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Abstract
The untreated wastewater from the dye industry having high ammoniacal nitrogen and chemical oxygen demand (COD) sig-
nificantly pollutes the receiving water, such as a river, having major ill implications on the aquatic environment. The present 
study is undertaken to address this problem. It investigates the effectiveness of Fenton reagent in simultaneous treatment 
(removal) of ammoniacal nitrogen and COD present in the wastewater by varying the parameters like pH, concentration of 
Fe 2+ and  H2O2 and their molar ratio. The reaction time for all the experiments was kept 60 min. The experimental analysis 
in terms of calculating the residual % of ammoniacal nitrogen and COD revealed that the maximum reduction occurred at 
pH 3. At this pH, further set of experiments were performed by varying the molar doses of  Fe2+/H2O2 as 1:1, 3:3 and 5:5, 
and the results reveal that the maximum reduction in both ammoniacal nitrogen and COD happens at molar dose of 3:3. To 
understand the effect of the concentration of  Fe2+ and  H2O2 on the respective removal efficiency, set of experiments were 
performed by taking the molar ratio of  Fe2+/H2O2 as 2:1, 3:1, 5:1, 1:2, 1:3 and 1:5. The experimental analysis reveals that 
the maximum reduction happened at molar ratio 1:3. Fenton process can mineralize the pollutants up to 75.8% and 78.6% 
for ammoniacal nitrogen and COD removal. The findings of the study would be of great use for planning and optimizing the 
wastewater treatment facility for the dye intermediate industry.
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Introduction

In India, the production of dyestuff and pigments is more 
than 80,000 tonnes per annum (Nidheesh et al. 2018). Tex-
tile industries are the main users of the dyestuff. Gujarat is 
textile hub of India with more than 1500 textile industries 
(Bhatia et al. 2018; Paździor et al. 2018). These industries 
contribute more than 40% of the Indian dyestuff production 
and more than 60% of Indian exports of dyestuff. The typi-
cal wastewater generation from these industries is between 

125 and 150 L per kg of finished dye products (Rathi 2003; 
Markandeya et al. 2018).

Industrial wastewater is generally characterized by exten-
sive contamination with organic compounds, halogenated 
aliphatic and aromatic compounds, agrochemicals, high con-
centrations of heavy metals, sulphur and nitrogen-containing 
compounds, high COD, TDS and TSS (Bolong et al. 2009; 
Dükkanci et al. 2014; Gonzalez-Merchan et al. 2016). The 
wastewaters from the dye intermediate industry are highly 
acidic and contain nitrogenous pollutants (various com-
pounds of nitrate, nitrite and ammoniacal nitrogen), carbo-
naceous pollutants and other toxic compounds which are 
hazardous to the human health and to the aquatic environ-
ment (Bhatia et al. 2018; Markandeya et al. 2018; Kaur et al. 
2019). Nitrogenous and carbonaceous compounds present 
in the wastewater not only deplete the DO of the receiving 
water but also cause eutrophication (Camargo and Alonso 
2006; Huang et al. 2014). Eutrophication favours the growth 
of toxin-producing cyanobacteria. Exposure to such toxins 
causes high health risks like liver damage, skin irritation 
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and liver cancer (Akpor and Muchie 2011). Ammoniacal 
nitrogen when converted to nitrate nitrogen causes high 
nitrogenous oxygen demand (NOD) which leads to methe-
moglobinemia. Ammoniacal nitrogen also affects the chlo-
rine disinfection efficiency (Oturan and Aaron 2014; Karri 
et al. 2018).

