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Abstract
The link between rainfall and groundwater recharge in the Rio del Rey Basin, which is of socio-economic importance to 
Cameroon, is poorly understood. Accordingly, the stable isotopes in monthly rainfall from January to December 2012 (in 
Lobe and Mundemba) and 52 surface water and groundwater samples were investigated. High values of δ18O and δD were 
recorded in the dry period (February to March), and the least values of δ18O and δD were observed in the wet period (Sep-
tember). This indicates that different condensation processes primarily influenced stable isotopes in rainfall as a function of 
the difference in moisture sources. The relationship between δD and δ18O defined the Lobe meteoric water line as δD = 7.97 
δ18O + 12.48 and Mundemba water line as δD = 7.75 δ18O + 10.79. The similarity of their slopes to the global meteoric line 
suggests that the isotopic composition of investigated rains was not significantly affected by evaporation during precipita-
tion. The ranges in deuterium-excess of precipitation from 5.8 to 16.56‰ suggest the source of vapour is from the Atlantic 
Ocean. The groundwater isotope values (ranging from −3.81 to −2.52‰ for δ18O) plotted close to and along the GMWL, 
showing that its isotopic composition is of meteoric origin under rapid recharge conditions. The isotopic similarity between 
groundwater and June–August rains suggests a significant recharge during this period.
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Introduction

The availability of freshwater is necessary for any meaning-
ful socio-economic development. Due to the lack of pipe-
borne water in the study area (Ndian), 80% of the population 
depends on groundwater sources such as hand-dug wells 
and springs and faced with water shortages during the dry 
season. Therefore, these communities’ resort to poor quality 

water from streams, rivers and the creeks for household use 
during such periods (Wotany et al. 2013). The quality of 
the available water in this area is affected by deterioration 
from effluents from processing factories owned by CDC and 
PAMOL that are piped or channelled directly into streams 
and rivers of the area (Tening et al. 2014). Chemicals from 
the effluents find themselves in water bodies and hence unde-
sirable burdens to the mangrove ecosystem of the study area. 
Consequently, the assessment and management of water 
resource in the area are of importance. In recent years, the 
isotope techniques have been used in water resource man-
agement investigations by studying of isotopic composition 
of surface and groundwater (Craig 1961; Dansgaard 1964; 
Fontes 1980; Gonfiantini et al. 1998; Gat 2010; Wu et al. 
2012). Based on the socio-economic importance of the Rio 
del Rey Basin, and the lack of isotopic data, studies of the 
seasonal variation in stable isotope values are of impor-
tance to determine the source and recharge of groundwater 
in the study area. The oxygen-18 and deuterium isotopes 
are used as tracers for hydrologic studies because their local 
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abundance varies significantly with environmental factors 
such as the altitude of precipitation, source of moisture, 
amount of rainfall, and extent of evaporation (Ingraham 
1998). They are used as tracers in understanding the move-
ment of air masses and continental moisture, evaporation of 
water bodies and origin of surface and groundwater (Gibson 
et al. 2005; Kendall and Coplen 2001; Liu et al. 2004; Wirm-
vem et al. 2014). The objectives of this study included: (1) 
define the spatio-temporal variations of isotopic composition 
in rainfall of the study area; (2) produce local meteoric water 
lines; (3) deduce the origin and recharge period of ground-
water for development and sustainability management of 
groundwater resource.

The study area is located at the western end of the Gulf of 
Guinea at latitude 4°30′–5°00′N and longitude 8°30′–9°00′. 
The hydrological cycle is mainly a function of the precipi-
tation regime of an equatorial climate (Etia 1980), with 
an alternating long rainy season that begins from April to 
October and a short dry season that spans from November 
to March.

The drainage pattern (Fig. 1) is dendritic and dominated 
by rivers that flow into the Atlantic Ocean. These rivers 

may partly recharge groundwater through unconsolidated 
sediments and weathered volcanic and basement rocks in 
the area. The topography can conveniently be divided into 
different topographical regions (Fig. 2): the Mosongeseli-
Isangele area with an elevation between 2 and 40 m (m) 
above sea level (a.s.l). It generally consists of long ridges 
with flat or gently undulating crests. Between the ridges are 
flat, swampy areas where the water table is at or close to the 
surface. The Mundemba-Ekwe area elevation increases from 
80 m a.s.l. in the south-west to 555 m a.s.l. in the south-east 
along the edge of the rugged Rumpi Hills.

