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Abstract
Nowadays, Cr-loaded wastewater released from industrial activities pose an increasing risk to human health and the envi-
ronment. Adsorption processes have been widely used for the removal of chromium from the waste stream. In this regard, 
natural adsorbents are the most preferable and cost-effective methods. In this study, the efficiency of Odaracha adsorbent 
as a novel green technology in the removal of chromium from synthetic wastewater is analyzed. Batch adsorption experi-
ments were conducted to evaluate the effect of contact time, pH, adsorbent dose, and initial concentration of adsorbate on 
Cr removal. The surface morphology of Odaracha adsorbent was characterized by scanning electron microscopy, Fourier 
transform infrared spectroscopy, and X-ray powder diffraction. Experimental results showed that Odaracha adsorbent could 
perform effectively in a wide range of experimental conditions. However, in optimum experimental conditions, such as 180-
min contact time, pH 3, and 15 g/L of adsorbent dose Odaracha adsorbent removes 94.68% of Cr from an aqueous solution 
having 110 mg/L of Cr concentration.
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Introduction

Metals are ubiquitous in the environment because of their 
wide application (Ajmani et al. 2019b). They are present 
in the solid phase and solution, as free ions, or adsorbed 
to colloidal soil particles. From these metals, hexava-
lent chromium has no known vital or beneficial effect on 
organisms, even for bacterial cells, and its accumulation 
over time in organisms can cause serious illness even at 
low concentration. According to World Health Organiza-
tion (WHO) guidelines, the allowable concentration of Cr 
(VI) in drinking water is 50 ppb (Jiang et al. 2013). How-
ever, humans could be exposed to higher-level chromium 

contamination through food or drinking water. Industries 
such as leather tanning, steel fabrication, metal finishing, 
and other industrial sources related to wood preservation 
are the major causes of this contamination (Eliku and Leta 
2018). The human health effects of hexavalent chromium 
exposure are respiratory irritation, dermatitis, lung cancer, 
kidney, and liver damage (Ofudje et al. 2014; Jiang et al. 
2013). Therefore, the removal of Cr would be necessary to 
improve the quality of water and the life of humanity. In 
line with minimizing the adverse effect on human health 
nowadays, there are several Cr removal mechanisms. For the 
removal of chromium from wastewater, adsorption is highly 
effective compared to other conventional methods (Pranay 
et al. 2015; Shahnaz et al. 2020b). Adsorption is a process 
that occurs when a gas or liquid or solute (called adsorbate) 
accumulates on the surface of a solid or more rarely a liquid 
(adsorbent), forming a molecular or atomic film. Adsorption 
process can be influenced by a number of factors such as pH, 
adsorbate concentration, adsorbent dosage, and other factors 
(Costanzo et al. 2012).

Most clay can soak up electrically charged atoms and 
molecules from the solution. Clays’ mineral composition, 
crystal structural characteristics, and their crystalline size 
make them potentially sound absorbers (Hoidy et al. 2009). 
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Besides, because of their availability and cost-effectiveness, 
clay minerals become the most critical industrial resource. 
As a result, clays have received considerable attention, espe-
cially as potential adsorbents for environmental research. 
In line with the adsorption potential of clay mineral, in the 
eastern part of Ethiopia, specifically in Saketa district, there 
is a clay locally named Odaracha. In most of the rural areas 
of West Hararghe zone of Oromia, regional state peoples 
depend on this particular kind of clay (Odaracha clay) to 
remove turbidity of water in their day-to-day life and com-
mercially exchanged in the market for this particular pur-
pose in some woredas. Odaracha soil is a novel adsorbent 
material and has not been reported in the literature. There-
fore, the principal aim of this study was to investigate the 
effectiveness of Odaracha clay in the removal of Cr from 
synthetic wastewater. The effect of various parameters such 
as contact time, pH, adsorbent dose, and initial concentra-
tion of adsorbate on adsorption efficiency of Odaracha was 
considered.

Materials and methods

Chemicals and analytical methods

The chemicals consumed in these set of experimental activi-
ties were all of analytical grade. The standard stock solu-
tion of chromium (1000 mg/L) was prepared by dissolving 
2.828 g of 99.9% analytical-grade K2Cr2O7 in 1000 mL of 
distilled water. All the required solutions are made ready 
with analytical-grade reagents and double-distilled water. 
Synthetic samples of different concentrations of chromium 
are prepared from this stock solution by appropriate dilu-
tions. The functional groups involved in the adsorption pro-
cess were identified by Fourier transform infrared (FTIR) 
spectroscopy (Model 65 spectrometer, USA). X-ray powder 
diffraction analysis was performed using the XRD spectrom-
eter (PAN analytical X’Pert Pro) with recorded 2θ XRD pat-
terns of 5° to 60°. The surface morphology of Odaracha 
adsorbent was characterized using INSPECT F50 field emis-
sion scanning electron microscope (SEM).