Many technologies are available for the treatment of some 
primary pollutants and their derivatives present in the waste-
water from the dye industry; however, the issue of removal 
of nitrogen from wastewater is now a matter of immedi-
ate concern. Degradation/removal of ammoniacal nitrogen 
includes physical, chemical and biological methods. Vari-
ous chemical methods such as breakpoint chlorination, pre-
cipitation and ion exchange; physical methods like ammonia 
stripping and membrane separation; and biological methods 
such as nitrification, denitrification and advanced oxidation 
processes such as ozonation, sonolysis, wet air oxidation and 
UV-based oxidation processes are used for the degradation 
and removal of ammoniacal nitrogen from textile industrial 
wastewater (Yuan et al. 2016; Nancharaiah et al. 2016; Kath-
eresan et al. 2018). The disadvantages include high reten-
tion time, low removal rate, high reaction time, high sludge 
formation, etc. Chemical process includes ion exchange and 
breakpoint chlorination for treatment of low-strength ammo-
niacal nitrogen (Wang et al. 2006); however, ion exchange 
process is more expensive than the conventional processes 
(Lotito et al. 2012; Buthiyappan and Abdul Raman 2019). 
The physical processes for ammoniacal nitrogen removal, 
i.e. air stripping, is applicable to concentration levels of 
10–100 (mg/l). Higher ammonia content requires alternative 
removal technique (Karri et al. 2018). Biological process in 
particular nitrification and denitrification methods is poor 
in removing ammoniacal nitrogen due to longer treatment 
time and low rate of removal efficiency (Sabumon 2007; Ge 
et al. 2014).

The task of providing proper treatment facility for the 
removal of ammoniacal nitrogen  (NH4–N) from the waste-
waters from the dye intermediate industry is not only diffi-
cult but also expensive too; hence, there is a strong need of 

a new or modified technology which overcomes the limita-
tions of the conventional methods (Hasanoglu et al. 2010; 
Karri et al. 2018). Advanced oxidation processes (AOPs) 
drew the attention of researchers for its advantages as it 
works in ambient temperature and pressure, it has less reac-
tion time and is more economical and feasible than con-
ventional methods (Guedes et al. 2003; Khatri et al. 2018; 
Zhang and Zhou 2019). Fenton oxidative process is used for 
the oxidation of organic pollutants by using nascent hydroxyl 
ion resulted from the reaction of hydrogen peroxide by fer-
rous ion (Quan et al. 2010; Gonzalez-Merchan et al. 2016; 
Nidheesh 2015). The various advantages of Fenton reagent 
over other methods are given in Table 1.

Among the common oxidants, the hydroxyl radicals, 
which are second only to fluorine, can react rapidly and 
non-selectively with nearly all-organic pollutants (da Silva 
Brito et al. 2019).

Equations (1) and (2) symbolize main reactions of the 
system.

The reaction of organic species with  OH· radical is repre-
sented in Eq. (3).

The  OH· radical reacts with  NH4
+ –N/NH3 –N to give the 

following products and is represented in Eq. (4).

In the present study, investigations were done on the 
application of Fenton oxidation process for simultaneous 
degradation of COD and ammoniacal nitrogen from dye 
intermediate industrial wastewater. The various operating 
parameters like pH, concentration of  Fe2+ and concentration 
of  H2O2 were taken into consideration, and their effects on 

(1)H2O2 → H2O + 1∕2O2

(2)H2O2 + Fe2+ → Fe3+ + OH− + OH⋅

(3)RH + OH⋅

→ R⋅ + OH

(4)
NH+

4
− N + OH⋅

→ NH2OH → NOH → NO → HNO2 ↔ HNO3

Table 1  Advantages of Fenton reagent

Advantages References

They can oxidize organic contaminants and metals, contributing to their degrada-
tion and transformation

Barbusiński and Majewski (2003), Moussavi and Matavos-
Aramyan (2016) and Shao et al. (2016)

The main advantage is the complete destruction of contaminants to harmless 
compounds, e.g. carbon dioxide, water and inorganic salts

Eren and Acar (2006) and Nidheesh and Gandhimathi (2012)

It allows high mineralization level at room temperature and pressure conditions Tony et al. (2016)
No energy input is necessary to activate hydrogen peroxide Bautista et al. (2007)
It is a cost-effective source of hydroxyl radicals, using easy-to-handle reagents 

and commonly requires a relatively short reaction time
Barbusiński (2005) and Zhang et al. (2016)

These are relatively reasonably priced, and the process is easy to operate and 
maintain

Nidheesh and Gandhimathi (2012) and Singa et al. (2018)
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the removal efficiencies of COD and ammoniacal nitrogen 
were examined.