This area is characterized by mangroves of 0–5 m high 
(Gabche and Smith 2002). Mangroves occupy approximately 
30% (3500  km2) of Cameroon coastal zone (Gabche and 
Smith 2002) and proceed inland by evergreen forest, which 
is subjected to intense destruction for plantation agriculture 
(oil palm, cocoa, and coffee). Four different associations 
exist: a lowland evergreen, the swamp forest, the piedmont 
and submontane forests found at altitudes between 500 and 
800 m (Letouzey 1985; Thomas 1995, 1997). The canopy 
type here is 10–15 m high which protects the watershed of 
the Rumpi Hills. Within the Rio del Rey, apart from the 

Fig. 1  Map location of sampling sites and drainage pattern of the study area. Inset: Cameroon map showing study area (shaded rectangle)
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traditional cash crops such as cocoa, agro-industrial activi-
ties of the area concern essentially oil palm, rubber and 
banana, which are in the hands of large scale agro-industrial 
establishments (Tening et al. 2013; Wotany et al. 2014).

The study area is characterized by varied geological set-
tings: metamorphic, volcanic and sedimentary rocks. The 
variety of rocks includes gneisses, micaschists, and quartz-
ites overlain uncomfortably by limestones, sediments which 
are essentially clastics consisting of sand, sandstones, con-
glomerates, limestones, shales, clays, alluvium and basaltic 
lava flows from the Rumpi Hills (Dumort 1968; Obenesaw 
et al. 1997; Njoh and Petters 2008; Wotany et al. 2013). 
Regnoult (1986) also describes the area as made up of lime-
stones, shales, clays of Cretaceous age, and Mio-Pliocene 
sediments with recent alluvium. Alluvial sand, fractured 
basement and basaltic materials make up the unconfirmed 
aquifers. The aquifers of the study area are similar to those 
of the Oligocene Benin and the Eocene Ogwashi/Asaba 
aquifers within the Niger Delta Basin, Nigeria. The area has 

a multi-aquifer system characterized by alternating layers of 
gravels, sands, silts and clays similar to the aquifers of the 
Douala basin as described (Mafany et al. 2006; Takem et al. 
2010; UNESCO – ISARM 2011; Wotany et al. 2014: Fig. 3).

Materials and methods

Precipitation samples were collected as described by 
Goni (2006) for a period of one year (January to Decem-
ber 2012) from two rain gauge stations owned by the 
Pamol research centres (Mundemba: UTM 54,480; 
484,386:32masl and Lobe: 508,790; 508,299:61masl) 
(Fig. 1). Rain samples collected daily for twelve months 
were poured into 5 L sealed plastic containers. The inte-
grated rain samples were poured into100 mL polythene 
bottles tightly capped and stored in a cold environment 
preceding laboratory analysis. Temperature and relative 
humidity measurements were also recorded. Fifty-two 

Fig. 2  Map of study area showing relief and spatial distribution of oxygen-18 of ground and surface water sources
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Fig. 3  Hydrostratigraphic column of the Rio del Rey Basin showing the various aquifer units modified from UNESCO – ISARM (2011)
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water samples obtained from ground and surface water 
were also put in plastic bottles (100 mL) for oxygen and 
hydrogen isotope analysis. The deuterium (D) and oxy-
gen-18(18O) composition were analyzed using a cavity 
ring-down spectrometer analyzer (model L2120-i from 
PICARRO) as described in Wirmvem et al. (2014). Total 
analytical precisions were ± 0.05‰ (δ18O) and ± 0.12‰ 
(δD). The precipitation weighted average values (w.a.v) of 
δ18O and δD for each month and the annual values were 
computed from Eq. 1(IAEA 1992):

where Pi is rainfall amount, and δi is isotopic composition 
per month. The deuterium-excess (d-excess) parameter was 
obtained as defined by Dansgaard (1964) as:

(1)� =

n
∑

1

P
i
�∕

n
∑
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P
i

Results and discussions

The isotopic data for the monthly precipitation are presented 
in Table 1. The monthly precipitation values for δ18O and 
δD of the two stations show a temporal variation from −5.26 
to + 0.35‰ and from −34.4 to + 13.88‰, respectively 
(Table 1).

