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Abstract
This paper presents the use of two artificial intelligence modeling methods, namely genetic programming (GP) and adap-
tive neuro-fuzzy inference system (ANFIS), to predict pier scour depth based on clear water conditions of 320 data sets of 
laboratory and field data measurements. The scour depth was modeled as a function of five main dimensionless parameters: 
pier width, approaching flow depth, Froude number, standard deviation of grain size distribution, and channel open ratio. A 
functional relationship was established using the trained GP model, and its performance was verified by comparing the results 
with those obtained by the ANFIS model and seven conventional regression-based formulas. Numerical tests indicated that the 
GP model yielded much superior agreement than the ANFIS model or any other empirical equation. The advantage of the GP 
model was confirmed by applying the derived GP equation to predict the scour depth around the piers of Imbaba Bridge, Egypt.

Keywords  Local scour depth · Genetic programming · Adaptive neuro-fuzzy · Regression methods · Bridge piers

List of symbols
B	� Channel width (m)
D	� Pier width (m)
ds	� Equilibrium scour depth (m)
d50	� Mean sediment size (m)
D/d50	� Dimensionless pier width
ds/D	� Dimensionless pier scour depth
Fr	� Froude number (dimensionless)
g	� Gravitational acceleration (m/s2)
L	� Length of pier (m)
U	� Approach flow velocity (m/s)
R	� Correlation coefficient
Y	� Approach flow depth (m)
Y/D	� Dimensionless approach flow depth
α	� Channel open ratio
θ	� Angle of attack (°)
σ	� Standard deviation of grain size distribution

Abbreviations
ANFIS	� Adaptive neuro-fuzzy inference systems
AI	� Artificial intelligence

ANNs	� Artificial neural networks
GAs	� Genetic algorithms
GP	� Genetic programming
HAD	� High Aswan Dam
HRI	� Hydraulics Research Institute
LGP	� Linear genetic programming
MAPE	� Mean absolute percentage error
MCM	� Million cubic meters
RMSE	� Root-mean-square error

Introduction

Bridge scour is the result of the erosive action of flowing 
water, excavating and carrying away material from the bed 
and banks of streams and from around the piers and abut-
ments of bridges (Richardson and Davis 2001). The scour is 
accountable for about 60% of bridge failures (Lagasse et al. 
1997), resulting in loss of lives and huge economic losses. 
Designing the bridge foundation safely needs an accurate 
estimation of scour depth; underestimation may lead to 
bridge failure, while overestimation will lead to excessive 
construction costs (Azamathulla and Ghani 2010).

Pier scour attracted significant research interest for more 
than a century now, and numerous studies on this subject 
were published. Much of this research dealt with laboratory 
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model studies of local scour. In this context, several reviews 
summarized equations for pier scour depths in Breusers et al. 
(1977), Dey (1997), and Melville and Sutherland (1988). 
However, these equations are often suitable only for con-
ditions similar to those under which they were developed. 
Moreover, this empirical approach suffers from its associated 
simplified conditions and scale effects. When applying the 
existing empirical equations for predicting bridge pier scour 
to field cases, the scour depths are overpredicted (Babaeyan-
Koopaei and Valentine 1999). This means increased con-
struction and maintenance costs as the foundation levels are 
required to be deeper than it should be.

Soft computing tools gained importance in many fields as 
they differ from conventional hard computing in many ways, 
such as their robustness, low solution cost, and tolerance to 
imprecision (Chuan-Yi et al. 2013). Artificial intelligence 
methods, such as artificial neural networks (ANNs), adaptive 
neuro-fuzzy inference systems (ANFIS), genetic program-
ming (GP), and linear genetic programming (LGP), are now 
widely used to predict scour around hydraulic structures and 
bridge piers. The American Society of Civil Engineers Task 
Committee (2000) reported the application of ANNs in dif-
ferent fields of hydrology. Deo et al. (2008) used GP to pre-
dict scour depth downstream of spillways. Azamathulla et al. 
(2008a, b) used ANNs and GP to determine scour depth 
downstream of ski-jump buckets. Guven et al. (2009) applied 
LGP for predicting scour depth at circular piles. ANFIS and 
genetic expression programming were used by Azamathulla 
et al. (2009a, b) to estimate scour below flip buckets. For 
scour below a submerged pipeline, Azamathulla et al. (2011) 
employed the LGP model. Najafzadeh and Barani (2011) 
compared the group method of data handling-based GP and 
the back-propagation system to predict scour depth around 
bridge piers.

