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Abstract
Water decontamination became a priority-based focused area for environmental scientists and researchers these days. Sev-
eral contaminants like pesticides (chlorpyrifos, endosulfan, aldrin, lindane, malathion) and heavy metals (As, Pb, Cd, Hg, 
Cu) are broadly reported in drinking water worldwide. Pesticides and heavy metals build up in drinking water is a danger 
to all consumers. These pollutants cause a number of deadly diseases like bone deformity, nerve disorder, liver damage and 
cancer. So, their elimination from drinking water is a must to do thing to save life of the living creatures. Several pollutant 
removal processes are applied for the eliminations of these contaminants from water, of which adsorption and photocatalysis 
are latest, effective and focused in this paper. Thus, this review will focused on the recent work done using zinc and iron 
oxides nanomaterials as adsorbent for the removal of different heavy metals and photocatalysts for the mineralization of 
various pesticides.
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Abbreviations
GC-ECD	� Gas chromatography electron capture 

detector
GC–MS	� Gas chromatography mass spectrometry
HLB Cartridge	� Hydrophilic-lipophilic balance cartridge
AAS	� Atomic absorption spectrometry
BIS	� Bureau of Indian Standards
WHO	� World Health Organization
DCM	� Di chloro methane
DDT	� Dichlorodiphenyltrichloroethane
DDE	� Dichlorodiphenyldichloroethylene
DDD	� Dichlorodiphenyldichloroethane
HCH	� Hexachlorocyclohexane

HCB	� Hexachlorobenzene
OCPs	� Organo chlorine pesticides
OPPs	� Organo phosphorous pesticides
ZnO	� Zinc oxide nanoparticles
POPs	� Persistent organic pollutants
GCN	� Graphite carbon nitride

Introduction

The earth is the sink of all kinds of resources that we required 
for the fulfilment of our daily needs. As the population of 
the developing countries like India and China increase, it 
causes a number of threatening effects on our environment 
and global problems like shortage of hygienic food, potable 
water, shelter and deterioration of natural recourses. A major 
outcome of this scarcity is enhancing contaminations in all 
types of natural resources due to human interventions. As the 
green revolution comes in form of amendment and applied 
on general use, the increase in yield is quite impressive but 
the extensive operation of chemically fabricated fertilizer 
and pesticides not only deteriorate the natural resources but 
also accumulate in food chain and causes life threatening 
disease like cancer, ulcer, etc. (Khetan and Collins 2007; 
Ramlogan 1997).
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Water is second most required resource after air for the 
every living organism on the earth. Water resources are 
exists in two most common forms like ocean and fresh 
water. As ocean water can’t be used for household, farm-
ing and industrial application, only fresh water resources 
have significant role to fulfil all the above demands. Fresh 
water resources, because of their high demands, are get-
ting exhausted. Due to this, water streams like river and 
canal either drying up or become sewage in most of the 
states of Indian subcontinents. Due to the deterioration of 
surface water, ground water sources becomes the highly 
demanded and dependable resource for the society. Ground 
water resources are mainly contaminated by the polluted 
water streams like rivers, canals or sewage system through 
surface water-ground water (SW-GW) interaction or pen-
etration phenomenon (Sophocleous 2002). The sewage 
wastewater is take part to make water resources unfit for 
use because most 70% of inappropriate discharged comes 
from the industrial and municipal sectors in India on daily 
basis (Gadipelly et al. 2014). Therefore, both type of water 
resources either become exhausted or polluted by several 
anthropogenic activities. This paper review the application 
and usefulness of zinc oxide (ZnO) and iron oxides (IOs) 
nanomaterials as an adsorbents and photocatalysts for the 
deportation and degradation of heavy metals, pesticides and 
some dyes (Fig. 1).

Pollutants in the water system

Water resources are not only over exploited but are also con-
taminated by anthropogenic activities like domestic waste, 
industrial discharge and agricultural run offs (Fig. 2).Pol-
lutants like heavy metals and pesticides are reported to be 
having carcinogenic property and abundantly found in sur-
face water as well as ground water. The drawn out effect 
of water system with sewage effluents on heavy metal sub-
stance in soil, crops and groundwaterhave been reported in 

the outskirt regions of western Delhi. The 10 years irrigation 
based on sewage water, shown the noteworthy elevation of 
zinc, iron, lead and nickel in soil (Rattan et al. 2005).