Monthly weighted average values (w.a.v) of δ18O and 
δD in precipitation ranged from –0.98 to 0.00‰ and from 
−3.59 to 0.59‰, in that order. The annual precipitation 
weighted mean of δ18O and (δD) varied from −3.36 to 
−3.34‰ and from −15.07 to −14.0‰, respectively 
(Table 1). The seasonal variations of δ18O and δD showed 

(2)d = �D − 8�
18
O

Table 1  Isotopic data of monthly rainfall and weather records from Rio del Rey Basin, 2012

NB; relative humidity (RH), not available (N/A), bolditalics min values, italics max values, weighted average value (w.a.v)

Month δ18 O (‰) δD (‰) d-excess (‰) Rainfall (mm) w.a.v δ18O w.a.v δD w.a.v d-excess Rainy days RH (%) Temp (°C)

LOBE (UTM 508,790; 508,299 m; alt 60 m; distance from the Atlantic Ocean: 32 km)
January  − 1.57  − 2.61 9.97 43  − 0.02  − 0.04 0.13 3 90.2 27
February  − 0.99 2.16 10.08 147  − 0.05 0.10 0.46 12 90 27
March  − 1.54 2.61 14.94 14  − 0.01 0.01 0.07 3 90 27
April  − 2.26  − 1.53 16.56 139  − 0.10  − 0.07 0.72 11 90.1 27
May  − 4.53  − 20.70 15.55 217  − 0.31  − 1.41 1.06 17 90.1 28
June  − 3.90  − 16.74 14.43 327  − 0.40  − 1.71 1.48 16 90.7 27
July  − 2.94  − 9.79 13.73 424  − 0.39  − 1.30 1.82 27 90.2 27
August  − 1.60  − 0.18 12.64 342  − 0.17  − 0.02 1.36 29 90.3 27
September  − 5.26  − 34.44 7.61 770  − 1.27  − 8.32 1.84 22 90 27
October  − 4.81  − 25.38 13.13 541  − 0.82  − 4.31 2.23 24 90 27
November  − 2.14  − 7.01 10.12 109  − 0.07  − 0.24 0.35 9 90.1 27
December  − 2.31  − 6.37 12.13 116  − 0.08  − 0.23 0.44 6 90.1 28
Mean  − 2.82  − 10.00 12.57 3188  − 2.82  − 10.00 12.57 179 90 27
Annual w.a.v  − 3.7  − 14.0 12.7
MUNDEMBA (UTM 544,804; 484,386 m; alt 30 m; distance from the Atlantic Ocean: 61 km)
January  − 1.10  − 0.18 8.60 65  − 0.01 0.00 0.11 5 N/A 31
February 0.02 13.01 12.86 217 0.00 0.56 0.55 17 N/A 27
March 0.35 13.88 11.08 214 0.01 0.59 0.47 11 N/A 29
April  − 1.80 0.81 15.21 290  − 0.10 0.05 0.87 16 N/A 28
May  − 4.30  − 21.68 12.72 223  − 0.19  − 0.95 0.56 17 N/A 28
June  − 3.32  − 11.65 14.88 650  − 0.43  − 1.49 1.91 21 N/A 27
July  − 4.28  − 19.33 14.91 941  − 0.79  − 3.59 2.77 30 N/A 25
August  − 3.48  − 14.49 13.35 486  − 0.33  − 1.39 1.28 21 N/A 25
September  − 4.66  − 31.45 5.83 1065  − 0.98  − 6.61 1.23 26 N/A 26
October  − 4.53  − 24.49 11.75 570  − 0.51  − 2.75 1.32 21 N/A 27
November  − 2.38  − 10.86 8.19 289  − 0.14  − 0.62 0.47 19 N/A 27
December  − 0.34 4.74 7.44 57 0.00 0.05 0.08 6 N/A 27
Mean  − 2.48  − 8.47 11.40 5067  − 2.48  − 8.47 11.40 210 N/A 27.33
WAV  − 3.36  − 15.07 12.16 N/A
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some distinct fluctuations in the rainy and dry seasons. In 
the rainy season, the least of δ18O and δD were recorded 
in September and relatively high values in March during 
the dry season (Fig. 4a, b). The precipitation amount effect 
generally shows a decrease in the isotope values in wet 
period with increasing precipitation (Dansgaard 1964) 
and usually with high values during the dry period with 
decreasing rainfall (Wirmvem et al. 2014). The isotopic 
amount effect pattern observed (Fig. 4a, b) suggests that 
the rainy and dry season rains are connected with the air 
masses rain formation processes. This suggests the inter 
tropical convergence zone (ITCZ) influence associated 
with the easterly winds during the rainy period and the 
dry season with less frequent rains carried by northerly or 
westerly winds. An abrupt decrease in δ18O in November 
possible marks the retreat of the ITCZ (Fig. 4a, b).