Different from traditional physically based analytical 
or empirical approaches, this study investigates the util-
ity of artificial intelligence modeling tools in predicting 
scour depth around bridge piers. The main objective of 
this research was to further enhance the available inductive 
modeling tools for predicting bridge scour by developing 
ANFIS and GP-based models for pier scour prediction utiliz-
ing available laboratory and field data and comparing their 
performance with several well-known bridge pier regres-
sion-based models. The already existing equations used in 
this study are Modified Laursen by Neill (1964), Shen et al. 
(1969), The Colorado State University (1975), Jain and Fis-
cher (1979), Kothyari et al. (1992), Modified Froehlich by 
Fischenich and Landers (1999), and Richardson and Davis 
(2001). A further objective of this research was to find out 
which of the existing formulae works for the Nile River and 
how well the newly developed formula performs. Thus, the 
applicability of the GP model, provided that it yielded better 
prediction results, to large-scale models and field data was 

verified via applying the developed GP model to the case of 
Imbaba Bridge, Giza, Egypt.

Proposed artificial intelligence networks

Genetic programming (GP) and ANFIS being recently the 
most widely used branches of soft computing in hydraulic 
engineering were employed in this research as an alternative 
tool in the prediction of local scour around bridge piers.

Adaptive neuro‑fuzzy inference system

The ANFIS is a hybrid scheme which uses the learning 
capability of the ANN to derive the fuzzy if–then rules 
with appropriate membership functions worked out from 
the training pairs, leading finally to the inference (Tay and 
Zhang 1999). The difference between the common neural 
network and the ANFIS is that while the former captures the 
underlying dependency in the form of the trained connection 
weights, the latter does so by establishing the fuzzy language 
rules (Azamathulla et al. 2009a, b). The input in ANFIS is 
first converted into fuzzy membership functions, which are 
combined together and, after following an averaging process, 
used to obtain the output membership functions and finally 
the desired output (Mousavi et al. 2007).

The configuration of an adaptive network performs a 
static node function on its incoming signals to generate a 
single node output, and each node function is a parameter-
ized function with modifiable parameters (Navneet et al. 
2015). Thus, a trial-and-error method, where a range of dif-
ferent shapes, numbers, and types of membership functions, 
as well as various parameters used as input data, should be 
followed toward identifying the optimal ANFIS architecture.

Genetic programming

Genetic programming (GP) is an extension of John Hol-
land’s genetic algorithms (GAs) proposed by Koza (1992). 
The major difference between GP and GAs is that the vari-
able parse tree structure of GP replaces the fixed gene struc-
ture of GAs (Chuan-Yi et al. 2013). Genetic programming 
uses four steps to solve problems:

1.	 Generate an initial population of random compositions 
of the functions and terminals of the problem (computer 
programs).

2.	 Execute each program in the population and assign it a 
fitness value according to how well it solves the prob-
lem.

3.	 Create a new population of computer programs.
(a)	 Copy the best existing programs.
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(b)	 Create new computer programs by mutation.
(c)	 Create new computer programs by crossover.
4.	 The best computer program that appeared in any genera-

tion, the best-so-far solution, is designated as the result 
of genetic programming (Koza 1992).

Based on the natural selection obtained by way of the 
evolutionary process, GP produces an optimal function set 
(formula). The use of this flexible coding system allows the 
algorithm to perform structural optimization (Chuan-Yi 
et al. 2013). This can be useful in solving many engineering 
problems. In the development of the GP model, the terminal 
set, functional set, fitness function, algorithm control param-
eters, and termination criterion are defined (Koza 1992). 
The first three components determine the algorithm search 
space, whereas the last two components affect the quality 
and speed of the search.

