROC-based weighting method rather than an expert-based 
approach, AHP, or weighted linear combination is because 
the ROC measures how similar EML-based GWP models 
are to the ground truth or reality. Therefore, the value of 
ROC curve shows that the high value reflects the prediction 
of the models is quite similar with ground conditions. As a 
result, the model with the highest AUC value can be very 

Fig. 5  The EML algorithms based GWP models, such as a RF, b RS, c bagging, d dagging, e NBT, and f stacking

Table 5  Calculation of area of five GWP zones using six EML mod-
els

GWP zones Area  (km2)

Very high High Moderate Low Very low

RF 83.00 1352.21 526.77 506.92 1216.08
RS 1112.76 597.70 490.69 622.09 861.78
Bagging 1102.21 584.87 361.61 507.79 1103.01
Dagging 1023.99 546.11 592.62 722.03 800.01
NBT 1168.03 548.85 876.27 575.34 516.15
Stacking 1045.91 521.65 596.45 668.68 806.01
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appropriate and given a higher weight than other models. 
Hence, we utilized the AUC values of the ROC curve as the 
weighted value in this investigation. For the weighting tech-
nique, we used the AUC value of the binormal ROC curve. 
In this study, the RF model received the highest score of all 
the models, since it had higher AUC values than the other 
models. RF, stacking, NBT, RS, dagging, and bagging are 
the layers in the hierarchical sequence for allocating weights 
based on AUC values.

The fuzzy logic model was deployed after the EML-based 
GWP models were transformed into weighted layers. Before 
applying the weighted method, the models were normalized 
because the EML algorithms predicted GWP as 0–1 values. 
The data patterns of the layers reflect a similar tendency, 

such as monotonous growth, which shows a constant grow-
ing or declining trend. The data pattern in this investigation 
revealed a constant GW decreasing tendency. As a result, we 
used a linear fuzzy membership function to normalize all the 
GWP layers. After applying the fuzzy membership function, 
the fuzzy crisp layers of six EML-based GWP models are 
shown in Fig. 8a–f.

After converting the crisp fuzzy layers, we integrated 
all fuzzified layers using different fuzzy operators, such 
as AND, OR, SUM, PRODUCT, GAMMA 0.7, GAMMA 
0.75, GAMMA 0.8, and GAMMA 0.9. Then, we inspected 
the generated output through visualization. Subsequently, 
we excluded the output generated from SUM, PRODUCT, 
GAMMA 0.7, and GAMMA 0.75, as these outputs seem 

Fig. 6  Validation of GWP models using eROC and bROC curves for a RF, b RS, c bagging, d dagging, e NBT, and f stacking
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not good enough. We considered the output from AND, 
OR, GAMMA 0.8, and GAMMA 0.9 as excellent results 
based on our inspection. After that, we classified the output 
into five classes as we did for previous EML models. Then, 
we validated the models using eROC and bROC curves 
(Fig. 9a–d). The area coverage for various GPW categories 
was calculated. According to all models, 1045–1200  km2 of 
the area were classified as very high GPW zones, whereas 
780–895km2 of the area was projected as very-low GPW 
zones (Fig. 9a–d).

Based on the AUC of ROC curve, GAMMA 0.9 appeared 
as best model (eAUC: 0.903 and bAUC: 0.932), followed 
by GAMMA 0.8 (eAUC: 0.902 and bAUC: 0.949), AND 
(eAUC: 0.899 and bAUC: 0.948), and OR (eAUC: 0.866 and 
bAUC: 0.919) models (see Fig. 9a–d). However, according 
to the bROC curve, GAMMA 0.8 was shown to be the supe-
rior model for prediction of natural hazards (bAUC: 0.949), 
followed by AND (bAUC: 0.948), GAMMA 0.9 (bAUC: 
0.932), and bagging (bAUC: 0.919) (Fig. 10). All models 
are highly accurate and robust than the EML-based models. 
Therefore, it can be stated that after integrating ROC-based 
weighting approach and fuzzy logic, the efficiency of the 
GPW models is increased further. 

Discussion

Delineation of GWP or other natural hazards using ML and 
EML algorithms is highly timely work since future circum-
stances should be known to professionals and governments 
to promote sustainable development. Decision-makers can 
suggest management plans based on this information. No 
model, however, is ideal for predicting GWP and natural haz-
ards using ML and EML algorithms. As a result, research-
ers are constantly attempting to create and use new models 
for predicting occurrences through the complicated nonlin-
ear process. Therefore, in the present study, we proposed 
six ROC weighting integrated ensemble machine learning 
models, such as RF, RS, bagging, dagging, and stacking, 
which had never been used before, were tested and coupled 
with fuzzy logic operators (AND, OR, GAMMA 0.8, and 
GAMMA 0.9), a widely employed advanced model, in the 
current study. The criteria that are beneficial for ground-
water occurrence were initially detected for groundwater 
resource identification. The precision of the outputs entirely 
relies on the model's predictive capacity and the input data's 
quality. Therefore, the impact of these variables was evalu-
ated (Table 1), and we eliminated the variables having less 
impact from modeling (Table 4). These less important vari-
ables could affect the prediction procedure (Maskooni et al. 
2020; Muavhi et al. 2021).