The least δ18O values in September, corresponding with 
the highest rainfall, correspond with the behaviour of low 
latitudes rains (Dansgaard 1964; Rozanski et al. 1993). 
Similar patterns of least values of δ18O obtained during the 
rainy season have been recorded in Cameroon (Njitchoua 
et al.1999; Wirmvem et al. 2014).

The annual variation in the weighted δ18O was observed 
with similar v-shape patterns in the Ndop plain in the North 
West Cameroon (Wirmvem et al. 2014) which suggest a 
moisture source from the Atlantic. (Taupin et al. 2000).

Rain samples from high altitudes are more depleted in 
isotope content (Lobe (61 m above sea level); −0.56‰ to 
−0.99‰) than precipitation sampled at low altitude sta-
tion (Mundemba (32  m); −0.56‰ to 0.35‰) Table  1. 
The annual weighted average value (w.a.v) for δ18O in 
precipitation in Mundemba (−3.36‰), Lobe (−3.34‰) 
compared with Kribi (−1.5‰) (Njitchoua et al. 1999) in 

Fig. 4  a, b Inverse relation-
ship between monthly rainfall 
amounts and weighted mean 
of δ18O for a Mundemba and 
b Lobe

(a)

(b)
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Fig. 5 shows a decrease with increasing latitudinal dis-
tance from Kribi (−1.5‰/km) to Lobe (−3.34‰:32 km), 
and Mundemba (−3.36‰:61 km) inland. Two main trends 
are defined (Fig. 5): δ18O values which decrease from −1.5 
to −3.34‰, from 0 to 32 m, defining an inland isotope of 
−0.48‰ 10  km−1. This is different from δ18O values from 
Lobe (−3.34‰) to Mundemba (−3.36‰) of 32 to 61 km 
inland isotopic gradient of −0.06‰ 10  km−1. This suggests 
that as Atlantic air mass moves at higher altitudes and lati-
tudes from the Atlantic Ocean, the vapour is produced as 
rain. This is different from δ18O values (32–61 km inland) 
influenced recycled continental moisture as also observed by 
Salati et al. (1979), Njitchoua et al. (1999) and Taupin et al. 
(2000. The relatively small isotopic gradient of −0.06‰ 
10  km−1 indicates a lack of continental effect e from the 
coast as observed in the Ndop plain (Cameroon) by Wirm-
vem et al. (2014).

Deuterium excess in precipitation has been a useful tool 
to trace vapour source and recycling moisture (Gat et al. 
1994). Monthly d-excess of precipitation ranged broadly 
from 5.8‰ in September to 16.56‰ in April (Table 1).

The d-excess value in precipitation is influenced by the 
moisture source (Rozanskiet al. 1993).The d-excess value of 
Atlantic moisture (10‰) falls between the d-excess ranges 
of the rain samples (5.8–16.56‰) indicating the significance 
of the Atlantic ocean as a vapour source of the study area. 
Higher d-excess values (> 10‰) have been observed where 
moisture recycling through re-evaporation plays a significant 
role in the water cycle (Gat et al. 1994; Zhou et al. 2007). 
Seventeen (17) d-excess values were greater than + 10‰ 
(Fig. 6a, b), which suggests that besides the Atlantic mois-
ture, an additional source of moisture recycling through 
evaporation of the numerous surface water bodies and/or 
evapotranspiration on the dense vegetation in the area plays 
a role in the water cycle.

The local meteoric line (LML) has been commonly 
used as an indicator of water vapour source (Jouzel et al. 