Pier scour parameters

The equilibrium local scour depth (ds) around a pier (Fig. 1) 
in a steady flow over a bed of uniform and non-cohesive 
sediment depends on numerous parameters including flow, 
fluid, sediment characteristics, and pier geometry. The fac-
tors affecting the magnitude of the local scour depth at piers 
are stated in Bateni et al. (2007) as follows: velocity of the 
approach flow, depth of flow, width of the pier, length of the 
pier if skewed to flow, size and gradation of bed material, 
angle of attack, and bed configuration.

Local scour depth at piers is a function of the following 
decision variables:

(1)ds = f
(
U, Y , �, �s, g,D,L, d50, �, �

)
,

where U is the approach velocity, Y is the approach flow 
depth, ρ is the mass density of water, ρs is the mass density 
of sediment, g is the acceleration due to gravity, d50 is the 
particle mean diameter, D is the pier width, L is the length of 
the pier, σ is the standard deviation of grain size distribution, 
α is the opening ratio (= (B − D)/B), and B is the channel 
width. However, the influence of the Reynolds number Re 
is insignificant for a turbulent flow over rough beds (Mel-
ville and Coleman 2000). Considering uniform sediments, 
dimensional analysis of the variables in Eq. (1) reduces it to 
five dimensionless parameters as follows:

where Fr is the Froude number. These five parameters were 
used as decision variables in the development of the GP 
model.

Conventional regression models

Most of the pier scour prediction formulae available in the 
literature are based on conventional regression methods and 
most overpredict pier scour, resulting in an uneconomical 
bridge foundation design. In this section, a list is made of 
the bridge pier scour equations used in this study. In all the 
formulae listed below, it was assumed that the flow angle of 
the attack is negligible and that the pier shape is rectangu-
lar. Chang (1988) reported that the scour depth of circular 
piers is 90% of that for rectangular piers and 80% of that for 
sharp-nosed piers. It was also assumed that the effect of the 
flow angle of attack and the circular shape of the pier will 
mutually cancel each other. This is done because of the lack 
of information about these factors in the data.

(2)
ds

D
= f

(
Fr,

Y

D
,
D

d50
, �, �

)
,

Fig. 1   Flow and local scour at 
bridge pier (Bateni et al. 2007)
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The Modified Laursen by Neill (1964) equation

Neill (1964) used Laursen and Toch’s (1956) design curve 
to obtain the following explicit formula for the scour 
depth:

where ds is the equilibrium scour depth, D is the obstruction 
width (or pier width), and Y is the approach water depth. 
This equation does not include the Froude number or in 
other words the velocity of the attacking stream.

Shen et al. (1969) formula

Shen et al. (1969) used the Froude number in their scour 
depth prediction in addition to the pier width as given as 
follows:

where Fr is the Froude number and the other variables are 
as defined before.

The Colorado State University (CSU) formula (1975)

This equation is developed as a best fit to the data (labora-
tory) available at the time. The formula is given as:

The CSU (1975) formula is similar in form to Shen et al. 
(1969) equation. Later on, correction factors were added for 
the effects of flow angle, pier shape, and bed conditions.

Jain and Fischer (1979) equations

Jain and Fischer (1979) developed a set of equations based 
on laboratory data. For (Fr − Fc) > 0.2, the formula reads 
as:

where Fc is the critical Froude number. For (Fr − Fc) < 0.2, 
the formula is:

(3)
ds

D
= 1.35

(
Y

D

)0.30

,

(4)
ds

D
= 3.4

(
Fr

)2∕3(Y

D

)1∕3

,

(5)
ds

Y
= 2.2

(
Fr

)0.43(D
Y

)0.65

.

(6)
ds

D
= 2.0

(
Fr − Fc

)0.25(Y

D

)0.50

,

(7)
ds

D
= 1.84

(
Fr

)0.25(Y

D

)0.30

.