The side-effects of industrialization in Peenya, the 
industrial area near Bangalore, on ground water quality 
was studied by Shankar et al. (2008), and they reported 
that about 70% of the samples are not suitable for drink-
ing purposes according to the limitations given by BIS 
(Shankar et al. 2008). Jayadev  and Puttaih  (2013) ana-
lyzed the Vrishabhavathi river and its surroundings water 
samples and found that river water isn't for drinking by 
the BIS norms. It is additionally not appropriate to uti-
lize straightforwardly for irrigation also. The concen-
trations of heavy metals such as lead, chromium, nickel 
found to be above the permissible limits as given by BIS, 
and decrease downstream the river (Jayadev and Put-
taih  2013). Baride et al. (2012) evaluate the surface and 

Fig. 1   Graphical abstract show-
ing the decontamination of 
water by using adsorption and 
photocatalysis

Fig. 2   Different sources of water pollution in India
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ground water from Jalgaon, Maharashtra. More than 60 
water samples from nullahs, river and bore wells were 
collected by pre and post-monsoon sampling. Trace ele-
ments like iron, chromium, copper, nickel, zinc, manga-
nese and lead were analyzed using double-beam AAS. 
The concentration of Mn, Fe and Zn in water samples 
ranges 0.0001–1.3513  mg/l, 0.0146–1.3237  mg/l and 
0.005–0.1993 mg/l, respectively, in post-monsoon sea-
son (Baride et al. 2012). Agricultural practices within the 
Krishni river catchment have negative influence on the 
river water aspect. Surface water run-off from agricul-
tural land carries agricultural chemicals such as pesticides 
and fertilizers. Chemical fertilizers have also been dem-
onstrated to contain heavy metals (Gascia et al. 1996). 
Surface water of River Krishni as well as from the ground 
water of nearby villages are collected and analyzed for 
various parameters (physiochemical, heavy metals) and 
found that water samples from both the sources are heav-
ily contaminated (Bharti et  al. 2020a, 2019; Jangwan 
et al. 2019). Alam and Umer (2013) analyze the level 
of trace elements such as aluminium, chromium, manga-
nese, iron, nickel, copper, cobalt, zinc, arsenic, cadmium, 
boron and lead in the ground water samples from the, 
Baghpat district of west U.P. This analysis shown high 
amount of aluminium as well as chromium concentra-
tion in nearly all samples. Other evaluated heavy metals 
concentrations are also high as compared to BIS stand-
ards (Alam and Umar 2013). The amount of heavy metals 
like cadmium, copper, cobalt, zinc, nickel, lead, iron and 
manganese evaluated in many inorganic-based fertilizers 
such as urea, calcium super phosphate, iron sulfate and 
copper sulfate as well as in some pesticides. The find-
ing of this analysis shown that superphosphate contain 
higher amount of Co, Cd, Cu, Zn as an impurity, CuSO4 
and FeSO4 have the high level of lead and nickel. All the 
pesticides are found to be contaminated with Cd and level 
of trace elements iron, manganese, zinc, lead and nickel 
found in high quantity in the herbicide (Gascia et  al. 
1996). River Ganga water tests from the city of Kanpur 
were extricated by liquid extraction and their quantitative 
and qualitative analysis done by using GC-ECD method. 
Amid from the different pesticides analyzed down, 
higher groupings of γ-HCH (0.259 µg L−1) and malathion 
(20,618 µg L−1) were identified. Drinking water samples 
were also analyzed via the same method, and the concen-
trations of γ-HCH, malathion and dieldrin were found 
to be 0.900–29.835 µg L−1(Sankararamakrishna et al. 
2005). By using solid-phase extraction technique, a total 
of 67 pesticides like organochlorine, organophosphate, 
carabamates, pyrethroids, pyrimidines, azoles, triazoles 
and other class of pesticides were analyzed by GC–MS 
technique using C18 and HLB cartridges (Kouzayha et al. 