1997). By using the precipitation isotope values and the 
least squares fit method (Fig. 7), the following LML were 
generated:

Lobe meteoric water line (LMWL) δ D = 7.97 
δ18O + 12.48 (r2 = 0.95, n = 12)
Mundemba meteoric water line (MMWL): δD = 7.75 
δ18O + 10.79 (r2 = 0.95, n = 12)

The slopes (7.9 and 7.7) for the local meteoric 
lines (Fig.  7) are similar and close to 8 of the GMWL 
(δD = 8δ18O + 10) by Craig (1961), which suggest an insig-
nificant modification of the raindrops by evaporation as 
obtained in other parts of Cameroon (Fontes and Olivry 
1977; Njitchoua et al. 1999; Gonfiantini et al. 2001; Fantong 
2010; Wirmvem et al. 2014). Quite identical relationships 
of δ18O—δD have been reported for precipitation in parts of 
Nigeria (Loehnert 1988; Mbonu and Travi 1994). The varied 
d-intercepts reflect seasonal climatic changes (Gonfiantini 
et al. 2001; Wirmvem et al. 2014).

The uniform and high mean relative humidity (90%) for 
Lobe (Table 1) suggests its proximity to the coast with a 
distance of 32 km and to its equatorial location which makes 
it to be subjected to intense convective uplift of air/water 
vapour since the sun’s rays reach the surface vertically at an 
angle of 90°. Considering the total amount of rainfall in the 
study area (Table 1) from January to May and November 
to December which is 2,143 mm (26%) of the total rain-
fall (8259 mm), and the June to October heavy rains which 
is 6116 mm (74%) of the total rainfall, and based on the 
d-excess and δ-values, one can suggest that 74% of rainfall 
comes from the Atlantic Ocean, and 26% of vapour origi-
nates from recycled inland moisture. The former relates to 
the fact that the inter tropical convergence zone (ITCZ) has 
moved further inland which brings with it rain bearing mois-
ture that flows across the region. Therefore, the observed 
seasonal variation in the isotopic composition of precipita-
tion in the study area is probably as a result of (1) moisture 
from the Atlantic Ocean, (2) rainfall amounts effects (3) 
recycled moisture given the 32–61 km distance south-west 
from the Atlantic Ocean (Gulf of Guinea), (4) movement of 
air masses.

The stable isotope composition of ground and surface 
water is presented in Table 2. The groundwater isotope val-
ues ranged from −3.81 to −2.52‰ for δ18O and −16.63 to 
−8.25‰ for δD (Table 3). The groundwater isotope values 
plot close to and along the GMWL (Fig. 8) showing that 
its isotopic composition is identical to that of rainwater, 
which indicates the meteoric origin and rapid recharge of 
groundwater with negligible evaporative effect. The cluster 
of these isotopes in groundwater between the June to August 
rain indicates groundwater is mainly recharged during these 
months of the year (Fig. 8). The shallow unconfined aquifers 

Fig. 5  Distribution of weighted mean δ18O in rainfall per distance 
and altitude from the Atlantic Ocean
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Fig. 6  a, b Inverse relation-
ship between monthly rainfall 
amounts and d-excess for a 
Lobe and b Mundemba
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Table 2  Oxygen and hydrogen isotope data of ground and surface water

Locality Water source Long (m) Lat (m) Altitude δD (‰) δ18O (‰) d-excess (‰)