Fig. 7  Sensitivity analyses of groundwater potential conditioning factors in terms of best GWP models using a MDG, and b MDA
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Also, we applied machine learning technique like ran-
dom forest for computing the importance of the GWP con-
ditioning variables to the GWP models (Fig. 7). The results 
showed that the distance to the river and the TWI have the 
largest impact since water penetration is stronger near the 
river and in the higher TWI zone, resulting in larger GWP 
ability. Our work is quite identical to the findings of Pham 
et al. (2021) and Pal et al. (2020a). Rainfall ranks third in 
the MDA and seventh in the MDG (Fig. 7) because it has a 
moderate influence on the groundwater potentiality model. 
The relevance of the factors in potential groundwater map-
ping, on the other hand, is heavily determined by the study 
region's features and the research method used.

There have been several statistical, and ML models 
applied in GWP modeling, and many of these models have 
yielded excellent prediction results, as shown in the litera-
ture review (Mallick et al. 2021d). In recent years, hybrid 
models, on the other hand, have become more popular. For 

groundwater-related studies, the effectiveness of hybrid 
approaches could be helpful to researchers in the future (Far-
zin et al. 2021). Because of this, we proposed ROC weight-
ing-based ensemble machine learning algorithms (RF, RS, 
bagging and dagging, NBT, and stacking) for groundwater 
potentiality modeling in the present study. We combined 
these algorithms with different operators of fuzzy logic 
(AND, OR, GAMMA 0.8, and GAMMA 0.9). In this way, 
we built hybrid models for GWP modeling.

The RS, bagging, and dagging models, together with the 
NBT and stacking models, categorized approximate thirty 
percent area of the total study area as considered high GWP 
zone. The NBT model predicted that the very low class 
would have the lowest coverage area, while the RF, bag-
ging, and RS classes would have the maximum coverage 
area (Table 4). The river catchment region, in general, was 
identified by all the models as having a significant impact 
on GWP model. Furthermore, the six advanced EMLs were 

Fig. 8  Conversion of EML models into crisp fuzzy layers, such as a RF, b RS, c bagging, d dagging, e NBT, and f stacking based on linear 
membership function,
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validated using the eROC and bROC curves and showed 
NBT model (eROC: 0.892; bROC: 0.928) appeared as best 
model, followed by stacking (eROC: 0.889; bROC: 0.931), 
RS (eROC: 0.889; bROC: 0.912), dagging (eROC: 0.87; 
bROC: 0.882), RF (eROC: 0.882; bROC: 0.936), and bag-
ging (eROC: 0.861; bROC: 0.87). These six models per-
formed better, with AUC values greater than 0.8. As a result, 
it is reasonable to conclude that NBT outperformed other 
models because it is a fast decision algorithm ensemble with 
naïve Bayes that has been successfully applied to achieving 
trustworthy findings for forecasting natural disasters and 
other environmental factors (Pham et al. 2021; Phong et al. 
2021).

Finally, to the best of the authors' knowledge, the fuzzy 
logic-ROC weighted integrated hybrid EML models were 
proposed for the first time. The outputs were found to be 
very high rather than standalone ML and EML, such as 
AND-hybrid (eROC: 0.899; bROC: 0.948), OR-hybrid 
(eROC: 0.866; bROC: 0.919), GAMMA 0.8 (eROC: 0.902; 

bROC: 0.949), and GAMMA 0.9 (eROC: 0.903; bROC: 
0.932) can improve the accuracy and robustness of advanced 
machine learning models.

We concluded that hybrid EML models outperformed 
other EML models and ML models for GWP modeling 
based on the above discussion and results. Therefore, the 
present study recommends using hybrid EML models to pre-
dict natural hazards and other natural resource predictions in 
different regions. These models would yield high precision 
prediction results.

Conclusion

Specifically, the present work is concerned with creating 
fuzzy logic, and EML integrated hybrid models to predict 
groundwater potentiality models. We summarized the main 
findings below:

Fig. 9  Novel hybrid models 
with the integration of EML 
models and ROC weighted 
fuzzy operators, a AND, b 
OR, c GAMMA 0.8, and d 
GAMMA 0.9
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 (i) Using six EML models and four fuzzy-based hybrid 
models, researchers determined that the extremely 
high groundwater potential zone encompasses an 
area ranging from 830 to  21200km2.

 (ii) The NBT model performed as superior for GWP 
modeling (eROC = 0.892; bROC: 0.928). It was fol-
lowed by stacking, RS, dagging, RF, and bagging. 
However, the suggested FL-based hybrid mod-
els, such as GAMMA 0.9 (eROC − 0.903; bROC: 
0.932), outperformed all other models in terms of 
AUC. The best models, according to binormal ROC, 
would be GAMMA 0.8 (bROC: 0.949), followed by 
AND (bROC: 0.948), GAMMA 0.9 (bROC: 0.932), 
and OR (bROC: 0.919), respectively. All four models 
outperformed the six EML models by a significant 
margin.

 (iii) We performed machine learning algorithm like ran-
dom forest for sensitivity analysis to compute the 
influence of the parameters for GWP modeling. The 
results showed that the distance to the river, eleva-
tion, and slope are mostly sensitive parameters for 
GWP.

Among GWP models, hybrid models beat EML-based 
models in accuracy and sensitivity. These findings encourage 

the researchers to adopt the hybrid EML-based models for 
integrating multi-parameters for any predictive model. In 
addition, we recommend using more numbers of condition-
ing variables for generating the high precision predictive 
models. Also, the application and integration of hybrid 
models with deep learning algorithms may produce very 
high precision findings. The present study also recommends 
proper management of the conditioning variables, reduc-
ing groundwater exploitation, and increasing groundwater 
recharge. Consequently, the maintenance of forest cover 
will help in the recharging of groundwater. For a scientific 
evaluation of groundwater in different potential zones, more 
research is required to provide more accurate advice on how 
much water may be taken from each prospective zone.
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