Kothyari et al. (1992) formula

Kothyari et al. (1992) developed the following equation:

Modified Froelich by Fischenich and Landers (1999) 
formula

Fischenich and Landers (1999) modified Froelich’s (1988) 
equations for live-bed scour at bridge crossings as:

where � is the angle of flow attack (°). This equation does 
include a safety factor (+ 1.0) that accounts for contraction 
scour in most cases. To compare this formula with other 
formulae, this factor will not be considered, as only local 
bridge pier scour is considered herein.

Richardson and Davis (2001) formula

Originally, this formula was presented in HEC-18 (Richard-
son and Davis 2001) and was recently used by Mohamed 
et al. (2005) for comparison with other regression-based 
equations.

Different values for Ks and Kθ are reported by Simons and 
Senturk (1992).

Development of ANFIS and GP models

The experimental results of the laboratory study were used 
in training and testing sets of the proposed ANFIS and GP 
models. The data sets that were used were collected from 
the studies of Chabert and Engeldinger (1956), Verstap-
pen (1978), Walker (1978), Melville and Chiew (1999), 
Mohamed et al. (2006) and Beg (2013). A total number of 
150 datasets were collected. From the total 150 test sets, 
110 sets were selected randomly for the training and the 
remaining 40 sets were used for validating the proposed two 
models. Table 1 presents the ranges of various parameters 
used in developing the two models. After training and vali-
dating the models, the field data (170 data sets) collected 
by Mueller and Wagner (2005) was employed to verify the 
developed models (Table 1).

(8)
ds

D
= 0.66

(
D

d

)−0.25(Y

D

)0.16(
Fr

)0.40
�−0.30.

(9)
ds

Y
= 2

(
�

90

)0.13(
Fr

)0.61(D
Y

)0.43

+ 1,

(10)
ds

D
= 2KsK�

(
Fr

)0.43(D
Y

)0.65

.
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ANFIS model

The ANFIS model was established using the MATLAB 
fuzzy logic toolbox. First, all data and input parameters 
were utilized in search of the best performing ANFIS struc-
ture. This involves running models (22 models) with various 
types of membership functions and the number of member-
ship functions for each input parameter.

The ANFIS model network includes five layers and works 
according to Takagi and Sugeno (1985) as follows: In the 
first layer, let x and y be the typical input values fed at the 
two input nodes, which will then transform those values to 
the membership functions (say bell-shaped) and give the 
output as follows: note in general, w = output from a node; 
l = membership function, Ai, Bi = fuzzy sets associated with 
nodes x, y.

where a1, b1, and c1 = changeable premise parameters. Simi-
lar computations are carried out for the input of y to obtain 
�Bi(y) . The membership functions are thereafter multiplied 
in the second layer, e.g.,

Such products or firing strengths are then averaged in the 
third layer. Nodes of the fourth layer use the above ratio as 
a weighting factor, and using fuzzy if–then rules produces 
the output as below: (An example of the if–then rule is: If x 
is A1 and y is B1 then f1= p1x + q1y + r1.)

where p, q, r = changeable consequent parameters. The 
final network output f is produced by the node of the fifth 

(11)�Ai(x) =
1

1 +
((
x − C1

)
∕a1

)2b1 ,

(12)Wi = �Ai(x) ⋅ �Bi(y) (i = 1, 2).

(13)Wi(avg.)fi = Wi(avg.) ×
(
p1x + q1y + r1

)
,

layer as a summation of all incoming signals, exemplified 
in Eq. (13).

For imparting faster training and adjusting the network 
parameters to the above network, a two-step process is used. 
In the first step, the premise parameters are kept fixed and 
the information is propagated forward in the network to layer 
4, where a least-squares estimator identifies the consequent 
parameters. In the second step, the backward pass, the con-
sequent parameters are held fixed while the error is propa-
gated, and the premise parameters are modified using the 
gradient descent.

It was realized that using three or more membership func-
tions not only results in overtraining, but also is exponen-
tially more costly in time required to train the model (e.g., the 
time required for training the model with four membership 
functions per input was 50 times greater than for the model 
employing only three). The optimum value of the cluster 
radius was determined by the trial-and-error method based on 
the criterion of the maximum correlation coefficient and mini-
mum root-mean-square error. An optimum value of 0.58 was 
realized for the cluster radius, for which the optimum number 
of rules obtained was 6. Thus, using two membership func-
tions per input, subtractive clustering with six rules, and test-
ing for different types of membership functions ranging from 
triangular to sigmoid, the Gaussian was found to obtain the 
best accuracy, with good generalization ability. The prediction 
of the ANFIS model versus the actual experimental values for 
the training and testing sets is shown in Figs. 2 and 3.