Bulu Camp, Mundemba Spring 484,310 545,361 35  − 9.78  − 2.77 12.35
Mission Camp, Mundemba Spring 483,280 545,216 30  − 9.77  − 2.79 12.58
Ikassa Camp, Mundemba Spring 482,836 544,838 33  − 6.16  − 2.28 12.07
Last Camp, Mundemba Spring 482,814 544,840 13  − 9.61  − 2.72 12.18
Ekondokondo Spring 490,869 556,878 160  − 8.34  − 2.66 12.97
Ekondokondo Spring 491,075 556,114 142  − 10.15  − 2.98 13.69
Ekondokondo Spring 490,958 555,612 125  − 9.13  − 2.82 13.4
Mekagolo Spring 492,947 544,933 156  − 11.94  − 3.4 15.28
Ekumbako Spring 489,943 541,560 123  − 9.92  − 2.97 13.81
Dibonda Spring 488,633 537,873 94  − 10.81  − 3.19 14.72
Funge Spring 490,123 525,715 20  − 9.53  − 2.94 13.95
EkombeLiongo Spring 511,552 497,985 33  − 13.81  − 3 10.2
EkombeLiongo Spring 511,743 496,931 44  − 15.45  − 3.59 13.24
EkombeLiongo Spring 511,476 498,765 29  − 12.8  − 3.21 12.91
IdibaNyanga Spring 456,750 530,354 110  − 12.71  − 3.03 11.56
Njima Spring 515,488 519,485 40  − 12.66  − 3.16 12.64
Oron, Isangele Spring 467,033 529,483 89  − 10.59  − 2.93 12.88
Pamol Camp, Mundemba Spring 473,308 541,683 4  − 12.76  − 3.26 13.29
Ilor Spring 489,169 529,483 110  − 10.76  − 2.99 13.18
Ghana Quarter, Mundemba Spring 488,124 544,472 105  − 11.38  − 3.06 13.11
Loe Spring 482,829 521,639 58  − 12.76  − 3.25 13.41
Mbengmong, Akwa II Spring 457,273 531,923 10  − 10.02  − 2.76 12.09
Gov’t quater, Isangele Spring 464,942 528,959 89  − 10.66  − 2.83 11.97
Ekwe Spring 517,754 513,273 555  − 11.51  − 3.36 15.34
Idibawase Spring 490,215 548,830 100  − 13.08  − 3.45 14.49
Besingi Spring 492,829 545,344 155  − 11.66  − 3.21 14.03
Massore Open well 499,171 514,728 32  − 16.99  − 3.8 13.4
EkondoTiti Open well 500,564 509,508 9  − 12.38  − 3.25 13.59
EkondoTiti Open well 503,472 508,591 52  − 13.46  − 3.35 13.38
Big Bongongo I Open well 510,885 506,248 60  − 12.35  − 3.17 13
EkombeLiongo Open well 511,534 497,310 33  − 14.63  − 3.27 11.51
Mbonge Open well 511,653 501,421 21  − 10.74  − 2.64 10.39
Iloani Open well 499,976 498,981 10  − 13.66  − 3.36 13.2
Bekora Open well 511,828 507,347 55  − 10.23  − 2.85 12.55
Mbonge Pump well 512,191 501,583 26  − 13.5  − 3.31 12.94
Akwa, KomboAbedimo Pump well 457,622 532,446 8  − 8.35  − 2.64 12.77
Mosongesele Pump well 466,859 543,601 50  − 10.43  − 2.81 12.02
EkombeMofako Pump well 508,604 496,923 55  − 17.44  − 4.05 15.3
Mosongesele Beach 466,685 544,472 10  − 4.68  − 2.15 12.53
Beach, EkondoTiti Beach 500,637 509,210 21 0.09  − 1.19 9.65
Moko, Dibonda River 488,936 536,277 6  − 3.43  − 2.1 13.33
Mbonge River 511,578 499,171 26  − 16.24  − 3.78 13.96
EkombeLiongo River 511,552 497,985 33  − 15.82  − 3.69 13.69
River Akwafe River 457,448 532,620 2  − 0.1  − 1.24 9.48
Water catchment, Mundemba Stream 490,170 550,703 166  − 11.08  − 3.04 13.24
Berenge Steam 517,579 513,099 59  − 8.49  − 2.63 12.57
Ekondo Nene Stream 495,435 518,788 25  − 8.61  − 2.93 14.84
Manja quarters, Mundemba Stream 490,215 550,398 109  − 10.61  − 2.95 12.96
Lobe Estate Tap water 508,437 508,645 67  − 10.95  − 2.98 12.89
Mundemba town Reservoir 490,242 550,613 169  − 10.43  − 2.91 12.83
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become saturated with June–August precipitation. Isotopic 
compositions between precipitation and groundwater can 
reveal the period of groundwater recharge (Mbonu and 
Travi 1994; Deshpande et al. 2003; Ma et al. 2013) as in the 
study area. The absence of enriched δ18O and δD signatures 
in the heavy September to October precipitation (Table 1) 

suggests insignificant recharge during these months. Since 
the δ-values of the groundwater, streams, and rivers are 
not significantly affected by evaporation, the dominant 
recharge period is likely from June to August precipitation 
and reduced recharge from, November to December. During 
the low January–April precipitation, evapotranspiration is 

Table 2  (continued)

Locality Water source Long (m) Lat (m) Altitude δD (‰) δ18O (‰) d-excess (‰)

Last Camp, Mundemba Rain 482,814 544,840 13 12.59 0.1 11.83
Mundemba town Rain 490,041 551,095 2.29 0.35 13.88