2012). Drinking water samples in the rural parts of Hary-
ana, India were discovered to be tainted with organochlo-
rine pesticides like HCH isomers, endosulphan, DDT and 
its metabolites (Kaushik et al. 2012). The samples have 
been analyzed and reported to be contaminated with dif-
ferent pesticides. The level of atrazine, chlorfenvinphos, 
α-endosulfan, β-endosulfan, lindane, molinate and sima-
zine were 0.63, 31.6, 0.18, 0.18, 0.24, 0.48 and 0.3 µg 
L−1found in surface water samples of an agricultural 
intensive areas of Portuguese. In case of ground water, 
the maximum concentration of different pesticides are 
0.4–56 µg L−1 (Cerejeira et al. 2003). The remnant of 
DDT and its metabolites, HCH and its isomers, heptachlor 
and its epoxides and aldrin were analyzed in cereal grains 
and drinking water samples in Rajasthan, India and wheat 
samples were reported to be excessively contaminated as 
the limits given by WHO (Bakore et al. 2004). Samples 
from 28 domestic wells, after extraction by solid phase 
extraction methods, were analyzed by GC and reported 
to be tainted by DDT, endosulfan and lindane. The range 
for lindane was between 0.68 and 1.38 µg L−1. For DDT, 
range was 0.15–0.19 µg L−1. For α-endosulfan the range 
was 1.34–2.41 µg L−1 and for β-endosulfan was 0.21 to 
0.87 µg L−1 (Shukla et al. 2006).In addition to this soil 
and water samples were reported to be taint with differ-
ent pesticides such aldrin, dieldrin, endrin, HCB, HCH 
isomers, DDT isomers/ metabolites, endosulfan sulfate, 
heptachlor and its metabolites, chlordane and methoxy-
chlor in Unnao district of U.P. The range of detected pes-
ticides were in the range from 0.36–104.50 ngg−1 and 
2.63–3.72 µgL−1in soil and surface water samples, respec-
tively (Singh et al. 2007). Ali et al. (2008) reported the 
presence of organochlorine pesticides such as α, β and 
γ BHC’s, aldrin, endosulfan, DDE, DDD and methoxy-
chlorin the Hindon river water samples (Ali et al. 2008). 
Lari et al. (2014) compared the pesticide concentration 
in surface and ground water of farming intensive areas of 
Vidarbha, Maharashtra, India. Among the reported pes-
ticides, α, β, γ and δ HCH’s, aldrin, dicofol, DDT and its 
derivatives, α, β endosulphan’s and endosulphan-sulfate 
were organochlorine pesticides, and dichlorovos, ethion, 
parathion-methyl, phorate, chlorpyrifos and profenofos 
were organophosphate. In contrast to groundwater, higher 
concentration of OCPs and OPPs were found in surface 
water. Among pesticides, water samples were reported to 
be taint with organophosphates than the organochlorines 
(Lari et al. 2014). Jayashree and Vasudevan (2007) con-
ducted studies and reported with the level of organochlo-
rinepollution in groundwater of Thiruvallur, Tamil Nadu. 
The samples were exceptionally tainted with DDT, HCH, 
endosulfan and their subordinates (Jayashree and Vasude-
van 2007). Liquid–liquid extraction technique was used 
for the extractionof pesticides with the help of DCM as 
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an extracting solvent and reported the presence of aldrin, 
endrin, dieldrin, endosulfan, heptachlor, α-BHC, β-BHC, 
δ-BHC, DDT and its derivatives using capillary GCMS 
(Fatoki and Awofolu 2003). Due to the carcinogenic 
nature of heavy metals, pesticides and other pollutants, 
they should be removed from drinking water.

Synthesis methods of metal oxide 
nanomaterials

The two main approaches which are used for the fabrication 
of nanomaterials are top-down and bottom-up methods.

The top-down methodology includes fundamentally 
actual techniques where a mass material is cut into pieces 
till the ideal size is accomplished. However, by the use of 
this approach micrometer size can be formed easily but 
for achieving nanometer size these methods are expen-
sive, where the bottom-up methods involve chemical tech-
niques. These are commanded methods. This restriction 
prompts the development of particles of wanted size and 
shape (Arole and Munde 2014; Wolfsteller et al. 2010; 
Wolf 2006). Various explicit techniques have been created 
and the widely used ones of those are given in Fig. 3. Top-
down approaches include thermal methods, mechanical 

methods, chemical etching, whereas bottom-up approaches 
involve sol–gel, vapour deposition, precipitation method, 
etc. Physical methods involve in top-down approaches are 
slow processes and non-favourable for large scale fabrica-
tion. In contrast to this, chemical or biological methods of 
bottom-up approaches are fast as compared to top-down 
approaches (Singh et al. 2010). In any case, in contrast to 
the compound blend of atoms of an ideal construction, the 
amalgamation of nanomaterials with uniform size and shape 
is troublesome. Accordingly, huge scope union of nanoma-
terials stays a test. In order to control certain morphological 
characters with certain “chemical” versatility “bottom-up” 
approach must be followed (Dintinger et al. 2012).

Pollutants decontamination processes

Pesticide and heavy metals pollution emerges as the serious 
environmental concern. Human body require some met-
als like Fe, Ca, P, Mg K, Na for better functioning. On the 
other hand some metals like Cd, As, Ni, Pb, Zn have an 
adverse effect because they can bio accumulate in our body 
through food chain. Moreover, pesticides and fertilizers are 
used in farming land to destroy the pests and obtained high 
yield. In the processing of some fertilizer, heavy metals are 
employed as an ingredient. These contaminants reported to 
be found in the samples of water, soil, food etc. These pol-
lutants cause disease like cancer and ulcer. So, removal of 
these cancer causing elements must be done before their use 
through water and other resources. Herein we discussed the 
most efficient, highly used, easily employed drinking water 
decontamination process i.e., Adsorption and Photocatalysis.

Adsorption process

Adsorption process is the key concern in the field of removal 
of pollutants from water. The large surface area of a catalyst 
could enhance the degradation or removal efficiency of pol-
lutants. Adsorption phenomenon is based on the fact that, 
when the contaminated water comes in the contact with a 
nanoadsorbent, the pollutants species got adsorbed on the 
pores, present of the surface of that adsorbent. The surface 
of nanoadsorbent play an important role in the water decon-
taminating process. The surface morphology of nanoadsor-
bent can be studied by using scanning electron microscopy 
(SEM). The scanning electron microscopy images of some 
nanomaterials such as ZnO and Fe2O3 are shown in Fig. 4, 
which is helpful for the better understanding of their surface 
characteristics. Herein the review of different metal oxides 
nanomaterialsused for the evacuation of different trace ele-
ments from aqueous medium by using adsorption phenom-
enon summarized and their details are given in Table 1.