GP model

In this study, the GP model for scour depth prediction was 
developed using the epochX, a powerful Java software com-
puting package. The function set consisted of eight basic 
arithmetic operators (+, −, × , ÷, √, log, exp, and power) 
and constants. The terminal set included five fundamental 

Table 1   Ranges of data used in the development of ANFIS and GP models

Variables Data used in training and testing the 
ANFIS and GP models

Data used in verifying the ANFIS and 
GP models by Mueller and Wagner 
(2005)

Pier width (D) 0.028–0.25 m 0.29–4.27 m
Approaching flow depth (Y) 0.021–0.70 m 0.12–12.62 m
Approaching flow velocity (U) 0.17–1.28 m/s 0.15–4.48 m/s
Median sediment size (d50) 0.0002–0.008 m 0.001–0.108 m
Channel open ratio (α) 0.82–0.97 0.83–0.95
Froude number (Fr) 0.036–0.75 0.038–0.83
Equilibrium scour depth (ds) 0.11–0.26 m 0.00–7.65 m
Dimensionless pier width (D/d50) 3.66–750 2.68–4270
Dimensionless approaching flow depth (Y/D) 0.11–24.35 0.03–43.52
Dimensionless pier scour depth (ds/D) 0.22–2.53 0.20–2.36
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groups of hydraulic parameters of ds, as expressed in 
Eq. (14). The terminal set encompasses the dimensionless 
relationships obtained from the variables influencing ds, as 
expressed by Eq. (2).

In this study, the operations of crossover and mutation were 
selected as 0.30–0.70 and 0.01–0.10, respectively. The popu-
lation size considered was 500–1000 members. The total 
number of generations was 1000–10,000, and the maxi-
mum depth of the parse tree structure was allowed during 
20–25 generations. The restriction in the maximum depth 
of the parse tree structure is aimed at achieving a balanced 

(14)
ds

D
= f

(
Fr,

Y

D
,
D

d50
, �, �

)
= f

(
X1,X2,X3,X4,X5

)
.

accuracy of the solutions and the parsimony problem in GP. 
The parsimony problem indicates the diverging growth of 
population size without an associated increase in fitness dur-
ing the process of obtaining best-fit optima. The fitness func-
tion was the sum of absolute differences (SAD= Σ Pi − mi) 

between the measured values and the estimated values pre-
sent in the database. The program was run for a number of 
generations and was stopped when there was no improve-
ment in fitness function value or coefficient of determina-
tion. The optimum result found through the GP development 
and program was obtained when the population size was 700 
members with a total of 5500 generations having crossover 
0.6 and mutation 0.05. The prediction of the proposed GP 
formula versus the actual experimental values for the train-
ing and testing sets is shown in Figs. 2 and 3. It is a common 
result that the predictions of training sets are slightly better 
than the results for the testing sets. These figures show that 
the proposed GP formula can learn very well the nonlinear 
relationship between parameters and also provide high gen-
eralization capacity. The generated prediction formula of GP 
for ds/D is given in Eq. (15) as follows:

(15)ds

D
=

D

d50

�
0.61 − Fr −

�
D

d50

��
Y

�D

�2
�log

�
D
d50

Fr

�0.20
⎡
⎢⎢⎢⎢⎢⎣

F2.2
r

�
D

d50

3.82

�

�
�

D

d50

�log

�
D
d50

Fr

�

⎤
⎥⎥⎥⎥⎥⎦

−

�
D

d50

�2

(� − 1).