Materials and methodology

Materials used

The dye manufacturing industrial raw wastewater samples 
were collected in a 20 L can from GIDC, Ankleshwar, 
Gujarat, and characterization of wastewater was done as per 
standard methods of American Public Health Association 
and is given in Table 2.

H2O2 used for the study was of Merck brand of 30% W/W 
purity,  FeSO4 was of Finar Analytical grade with 99% purity, 
and NaOH was of Finar Brand of Analytical grade with 96% 
purity. Boric acid, borate buffer, methyl red and methylene 
blue of Analytical grade and Merck brand were used for the 
analysis of ammoniacal nitrogen. For the analysis of COD, 
potassium dichromate (Merck brand) of Analytical grade, 
concentrated sulphuric acid of 98% purity (Finar brand), 
mercury sulphate, silver sulphate and ferrous ammonium 
sulphate (Merck brand) of Analytical grade were used.

Experimental reactor and procedure

A measured quantity of the sample was taken in a batch reac-
tor with a working volume of 1000 mL. In order to see the 
impact of pH on the removal efficiency for COD and ammo-
niacal nitrogen and subsequently workout the optimum pH 
value, the pH of the solution was varied between 1.5 and 3.5 
with 1 mL  H2O2 and 0.4928 g of  Fe2+ (molar ratio as 1:1). 
Another set of experiments were done by taking different 
molar doses of  Fe2+/H2O2 which were 1:1, 3:3, 5:5, 1:2, 
1:3, 1:5, 2:1, 3:1 and 5:1. All the experiments were done at 
room temperature. The COD analysis was done using COD 
digester with closed reflux apparatus, and ammoniacal nitro-
gen analysis was carried out by conventional distillation 
apparatus for ammonia.

Results and discussion

Effect of pH on COD and ammoniacal nitrogen 
removal

The Fenton oxidation process is influenced by the initial 
pH of the sample. The production of  OH· radical and con-
centration of Fe in  Fe2+ or  Fe3+ form are controlled by 
pH; hence, it is an important parameter in Fenton process 
(Kang and Hwang 2000; Meng et al. 2019). The oxidation 
potential of  OH· radicals decreases with increasing pH. 
The Fenton oxidation is effective in acidic medium and 
slow in alkaline medium and works pre-eminent at pH 2–4.

Higher pH conditions (> 4.5) retard the formation of 
 OH· radicals due to decomposition of  H2O2 into  O2 gas 
and lose its oxidation ability. On the other hand, extreme 
acidic conditions are also not conducive for the generation 
of  OH· radical. Under highly acidic conditions, solvation 
of  H2O2 occurs and it becomes more stable, which reduces 
its reactivity with ferrous ions to generate  OH· radicals 
(Deng and Zhao 2015). Oxonium  (H3O2) + ion is formed 
at higher concentration of  H+ which enhances the stabil-
ity of  H2O2 and prevents it from reacting with ferrous ion. 
The efficiency of the Fenton process to degrade ammonia-
cal nitrogen is reduced at both high and low pH (Wang 
et al. 2016). Moreover, the degradation was also slower, 
which was due to the formation of iron species capable of 
inhibiting the reaction between  Fe2+ and  H2O2. Therefore, 
to improve the overall degradation efficiency for efficient 
generation of  OH· radical, pH value needs to be optimized 
(Barros et al. 2006; Dükkanci et al. 2014).