Fig. 3   Various methods used for the fabrication of nanoparticles (Ira-
vani 2011)
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Fig. 4   SEM images of (i) zinc 
oxide and (ii) iron oxide nano-
materials

Table 1   Removal of heavy metals using metal oxide nanomaterials as an adsorbent

S. No. Nanomaterials Removal of heavy metals/trace elements/
pollutants

Efficiency of adsorbent References

1 Zinc oxide Cd(II), Ni(II)  < 15% Adsorption of Cd, Ni Le et al. 2019)
Arsenic 0.85 mg/g adsorption of As Muensri and Danwittayakul 2017)
Cd, Cu, Ni, Pb Cd-50%, Cu-20%, Ni-100%, Pb-70% Mahdavi et al. 2012)
Cr(VI)  > 50% adsorption in 220 min Ahmed and Yousef 2015)
AB-92 dye 69.55 mg/L adsorption Salem et al. 2017)
Cadmium, copper, nickel Cd-60%, Cu-90%, Ni-50% Mahdavi et al. 2015)
Cadmium, lead, cobalt and Congo 

Red(CR), Methylene Blue (MB) dyes
Cd-156.74 mg/g, Pb-194.93 mg/g, 

Co-67.93 mg/g, CR-62.19 mg/g, 
MB-115.47 mg/g adsorption

Somu and Paul 2018)

Cadmium, chromium, cobalt, nickel Cd-49.09%, Cr-53.67%, Co-38.70%, 
Ni-46.11% removal

Khezami et al. 2019)

Ni(II), Cd(II), Cr(II) Ni-25%, Cd-55%, Cr-60% approx. 
removal

Ghiloufi et al. 2016)

Cadmium, Arsenic, Selenium Cd-37%, As-95%, Se-64% removal Bharti 2021)
2 Iron oxides As (III) from arsenic contaminated water 96% removal De et al. 2009)

Arsenic removal As(III)-99.2%, As(V)-98.4% removal Mayo et al. 2007)
Cr (+ 6) 95–97% removal Zelmanov and Semiat 2011a)
Phosphate removal 95–99% removal Zelmanov and Semiat 2011b)
As(III) removal 100.3 mg/g adsorption capacity Dave and Chopda 2014)
Arsenic, Selenium As(V)-16.85 mg/g, As(III)-14.26 mg/g, 

Se(IV)-13.08 mg/g, Se(VI)-6.13 mg/g 
adsorption

Lee and Kim 2016)

Pb, Cd, Cu and Zn Pb-208.17 mg/g, Cd-169.90 mg/g, 
Cu-111.90 mg/g, Zn-100.24 mg/g 
adsorption

Zhao et al. 2016)

Cadmium
Cadmium from waste water and drinking 

water

72 ppm maximum sorption efficiency Iqbal et al. 2021)
Kumar and Chawla 2014)

Se Se(IV)-95 mg/g, Se(VI)-15.1 mg/g 
adsorption capacity

Zelmanov and Semiat 2013)

Cd, Cu, Ni, Pb Cd-58%, Cu-100%, Ni-20%, Pb-70% Mahdavi et al. 2012)
Aluminium, arsenic, cadmium, cobalt, 

copper, nickel
Al-50%, As and Cu > 95%, Cd-65%, 

Co-52%, Ni-50% adsorption
Saad et al. 2012)

Hg removal from wastewater 85% removal Velez et al. 2016)
Lead, chromium, cadmium, copper Pb-85%, Cr-20%, Cd-70%, Cu-40% Maiti et al. 2018)
Cadmium, nickel, copper and lead 100% removal of all at 5 pH Fato et al. 2019)
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ZnO Nanomaterials

The large surface area of nano size zinc oxide materials 
exhibits effective removal of contaminants like heavy met-
als. The ZnO nanoparticles are non-toxic and environment 
friendly in nature also can be easily synthesized. They have 
vast application in the adsorbent-based elimination of vari-
ous toxic elements such as cadmium, chromium, manganese 
and nickel from drinking water. Deportation of Cd can also 
be done with the use of ion-exchange method. It was based 
on the hypothesis that at first Cd particles enter in the pores 
of ZnO and traded basically by hydroxyl bunches which 
are available on the outside of zinc oxide. These Cd ions 
undergo through a channel of the crystalline lattice of ZnO 
before they are exchanged (Le et al. 2019).