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3

Pr
ed

ic
te

d 
d s

/D

Measured ds/D

GP ANFIS

Fig. 2   ANFIS- and GP-predicted values of ds/D versus measured val-
ues for training sets

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3

Pr
ed

ic
te

d 
d s

/D

Measured ds/D

GP ANFIS

Fig. 3   ANFIS- and GP-predicted values of ds/D versus measured val-
ues for testing sets
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Fig. 4   ANFIS- and GP-predicted values of ds/D versus Modified 
Laursen (1964) values
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(1969) values
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Results and discussion

The comparison of ds/D predicted using the ANFIS model 
and Eq. (15) derived from the GP model with that pre-
dicted using empirical equations proposed by various 
researchers is presented in Figs. 4, 5, 6, 7, 8, 9, and 10 
and in Table 2. For this comparison, the experimental 
data given in Table 1 are used. The performance of these 
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Fig. 6   ANFIS- and GP-predicted values of ds/D versus CSU (1975) 
values
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Fig. 7   ANFIS- and GP-predicted values of ds/D versus Jain and Fis-
cher (1979) values
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Fig. 8   ANFIS- and GP-predicted values of ds/D versus Kothyari et al. 
(1992) values
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Fig. 9   ANFIS- and GP-predicted values of ds/D versus Modified 
Froelich (1999) values
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Fig. 10   ANFIS- and GP-predicted values of ds/D versus Richardson 
and Davis (2001) values

Table 2   Statistical parameters of pier scour models

Equation RMSE MAPE % R

Training and testing with laboratory data
 ANFIS (training) 0.31 21.40 0.94
 ANFIS (testing) 0.40 22.81 0.89
 ANFIS (all data) 0.33 20.92 0.85
 GP (training) 0.28 20.30 0.97
 GP (testing) 0.36 21.20 0.91
 GP (all data) 0.29 19.85 0.89
 The Modified Laursen by Neill (1964) 0.65 60.00 0.48
 Shen et al. (1969) 0.72 59.30 0.53
 The Colorado State University (1975) 0.89 55.20 0.41
 Jain and Fischer (1979) 0.61 47.50 0.51
 Kothyari et al. (1992) 0.51 30.82 0.69
 Modified Froelich by Fischenich and 

Landers (1999)
0.60 51.36 0.57

 Richardson and Davis (2001) 1.21 65.23 0.35
Verification with field data of Mueller and Wagner (2005)
 ANFIS 0.28 22.25 0.87
 GP 0.25 21.35 0.90
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formulas is validated in terms of the common statistical 
measures of the root-mean-square error (RMSE), mean 
absolute percentage error (MAPE), and correlation coeffi-
cient (R). The results indicated that the GP model (Eq. 15) 
has a superior performance to the ANFIS model and the 
empirical pier scour equations furnished in "Conventional 
regression models" section for all the experimental data 
considered. The values of RMSE, MAPE, and R for the 
proposed GP formula considering all data (Table 2) are 
0.29, 19.85%, and 0.89, respectively, which are better 
than those of other equations in this study. The equations 
of Richardson and Davis (2001) and The Colorado State 
University (1975) resulted in larger errors than did the 
other equations.

A comparison between the proposed GP equation 
(Eq. 15), ANFIS model results, and all other pier scour equa-
tions (Table 2) for different ranges of D/d50 and Y/D was 
carried out. For all ranges of D/d50 and Y/D, the proposed 
GP performance gives the best results that are quantitatively 
reflected in all statistical parameters, i.e., RMSE, MAPE, 
and R. GP followed by ANFIS outperforms in high-value 
predictions for the conditions of D/d50 > 100, D/d50≦ 40, 
Y/D > 2, Y/D ≦ 1, compared to all other traditional equa-
tions. It should be noted that GP is more effective at extreme 
ranges of D/d50 and Y/D.