Table 3  Isotope data summary of ground and surface water (n = 52)

Min minimum, Max maximum, Alt altitude above sea level. Bold values represent the average parameter of ground and surface water samples

Source δ18O (‰) δD (‰) d-excess (‰) Alt (m)

Min Max Mean Min Max Mean Min Max Mean

Spring (n = 26)  − 3.59  − 2.28  − 2.94  − 15.45  − 6.16  − 10.81 10.2 15.34 12.77 95
Open well (n = 8)  − 3.8  − 2.64  − 3.22  − 16.99  − 10.23  − 13.61 10.39 13.59 11.99 34
Pump well (n = 4)  − 4.05  − 2.64  − 3.35  − 17.44  − 8.35  − 12.9 12.02 15.3 13.66 35
Groundwater (n = 38)  − 3.81  − 2.52  − 3.17  − 16.63  − 8.25  − 12.44 10.87 14.74 12.81 54.67
Beach (n = 2)  − 2.15  − 1.19  − 1.67  − 4.68 0.09  − 2.3 9.65 12.53 11.09 11
River (n = 4)  − 3.78  − 1.24  − 2.51  − 16.24  − 0.1  − 8.17 9.48 13.96 11.72 5
Stream (n = 4)  − 3.04  − 2.63  − 2.84  − 11.08  − 8.49  − 9.79 12.57 14.84 13.71 7
Surface water (n = 10)  − 2.99  − 1.69  − 2.34  − 10.67  − 2.83  − 6.75 10.57 13.78 12.17 7.67
Tap water (n = 1)  − 2.98  − 2.98  − 2.98  − 10.95  − 10.95  − 10.95 12.89 12.89 12.89 67
Reservior (n = 1)  − 2.91  − 2.91  − 2.91  − 10.43  − 10.43  − 10.43 12.83 12.83 12.83 169
Pipe-borne water (n = 2)  − 2.95  − 2.95  − 2.95  − 10.69  − 10.69  − 10.69 12.86 12.86 12.86 118
Rain(n = 2) 0.1 0.35 0.23 2.29 12.59 7.44 11.83 13.88 12.86 13
All (n = 52)  − 2.41  − 1.70  − 2.06  − 8.92  − 2.30  − 5.61 11.53 13.82 12.68 48.33

Fig. 8  Plot of δ18O versus δD 
relationship of rainfall, ground 
and surface water in the study 
area
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probably greater than precipitation resulting in negligible 
groundwater recharge. As observed by Mbonu and Travi 
(1994), the heaviest rains of July–September with the most 
negative stable isotopes resulted to negligible recharge of 
groundwater. This selective recharge may explain the rela-
tively low d-intercept of groundwater despite their cluster 
along the Mundemba meteoric water line (MMWL) and 
Lobe meteoric water line (LMWL) (Fig. 8). The observed 
June–August precipitation recharge is different from the 
reported heavy August precipitation recharge of groundwa-
ter farther away in the semi-arid north Cameroon (Fantong 
2010).

Under base flow conditions, streams and rivers are inte-
grators of isotopic composition of the recent past precipita-
tion (Gonfiantini et al 1998; Matsubaya 2001; Gat 2010) 
provided the basin largely consists of surrounding mountains 
(Gonfiantini et al. 1998). A plot of the stream and river sam-
ples on and next to the MMWL and LMWL (Fig. 8) suggests 
recharge from the surrounding Rumpi Hills. The similar 
isotopic composition of surface water to the groundwater 
(Table 2) suggests a hydraulic connectively with the uncon-
fined aquifers and a possible recharge as it flows within the 
basin.

The beach sample from Mosongesele and a sample from 
river Moko located at 10 and 6 m.a.s.l. (Fig. 9), respec-
tively, showed some δ18O enrichments suggesting that the 
groundwater which is mostly from spring sources are partly 
recharged by these surface water bodies. The general cluster 
of samples on the δ18O-TDS plot (Fig. 9) suggests a homog-
enous nature of the shallow aquifer of < 10 m depth.

Natural variations in stable isotope ratios have been used 
to identify recharge areas (Payne and Yurtsever 1974). Plot-
ting δ18O versus altitude (Fig. 10) indicated recharge at 

different altitudes. The plot of samples (Fig. 10) showed 3 
clusters (groups).