ZnO nonmaterial has been widely utilized for the evic-
tion of arsenic, from the water and reported the removal 
efficiency 0.85 mg As/g (Muensri and Danwittayakul 2017). 
Removals of Cd, Cu, Ni, Pb heavy metals were reported by 
using ZnO and other nanoparticles as an adsorbent success-
fully (Mahdavi et al. 2012). The eradication of different trace 
elements like chromium, cobalt, nickel, cadmium, copper, 
arsenic and Selenium was reported by various researchers 
(Ahmed and Yousef 2015; Salem et al. 2017; Mahdavi et al. 
2015; Somu and Paul 2018; Khezami et al. 2019; Ghiloufi 
et al. 2016; Bharti 2021).

Iron oxides nano‑materials

Iron oxides nano-materials have been well studied because 
of their diverse properties and functionalities. Moreover, 
iron oxide nanomaterials with low poisonousness, substance 
latency and biocompatibility show a gigantic potential in 
mix with biotechnology (Gupta and Gupta 2005). Because 
of these bio-safe and naturally well-disposed natures, a few 
strategies are for the most part utilized for the combination 
of iron oxide nanoparticles like co-precipitation method 
(Tang et al. 2006). Numerous specialists have been zeroing 
in their endeavours on creating compound and actual strate-
gies for their union. Recently, a detailed description based 
of fabrication, characterization, and properties of IOs nano-
materials have been made (Laurent et al. 2008; Teja and Koh 
2009). Iron oxide nanoparticles can assume a critical part in 
the recycling of trace elements. De et al. (2009) fabricate and 
utilized, iron oxide nanomaterials for the adsorption of As 
(III) from arsenic contaminated water (De et al. 2009). The 
impact of nanocrystalline magnetite on arsenic expulsion 
was studied by Mayo et al. (2007). The fabrication, analysis 
and use of of Fe3+oxide/ hydroxide based nanoadsorbent for 
the elimination of Cr (+ 6) and phosphate were reported by 
Zelmanov et al. (2011a, b). Application of iron oxide nano-
materials for the eradication of different trace elements like 

arsenic, copper, chromium, lead, zinc, etc., was studied by 
Dave et al. (2014). The evacuation of arsenic and selenium 
from aqueous medium was effectively done by utilizing the 
iron oxide nanoparticle/ carbon nanotube adsorbent (Lee 
and Kim 2016). Megneticporous Fe3O4-MnO2nanoparticles 
wereeffectively blended and applied for the evacuation of 
specific metals like Pb, Cd, Cu and Zn from the aqueous 
solution. (Zhao et al. 2016). In addition to the removal phe-
nomenon nanosize magnetic particles become expected 
adsorbents for the expulsion of cadmium. Iron-based mate-
rial, for example, hematite structure (α-Fe2O3), maghemite 
structure (γ-Fe2O3) and magnetite structure (Fe3O4) are 
eco-friendly, cost effective, easy to synthesize and per-
form with a high potential toward removal purposes. It 
has been reported that hematite loaded with biochar effi-
ciently absorbs cadmium ions from aqueous medium (Iqbal 
et al. 2021). A detailed review based on the evacuation of 
Cd from waste water and drinking water by using iron and 
other metal oxides nanoparticle is presented by kumar et al. 
(2014). Elimination of Se, Cd, Cu, Ni, Pb heavy metals was 
reported by using Fe3O4 and other nanoadsorbent effectively 
(Mahdavi et al. 2012; Zelmanov and Semiat 2013). The evic-
tion of Cd, Al, As, Co, Cu, Ni, Hg, Zn, Se trace elements 
by using Fe2O3nanomaterials as an adsorbent was reported 
by various researchers (Saad et al. 2012; Velez et al. 2016; 
Maiti et al. 2018; Fato et al. 2019).

In addition to zinc oxide and iron oxides nanomaterials, 
TiO2 nonmaterials are also widely used adsorbent for the 
elimination of different heavy metals. The TiO2 nanoadsor-
bent have been reported for the removal of arsenic with the 
removal efficiency 0.99 mg As/g (Muensri and Danwittay-
akul 2017). Kumar et al. reviewed the effect of titanium-
based nanoadsorbent for the elimination of cadmium from 
waste water and drinking water kumar et al. (2014).