The results confirmed that none of the conventional 
regression equations give acceptable results, as reflected 
in higher RMSE and MAPE and lower R for D/d50 ≦ 100. 
At D/d50 > 100, only the equation by Kothyari et al. (1992) 
gave good results. Also, for dimensionless approaching 
flow depth Y/D < 1, the equation of Kothyari et al. (1992) 
performed well, as reflected in lower RMSE and MAPE. 
However, at 1 < Y/D, all of them gave reasonable results 
because the depth was difficult to measure for this range. 
The comparison of ANFIS and GP performance with other 
empirical equations presented in Figs. 4, 5, 6, 7, 8, 9, and 
10 illustrates that the pier scour equations of Modified 
Froelich by Fischenich and Landers (1999) and Richardson 
and Davis (2001) over-estimated scour depth (Figs. 9, 10) 
because these formulas are based on high safety factors and 
envelop curves to data. Therefore, the correlation coefficient 
R for these two equations is lower in some selected ranges of 
D/d50 and Y/D, indicating poor performance. However, the 
equation of Shen et al. (1969) overpredicted the scour depth 
to some extent (Fig. 5) but performed well under the condi-
tions of D/d50 > 100, 0 < Y/D ≤ 1. Contrary to this, the equa-
tions of Jain and Fischer (1979) under-predicted the scour 
depth at some ranges (Fig. 7). Furthermore, the equation of 
Kothyari et al. (1992) has an advantage over the other equa-
tions, as it is based on a large data range, which was used 
for regression analysis, but with minimal R in some selected 
ranges. The correlation coefficient R is lower, showing that 
there is a wide variation in the prediction of scour depth.

The robustness of ANFIS and GP was further verified 
and evaluated with the field data of (Mueller and Wagner 
2005), which were not used in developing the ANFIS and 
GP models. Table 2 furnishes details of the data. The RMSE, 
MAPE, and R values using the ANFIS and GP models for 
these data are listed in Table 2. The statistical parameters 
show that the prediction performance of both ANFIS and 
GP is satisfactory. Hence, the two models can be used with 
a wide range of data because the data of Mueller and Wagner 
(2005) consist of large-scale pier models. Figure 11 shows 
the comparison of scour depth as predicted by the GP and 
ANFIS models and respective field data.

The relatively inferior performance of the regression-
based models further strengthens the notion that such mod-
els are not always suitable for effectively predicting bridge 
pier scour depth.

GP model application to Imbaba Bridge, 
Egypt

According to the results discussed above, the GP model 
proved to provide a better prediction of the local scour depth 
around bridge piers other than the ANFIS model and other 
empirical formulas. Hence, it is used to investigate the local 
scour around bridge piers for the Nile River conditions. In 
Egypt, many investigators have worked on this important 
subject, but most have built their findings on laboratory data 
that have simplified conditions and scale effects. Therefore, 
the developed GP equation was employed to predict the local 
scour around the piers of the Imbaba Bridge. The results of 
the GP equation were then compared to those revealed by 
the seven regression equations illustrated earlier in "Conven-
tional regression models" section.

Imbaba Bridge is located several kilometers upstream 
of the Delta Barrages (km 946 from HAD) north of Cairo. 
Imbaba Bridge is located in the backwater curve of Delta 
Barrage from about 150 years (HRI 1992). This bridge is 
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a steel one, with two levels: one for railway and the other 
for roadway. It has seven piers; the second pier from the 
left bank is circular with 10.6 m diameter, and the other 
six piers are rectangular with 15 m length and 3.6 m width 
having rounded noses (Fig. 12). The scour holes of Imbaba 
Bridge have been going under detailed monitoring programs 
by The Hydraulics Research Institute (HRI) since 1981. The 
deep scour hole lies 97 m from the left bank and 32 m down-
stream of the centerline of the bridge with a bottom eleva-
tion of − 8.30 m (HRI 1992). Also, the mean velocity is not 

larger than 0.8 m/s since the bridge construction (HRI 1992). 
The monitoring programs revealed that the scour holes at 
Imbaba Bridge and are stable under current flow conditions 
after HAD (HRI 1997). This is because the peak flood flows 
released from HAD are dramatically reduced after its com-
pletion in 1968. Therefore, these scour holes are believed to 
be resulting from very large historic flows occurred before 
HAD. Table 3 shows the field data used in scour depth pre-
diction at different piers of Imbaba Bridge.