In the present study, the effect of pH on removal of 
COD and ammoniacal nitrogen was investigated. The pH 
was varied between 1.5 and 3.5, and another experiment 
was performed without disturbing the initial pH of the 
sample which was 1.53. Concentration–pH profile on 
degradation of COD and ammoniacal nitrogen is shown 
in Fig. 1. The fraction remaining (C/C0) at pH 1.53, 2.5, 
3.0 and 3.5 was found as 0.352, 0.284, 0.227 and 0.272 
for COD removal and 0.363, 0.342, 0.251 and 0.279 for 
ammoniacal nitrogen removal, respectively. It can be seen 
from Fig. 1 that COD and ammoniacal nitrogen removal 
increased up to pH 3 and dropped at pH 3.5. The C/C0 
values for COD and ammoniacal nitrogen at original pH 
of 1.53 were found as 0.352 and 0.363, respectively.

The maximum COD and ammoniacal nitrogen removal 
(lowest value of C/C0) was achieved at pH 3, and it was 
found to be decreasing by increasing the pH to 3.5. At 
lower pH, when the initial pH was lower than the opti-
mum pH value (pH 3), complex species such as (Fe(II)
(H2O)6)2+ and (Fe(II)(OH)(H2O)5)+ are formed by  Fe2+, 
which in turn reacted very slowly with  H2O2 and produced 
less  OH· radicals.  OH· radical was scavenged by  H+ at low 

Table 2  Characteristics of raw dye intermediate wastewater

Parameters Concentration 
in mg/L (except 
pH)

pH 1.53
TSS 250
TDS 32,600
TS 32,850
COD 5632
Ammoniacal nitrogen 1372
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pH and resulted in inhibition reaction of  Fe2+ and  H2O2 as 
shown in Eq. (5) (Gogate and Pandit 2004; Nidheesh and 
Gandhimathi 2014).

The variation of the COD and ammoniacal nitrogen removal 
with pH observed in the present study converges with the 
previous studies (Kang and Hwang 2000; Wang et al. 2016).

Effect of  Fe2+ dosage

Fe2+ dosage is an important factor to be considered for run-
ning Fenton reaction as it acts as a catalyst to decompose  H2O2 
to generate  OH· radicals. Excessive  Fe2+ results in self-con-
sumption of free radicals and hinders the oxidation reaction 
and produces large amount of sludge (Papić et al. 2009). At a 
 Fe2+ concentration higher than the optimum, the rate of  OH· 
radicals originated from the decomposition of  H2O2 is so high 
that most of the  OH· radicals are consumed by the side reac-
tions before they are utilized for the removal of the pollutant 
(Jiang et al. 2010; Chen et al. 2017).

To understand the proper dosages required to enhance 
removal efficiency, experiments were performed by taking 
molar ratio of  Fe2+/H2O2 as 2:1, 3:1 and 5:1. The fraction 
remaining obtained for COD and ammoniacal nitrogen was 
0.320, 0.298, 0.372 and 0.377, 0.331 and 0.411, respectively. 
As shown in Fig. 2, the highest removal efficiency of COD and 
ammoniacal nitrogen was found at  Fe2+/H2O2 molar ratio 3:1 
at pH 3 with reaction time of 60 min. Addition of excess Fe(II) 
resulted in brown-coloured sludge formation due to formation 
of Fe(III) radicals.

Effect of  H2O2 dosage

H2O2 is the source of  OH· radicals, and therefore, its concen-
tration significantly affects the degradation of ammoniacal 

(5)OH⋅ + H+ + e− → H2O

nitrogen and COD. The reaction rate tends to increase with 
increasing  H2O2 concentration. As there are series of inter-
mediate reactions which takes place in the process, sufficient 
 H2O2 must be added in order to push the reaction beyond 
that point (Güneş et al. 2018).

In this study, the effect of the concentration of  H2O2 was 
investigated on the removal of COD and ammoniacal nitro-
gen. Experiments were performed at  Fe2+/H2O2 molar ratio 
1:2, 1:3 and 1:5 at pH 3 with the reaction time of 60 min. 
Figure 3 shows the fraction remaining (C/C0) for COD. From 
the figure, it can be seen that the maximum reduction in the 
COD was at molar ratio 1:3. Moreover, it can be seen that 
the higher  H2O2 concentration had a scavenging effect on 
the  OH· radicals resulting in the dip in COD removal. The 
same pattern was achieved for ammoniacal nitrogen removal 
with C/C0 values of 0.265, 0.228 and 0.4 at  Fe2+/H2O2 molar 
ratio of 1:2, 1:3 and 1:5 showing maximum removal at 1:3.