Photocatalysis

Debasement and mineralization of organic pollutants like 
pesticides have become the critical worry for academic per-
sons globally, on account of their high synthetic dependabil-
ity, low biodegradability and high persistency in the climate. 
The total debasement of natural toxins is beyond the realm 
of imagination by customary methodologies like anaero-
bic processing, enacted muck absorption, physiochemical 
treatment, as they just exchange the pollutants starting with 
one stage then onto the next. However, advanced treatment 
methods like advance oxidation processes, biological reme-
diation, membrane filtration, ozonation and adsorption have 
shown to be very promising. Out of these strategies, advance 
oxidation measure (AOP) utilizing nanoparticle-based semi-
conductors as a photocatalyst for the corruption of pesticide 
is considered as generally effective, promising and natural 
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amicable method (Khan et al. 2015). Amidst the various 
technologies and methods available, the advanced oxida-
tion process of photocatalytic degradation technique using 
semiconductors has shown to be one of the most promising 
processes for the drinkingwater as well as wastewater treat-
ment (Raizada et al. 2019; Fujishima and Honda 1972). The 
initial interest in photocatalysis using semiconductor photo-
catalysts began in 1972, when water  splitting was shown to 
be possible to form H2 and O2 under the conditions of pho-
tochemical reactions by using TiO2 nanomaterial (Andre-
ozzi et al. 1999). The advanced oxidation processes (AOP) 
are portrayed by a typical reactive property. The capacity of 
using high reactivity of OH extremists in driving the oxida-
tion measures which are reasonable for accomplishing the 
total reduction and mineralization of even less responsive 
pollutants (Quiroz et al. 2011). Highly reactive oxidizing 
species are involved in the phenomenon of advanced oxida-
tion process, which successfully degrade the organic sub-
stance by attacking on them. It was introduced by Glaze 
et al. for the first time.

These free radicals can be produced by photochemical or 
non-photochemical procedures.

Types of photocatalysis on the basis of phases of reactant 
and catalyst

(i) Homogeneous photocatalysis In homogeneous cataly-
sis, both reactant and catalysts are in same phase (Fenton 
and Fenton-like process). So, everything will be present in 
a single liquid phase. The catalyst should be separated when 
the treatment is finished. Various methods are employed for 
this purpose such as precipitation, ion exchange technique 
and liquid emulsion membrane process. But all these meth-
ods add extra cost to catalyst recovery during the treatment 
process. So, the need of heterogeneous catalysts was realized 
in order to overcome this problem.

(ii) Heterogeneous photocatalysis In case of catalysis 
based on heterogeneous situations, the reactant and catalyst 
present in distinct forms. So, there is no need of catalyst 
recovery from the system. These types of photocatalysis are 
based on corruption theory includes the utilization of a 
strong semiconductor nanocatalyst, which can produce a 
steady colloidal interruption, under radiation to invigorate 
a response in the strong/fluid interface. As soon as the nano-
catalyst exposure with the contamination solution, which 
contain reducing as well as oxidizing species in the same 
aqueous solution, transmission of the charges take place. 
Nano-materials-based photocatalysis for the remediation of 
drinking water is the best application of this technology. This 

(1)RH + HO
∙
→ HR + H

2
O

method can be utilized for mild’s effluents to concentrated 
toxic multi-elemental complex industrial pollutants (Sonu 
et al. 2019; Singh et al. 2018; Xia et al. 2021; Sahithya and 
Das 2015). These semiconductors of nano-size give better 
results, due to their wide exterior. This interaction depends 
on the rule that when a semiconductor is presented to a light 
wellspring of specific frequency, the electrons from valence 
band are elevated to the conduction band abandoning the 
positive hole. The created electron–hole sets move to the 
outside of the semiconductor and corrupt the organic con-
taminants into nontoxic ones (Sudhaik et al.2020). The band 
gap energy given by Quiroz et al. (2011) for Fe2O3, ZnO and 
TiO2 are 2.2 eV, 3.2 eV and 3.2 eV, respectively (Sonu et al. 
2019). The required band gap energy as well as actuation 
wave length of widely used Metal oxides nanocatalyst are 
given in Table 2.

The photocatalytic efficiency of semiconductors can be 
enhanced by using hetero-junction semiconductors. These 
hetero-junction semiconductors are prepared by combining 
another semiconductor. Photocatalytic activity of CoFe2O4 
will be increase by preparing hetero-junction using other 
metal oxides (Sudhaik et al. 2020). The Z-Scheme is also 
an important kind of hetero-junction which can be used 
to increase the capacity of photocatalytic reactions . In 
Z-Schemes, redox mediators are commonly used to main-
tain the high and enhanced redox potentials. The photo-
generated electrons are directly transferred to valence band 
of one semiconductor to conduction band of another semi-
coinductors (Kumar et al. 2020). Another most employed 
method used for the enhancement of photocatalyst activity 
is vacancy creation. These vacancies can be categorized 
as anion vacancy, cation vacancy and multiple vacancy 
depending upon the ions loss from the photocatalyst. In 
addition to these activity enhancement methods, metal-
free photocatalysts also exploited due to their extraordi-
nary qualities and cost-friendly nature. One of the mostly 
used metal-free semiconductors is carbon nitride which 
is commonly known as GCN (g-C3N4). The exceptional 
physiochemical properties, deserving electronics capa-
bilities and nontoxic nature of GCN, draw the attention 
of researchers to use as a semiconductors photocatalyst 
(Sharma et al. 2020; Raizada et al. 2020; Badaway et al. 