Fig. 12   View of Imbaba Bridge, 
Giza, Egypt

Table 3   Field data of local 
scour depth at Imbaba Bridge, 
Egypt (HRI 1992)

Pier no. Distance from the 
left bank (m)

Local bed 
level (m)

Local water 
depth (m)

Local veloc-
ity (m/s)

Local Fr Measured local 
scour depth (m)

1 69 15.00 5.00 0.60 0.27 3.90
2 104 13.00 7.00 0.65 0.26 8.05
3 139 12.00 8.00 0.72 0.25 3.65
4 209 10.50 9.50 0.75 0.25 3.25
5 279 9.00 11.00 0.78 0.24 3.10
6 350 7.50 12.50 0.80 0.24 2.60

Table 4   Predicted local scour at Imbaba Bridge, Egypt

Pier no. Scour depth (m)

Modified Laursen 
by Neill (1964)

Shen et al. 
(1969)

Colorado State 
University (1975)

Jain and Fis-
cher (1979)

Kothyari 
et al. (1992)

Modified 
Froelich by 
Fischenich and 
Landers (1999)

Richardson and 
Davis (2001)

GP

1 5.65 5.12 5.00 5.48 4.35 4.71 4.73 4.15
2 10.32 9.98 9.76 10.12 8.86 9.53 9.91 8.20
3 5.13 4.88 4.65 5.25 4.11 4.43 4.62 3.85
4 4.98 4.37 4.08 4.86 3.87 4.17 4.35 3.47
5 4.68 4.16 4.03 4.51 3.72 3.97 4.30 3.25
6 4.44 3.93 3.82 4.23 3.18 3.81 4.12 2.94
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The sediment specific gravity is taken as 2.65, sediment 
porosity of 0.4, and bed material angle of repose of 300. In 
applying Jain and Fischer (1979) formula, a mean sediment 
diameter of 0.00017 m and D90 of 0.00035 m were taken 
from 1962 data (El-Motassem 1985) and the bed charac-
teristics were fine sand as reported by HRI (1992). In this 
study, it was decided to investigate the worst condition (clear 
water scour). Table 4 illustrates the results of the local scour 
estimation for the six piers provided that Pier No. 7 was 
not included due to its location in a shallow area above the 
minimum water level.

The results of this table indicated that the GP equation 
gives very close local scour depth values to those of field 
measurements followed by Kothyari et al. (1992) and then 
Modified Froelich by Fischenich and Landers (1999). This 
coincides with the results of the statistical analysis pre-
sented in Table 2. Also, Table 4 shows that both Modified 
Laursen by Neill (1964) and Jain and Fischer (1979) over-
predicted the scour depth compared to other regression equa-
tions. Table 5 demonstrates the accuracy of the developed 
GP equation in predicting the local scour depth for the Nile 
River conditions at Imbaba Bridge. The table shows that the 
percentage error of the derived GP equation in predicting the 
local scour depth around the piers of Imbaba Bridge varies 
between 2 and 9% with an average error of 6%.

Conclusions

This paper investigated the use of both ANFIS and GP-based 
inductive models for predicting relative bridge pier scour 
depth utilizing previously collected laboratory and field data, 
and their performance was compared with regression-based 
models. The following conclusions were drawn from this 
study:

•	 The developed GP formula as given in Eq. (15) for the 
prediction of pier scour depth showed better agreement 
with experimental results than did the ANFIS model and 
the other regression equations considered in this study.

•	 The proposed GP formula has a higher and more stable 
accuracy (smaller errors and greater R) in all ranges of 

pier scour parameters than the other empirical equations. 
The other equations work well only in some selected 
ranges of these conditions.

•	 The study also validates the promise of ANFIS and GP 
as effective modeling tools for applications in hydraulic 
modeling.

•	 The developed GP equation herein, Eq. (15), yielded 
very good agreement (6% average error) with field data 
than other existing empirical equations when applied to 
Imbaba Bridge Giza, Egypt. Thus, the GP equation is 
quite convenient for scour prediction in the Nile River 
conditions. For further studies, it is recommended to 
test the developed GP equation with several field data of 
Egyptian bridges such as El-Tahrir Bridge, El-Menyia 
Bridge, and Kafr El-Zayat Bridge.
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