Group A: Comprises of 70% of the samples (open wells, 
pump wells, springs, rivers and beach) which occur at low 
altitude < 54 m above sea level (Fig. 10).

Group B: 28% of samples mostly springs < 160 m.a.s.l.
Group C: 2% of the spring at Ekwe (555 m. a.s.l.).
The different groups indicate recharge at different alti-

tudes (From A–C). Group A is the most enriched in δ18O. 
The δ18O value of precipitation in temperate regions char-
acteristically exhibits about a 0.2‰ decrease for every 
100 m elevation gain. This variation reflects the temperature 
dependence of isotopic fractionation during the condensa-
tion of water vapour (Dansgaard 1964). Therefore, they are 
likely to have short flow paths and short residence times 
in the aquifer. Using the d-excess value to determine the 
source of moisture indicates that 96% of the ground and 
surface water samples had d-excess values > 10% with an 
average of 12.68‰ (Tables 2, 3). This indicates that besides 
the Atlantic moisture, recharge is derived partly from recy-
cled water and direct infiltration of precipitation (negligible 
evaporation) (Dansgaard 1964). A similar inference from 
high d-excess in groundwater has been made elsewhere 
(Kebede and Tavi 2012).

Based on the results, a theoretical model of the ground-
water regime in Ndian is proposed (Fig. 11). From the 
model, vapour from the Atlantic Ocean and recycled 
moisture will condense to precipitation which rapidly 
recharges the groundwater through preferential base 
flow. The high-altitude localized recharge contributes 
30% of the groundwater, while the abundant local pre-
cipitation at low altitude provides significant recharge 
(70%) to the aquifers (Fig. 11). The groundwater sources 

Fig. 9  Plot of δ18O and total 
dissolve solid (TDS) in ground 
and surface water sources
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at the high altitude recharge are depleted in δ18O, while 
the groundwater sources at low altitude are enriched in 
δ18O (Fig. 11). The hydrochemical facies (Ca-mg-HCO3) 
(Fig. 11) signifies shallow fresh groundwater in volcanic 
and sedimentary aquifers due to incongruent silicate dis-
solution and Na–HCO3 facies, deeper fresh groundwater 
influenced by ion exchange in sediments and metamorphic 
rocks (Wotany et al. 2013).

Conclusions

The isotope data for the rainfall samples indicated high 
values of δ18O and δD isotopes recorded during the dry 
season (November and March) and the least value in Sep-
tember. The relationship between δD and δ18O defined 
the Lobe meteoric water line as δD = 7.97 δ18O + 12.48 

Fig. 10  Plot of δ18O in ground 
and surface water as a function 
of altitude

Fig. 11  Conceptual model of the water regime in Rio del Rey Basin. A (vadose zone) and B (saturated zone)
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and Mundemba water line as: δD = 7.75 δ18O + 10.79. The 
similarity of their slopes to the global meteoric water line 
suggests the isotopic composition of rains has not been 
affected much by evaporation.

The ranges in deuterium-excess of precipitation from 5.8 to 
16.56‰ suggest the source of vapour is from Atlantic Ocean.

The groundwater isotope values plot close to and along the 
GMWL showing that its isotopic composition is of meteoric 
origin under rapid recharge conditions. The isotopic similar-
ity between groundwater and June–August rains suggests a 
major recharge during this period. Taking into account the 
total amount of rainfall in the study area from January to May 
and November to December which is 2143 mm (26%) of the 
total rainfall (8259 mm), and the June to October heavy rains 
which is 6116 mm (74%) of the total rainfall, and based on 
the d-excess and δ-values, one can suggest that 74% of rainfall 
comes from the Atlantic Ocean, and 26% of vapour originates 
from recycled inland moisture.

The observed seasonal variation in isotopic composition 
of precipitation in the study area is probably as a result of: (1) 
Moisture from the Atlantic Ocean, (2) rainfall amounts effects 
(3) recycled moisture given the 32–61 km distance south west 
from the Atlantic Ocean (Gulf of Guinea), (4) movement of air 
masses. The groundwater sources at the high altitude recharge 
are depleted in δ18O, while the groundwater sources at low alti-
tude are enriched in δ18O. The high altitude localized recharge 
contributes 30% of the groundwater, while the abundant local 
precipitation at low altitude provides major recharge (70%) to 
the shallow unconfined aquifers.
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