Table 2   The band gaps and wavelength of activation for some photo-
catalyst

S. No Nanomaterials Band gap energy 
(eV)

Activation 
wave length 
(nm)

1 ZnO 3.2 390
2 Fe2O3 2.2 565
3 TiO2 3.2 387
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2006). In contrast to this metal oxide nanoparticles having 
exceptional photocatalyst properties are chosen for this 
review as:

ZnO nanomaterials

ZnO nanomaterials are broadly utilized as an effective 
photochemical elimination of various contaminants such 
as organochlorine and organophosphorous pesticides 
and various dyes, etc (Table 4). The details given below 
regarding elimination of some pesticides from water:

Pesticides

ZnO nanoparticle has been widely used because of their 
high excitation energy and non-toxic nature. This review 
includes the comprehensive investigation of the synthesis 
of ZnO nanomaterials as well as their application in vari-
ous fields along with pollutants degradation or removal 
from the aqueous medium. ZnO nanoparticles have been 
highly attentive due to their stability, catalytic activ-
ity, effective antimicrobial, anticancer activity and UV 
absorbance quality. The photocatalysis-based elimination 
of chlorpyrifos was effectively done by using synthesized 
zinc oxide nanoparticle under UV irradiation (Khan et al. 
2015). Badaway et al. (2006) used AOP for the degrada-
tion of organophophorus pesticides from water (Lavand 
and Malghe 2015). The natural light based photo-degrada-
tion of organochlorine pesticide (4-Chloro phenol), using 
ZnO based nanocompositeswas achieved by Lavand and 
Malghe (2015), Anandan et al. (2006). 100% degradation 
of organophosphate pesticide monocrotophos was done by 
using ZnO nanoparticles via photocatalytic degradation 
process as reported by Anandan et al. (2006), (2007). In 
addition to this, the elimination of monocrotophos can also 
be achieved by using doped photocatalyst such as La doped 
ZnO (Nguyen et al. 2015). Photocatalysis-based elimina-
tions of different pesticides and dyes are given in Table 3  
and the comparison of both nanoparticles as a decontami-
nating agent is given in Table 4: Dyes In addition to pes-
ticides degradation, many researchers also reported the 
photocatalytic degradation of RB198 blue dye, acid-32-cy-
anine 5R, Blue cat 41 dye, acid 4092 dye, acid black 1 dye, 
RB and MBdyes successfully, by using ZnO nanomaterials 
and its composites in different advanced oxidation meth-
ods (Dehghani and Mahdavi 2018, 2015; Golmohammadi 
et al. 2016; Golmohammadi 2016; Rokesh et al. 2018; Yu 
et al. 2013; Salijooqi et al. 2020).

Ta
bl

e 
3  

(c
on

tin
ue

d)

S.
 N

o
M

et
al

 o
xi

de
N

an
om

at
er

ia
ls

Re
m

ov
al

 o
f P

ol
lu

ta
nt

s
C

at
eg

or
y 

of
 p

ol
lu

ta
nt

s
Re

fe
re

nc
es

3
Ti

ta
ni

um
 d

io
xi

de
Ti

O
2

A
ld

rin
Pe

sti
ci

de
 (O

C
P)

M
al

at
o 

et
 a

l. 
20

02
)

Ti
O

2
D

iu
ro

n 
(H

er
bi

ci
de

), 
Im

id
ac

lo
pr

id
, 

Fo
rm

et
an

te
, M

et
ho

m
yl

 (I
ns

ec
tic

id
e)

Pe
sti

ci
de

s
M

al
ik

 e
t a

l. 
20

18
)

Ti
O

2
D

ic
hl

or
vo

s, 
Li

nd
an

e,
 M

et
hy

l p
ar

at
hi

on
Pe

sti
ci

de
 (O

C
P 

an
d 

O
PP

)
Sy

ne
rg

ist
ic

 p
ho

to
ca

ta
ly

tic
 m

iti
ga

tio
n 

of
 im

i-
da

cl
op

rid
 p

es
tic

id
e 

an
d 

an
tib

ac
te

ria
l a

ct
iv

ity
 

us
in

g 
ca

rb
on

 n
an

ot
ub

e 
de

co
ra

te
d 

ph
os

ph
or

us
 

do
pe

d 
gr

ap
hi

tic
 c

ar
bo

n 
ni

tri
de

 p
ho

to
ca

ta
ly

st.
 

20
20

)

Ti
O

2
M

on
oc

ro
to

ph
os

, D
ic

hl
or

vo
s

Pe
sti

ci
de

 (O
PP

)
La

va
nd

 a
nd

 M
al

gh
e 

20
15

)



	 Applied Water Science (2022) 12:4646  Page 10 of 14

1 3

Iron oxide nanomaterials

Pesticides Removal of organochlorine pesticides aldrin, 
endrin, lindane and di and tri chlorophenoxy acetic acid were 
achieved by using Fe3O4 nanoadsorbent and Fe2O3 nanocata-
lyst respectively (Abdullah et al. 2013; Maji et al. 2012).