Previous studies reveal that due to the formation of 
hydro-peroxyl radical and auto-decomposition of hydrogen 
peroxide, the removal efficiency significantly decreases as 

Fig. 1  Profile of fraction remaining set against pH on degradation of 
COD and ammoniacal nitrogen by Fenton process using molar ratio 
of  Fe2+/H2O2 as 1:1

Fig. 2  Profile of fraction remaining set against molar ratio on deg-
radation of COD and ammoniacal nitrogen by Fenton process at pH 
3.0 and keeping  H2O2 molar concentration constant and varying  Fe2+ 
dosage (sample volume 1000 mL)

Fig. 3  Profile of fraction remaining set against molar ratio on deg-
radation of COD and ammoniacal nitrogen by Fenton process at pH 
3.0 and keeping  Fe2+ molar concentration constant and varying  H2O2 
dosage
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hydro-peroxyl radical has low oxidizing potential according 
to Eq. (6) (Wang et al. 2019; Nidheesh and Gandhimathi 
2014).

Addition of excess  H2O2 exceeding the optimum limit do 
not improve the degradation efficiency, which might be 
attributed to auto-decomposition of  H2O2 to oxygen and 
water, and the recombination of  OH· radicals (Mane et al. 
2007; Xue et al. 2009). Moreover, higher concentrations 
of hydrogen peroxide act as free-radical scavenger itself, 
thereby decreasing the concentration of hydroxyl radicals 
and reducing compound elimination efficiency.

Effect of  Fe2+/H2O2 molar ratio

As evident from Eq. (2),  H2O2 and  Fe2+ play an important 
role in the formation of  OH· radical. The  OH· radical com-
bines with the organic compounds (pollutants) and oxidizes 
them, thereby degrading (treating) them (as shown in Eq (7).

Thus, it is imperative to determine the optimum molar ratio 
of  Fe2+/H2O2 (Mohajeri et al. 2010) for the maximum treat-
ment efficiency in terms of removal of COD and ammonia-
cal nitrogen. In the present study, molar ratio of  Fe2+/H2O2 
was varied as 1:1, 3:3 and 5:5 at pH 3 with a reaction time 
of 60 min. As seen in Fig. 4, maximum removal for both 
COD and ammoniacal nitrogen occurred at molar ratio 3:3 
which was 78.6% and 75.2%, respectively. At molar ratio 
5:5, the treatment efficiency was 67.8% and 64.8% for COD 
and ammoniacal nitrogen, respectively. It is inferred that the 
reduction in the treatment efficiency could be because of the 
scavenging effect as shown in Eq. (6). These results showed 
that the reaction between excess  Fe2+ and HO2

· radical leads 
to redox reaction which enhances the removal efficiency of 

(6)H2O2 + OH⋅

→ H2O + OH⋅

2

(7)Organic comounds + OH⋅

→ Oxidation Products

COD and ammoniacal nitrogen (Gulkaya et al. 2006; Chu 
et al. 2012; Couto et al. 2016).

Conclusions

The current study was found to be an efficient method for 
degrading (treating) ammoniacal nitrogen and COD from 
industrial wastewater. The Fenton oxidation process can be 
better used to treat the industrial wastewater which contains 
high COD and high ammoniacal nitrogen with very high 
TDS. The Fenton process can mineralize the pollutants up 
to 75.8% and 78.6% for ammoniacal nitrogen and COD at 
optimum conditions of pH 3 and the molar dosage of  Fe2+ 
and  H2O2 of 3:3 for 60-min reaction time. The Fenton pro-
cess can be carried out in a batch process with detention time 
of 60 min to degrade the COD and ammoniacal nitrogen.
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