Dyes The α-Fe2O3 nanoparticles were synthesized, charac-
terized and used as a photocatalyst for the successful elimina-
tion of RB dye as reported by Maji et al. (2012), Bharti et al. 
(2020b).

Others Treatment of textile effluents having high COD, 
BOD and colour, using Fe2+ nanoparticles was achieved by 
Malik el al. (2018), Zelmanov and Semiat (2008). The other 
form of iron oxides i.e., Fe3O4-based nanomaterials were uti-
lized as a nanocatalyst for the AOPs-based oxidation process 
by Grigori et al. (2008), Fox and Dulay (1993).

Titanium dioxide nanomaterials

In the year 1972, water is splitting to form H2 and O2 under the 
conditions of photochemical reactions by using TiO2 nanoma-
terial, that’s where the photocatalysis were, started (Senthilna-
than and Philip 2009).

Pesticides The photocatalytic elimination of some pesticides 
aldrin, diuron, imidacloprid, formetante and methomyl have been 
reported by using heterogeneous photocatalyst TiO2 (Malato 
et al. 2002; Malik et al. 2018). Removal of mixed pesticides 
including dichlorvos, lindane and methyl parathion have been 
reported using suspended and immobilezed TiO2 by photodeg-
radation method (Augugliaro et al. 2006). The 100% removals of 
monocrotophos and dichlorvos pesticides have been reviewed by 
using TiO2-Zeolite nanocomposites (Kitture et al. 2011).

Others Augugliaro et al. (2006) used thetitanium oxide 
nanocatalyst during the deportation of different kinds of pol-
lutants from both water and gaseous states. The use of TiO2 
nanocatalyst is a milestone in the area of ecological sustain-
ability, because of the ability of TiO2 towards the elimination 
of organic and inorganic pollutants (Kitture et al. 2011).

There are various types of nanoparticles reported in the 
literature i.e., metal nanoparticles, metal oxide nanoparticles, 
metal sulphide nanoparticles, etc. Out of these metal oxide 
nanoparticles have been chosen for this review, due to their  
easy availability, widely used, cost-friendly, environmental 
compatibility and their ability to withdrawal of organic as well 
as inorganic contaminants from the water. Recovery of nano-
particles at the end of reactions is another important key factor 
to choose a photocatalyst and assured its reusability and non-
toxicity. The reusability of photocatalyst will be done by using 
proper separation methods such as centrifugation, filtration, 
vacuum filtration, plant-based coagulation, chemical-based 
coagulation etc. (Nurmi et al. 2011; Patchaiyappan et al. 2016).

Conclusions

This paper reviewed the application of zinc oxide and iron 
oxides nanoparticles for the water decontamination process 
such as adsorption and photocatalysis. This review stipu-
late that nanometal oxides adsorbent are favourable decon-
taminating agents for the withdrawal of heavy metals/trace 
elements. Their adsorbent efficiency could be enhanced by 
optimization of working condition like pH, nano-adsorbent 
quantity, exposure hour, etc. Degradation of pesticides and 
dyes involve the use of heterogeneous photocatalytic reac-
tion in addition with the use of different semiconducting 
nanomaterials. Due to their wide band gap zinc oxide and 
iron oxides are excellent photocatalyst, which can degrade 
POPs like pesticides easily and effectively. The zinc oxide 
as well as iron oxides nanomaterials are found to be best 
adsorbent and photocatalyst, because of their excessive exte-
rior area, easy synthesis, and fine to excellent performance.
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Table 4   Comparison of ZnO and IOs NPs as a decontaminating agent

Pollutants/ NPs ZnO NPs IOs NPs

Heavy metals Cadmium, arsenic, selenium, chromium, cobalt, nickel, cop-
per, lead

Cadmium, arsenic, selenium, chromium, cobalt, nickel, copper, 
lead, zinc, aluminum, mercury

Pesticides Chlorpyrifos, 4-Chloro phenol, Monocrotophos, Diazinon, 
Dimethoate Azoxyxtrobin, Kresoxim-methyl, Hexacona-
zole, Tebuconazole, Triadimenol, Pyrimethanil, Primicarb, 
Propyzamide, Etoxazole, difenoconazole, myclobutanil and 
penconazole

Aldrin, Endrin, Lindane, Di and tri chlorophenoxy acetic acid, 
HCH, Aldrin, Dieldrin, Endrin and its metabolite, Endosulfan 
and its metabolites, DDT and its derivatives, Heptachlor and 
its metabolites

Dyes Congo red, Methylene Blue, RB198, Acid-32-cyanine 5R, 
Blue cat 41, Acid 4092, Acid black 1, Rhodamine B

Rhodamine B, Orange II, C.I. RR-2, C.I. RB-8, Congo Red, 
Azo dye, Methylene Blue
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