Adsorbent preparation

In this study, a locally available soil type, known by the local 
community as Odaracha clay, was used as an adsorbent. This 
natural coagulant is abundantly available in Saketa District 
West Hararghe zone of Oromia Regional State, Ethiopia. It 
is also commercially exchanged in the market of Boke Tiko 
woreda, and the rural communities have been using this clay 
material to remove water turbidity. In this research, the soil 
sample was taken from Saketa district (N: 08° 44′ 41.3″ E: 
040° 45′ 15.1″, altitude 1470). After air-dried, the soil has 

been crushed into the desired size and sieved using 125-µm 
laboratory sieve. Finally, Odaracha powder was dried in the 
oven with a 120 °C temperature level for 6 h and kept inside 
the desiccator until the adsorption experiment.

Batch adsorption experiments

The batch adsorption studies were conducted at room tem-
perature by agitating measured quantities of the Odaracha 
adsorbent in 50 ml of synthetic wastewater at the rate of 
150 rpm with the required pH, contact time, dose of the 
adsorbent and initial concentration of the adsorbate. The 
timing was started upon the addition of adsorbent. These 
experiments were run in different Erlenmeyer flasks having a 
capacity of 150 ml. After shaking, the sample was taken and 
filtered by the Whatman membrane filter paper of pore size 
0.45 µm. Finally, the sample was analyzed by FAAS (Flame 
Atomic Absorption Spectrophotometer, Model 210 VGP) 
for the remaining chromium ion in the solution. The experi-
ments were undertaken in triplicate, and the average results 
are presented. The removal efficiencies of Odaracha adsor-
bent were investigated based on the following equations. The 
percentage of chromium removal is obtained using Eq. 1, 
while the adsorption capacity qe is calculated using Eq. 2.

where Co = initial adsorbate concentration (mg/L); Ce = final 
equilibrium adsorbate concentration (mg/L).

where Co and Ce are the initial and equilibrium liquid-phase 
concentrations of the Cr ions in mgL−1, respectively, V is the 
volume of the solution in L, w is the amount of adsorbent 
used in g, and qe is the removal efficiency of adsorbent in 
mg/g.

Isotherm and kinetic studies

To study the adsorption isotherms, the optimum conditions 
found in optimization experiments were applied only by 
varying adsorbent doses. These experiments were carried 
out using adsorbent dose in the range of 1, 3, 5, 7, 10, 15, 
and 20 g/L. For each adsorbent dosage, 50 ml of the sample 
was taken and agitated at 150 rpm. The data from the experi-
ment were fitted into Langmuir and Freundlich adsorption 
isotherm models (Gulipalli et al. 2011). It is essential to 
know the rate at which the process takes place, factors that 
control the rate of the process; for this reason, the kinet-
ics of the processes were assessed. These experiments were 

(1)%removal =
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Co − Ce

)

Co
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(2)qe =
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conducted by setting heavy metal concentration, pH, adsor-
bent dosage, and agitation speed constant. Then, the sample 
was withdrawn at 30, 60, 90, 120, 150, 180, and 210 min for 
the determination of residual heavy metals in the solution. 
Then, data from the experiment were introduced into the 
pseudo-first-order model of Lagergren and pseudo-second-
order models of Ho and McKey (Dagmawi and Mekibib 
2013; Gulipalli et al. 2011).

Results and discussion

Characterization of Odaracha adsorbent

Scanning electron microscope (SEM) studies

The scanning electron microscope (SEM) images shown 
in Fig. 1 revealed the surface morphology of Odaracha 
adsorbent before and after adsorption. As shown in Fig. 1a, 
b Odaracha adsorbent appears rough and porous before 
adsorption. However, as depicted in Fig. 1c, d, the mor-
phology of Odaracha adsorbent after Cr adsorption appears 
different where the pores are filled and much smoother. This 
is an indication of the adsorption of Cr onto the surface of 
Odaracha adsorbent.

FTIR studies

The FTIR spectra of Odaracha clay are shown in Fig. 2. 
The spectra in the region 3200–3650 cm−1 and the maxi-
mum peak 3408 cm−1 were due to –OH stretching vibra-
tion. The strong peaks at 2519, 1432, and 1038  cm−1 
were due to O–H (carboxylic acid) stretching, C–O, and 
Si–O–Si (organic siloxane or silicone) bond, respectively 
(Ghoneim et al. 2014; Kyziol-Komosinska et al. 2014). 
The spectra viewed below 1000 cm−1 are more comparable 
to the mineral features of the material. To identify the pos-
sible functional groups on Odaracha adsorbent involved 
in the binding of Cr, FTIR spectra were obtained before 
and after adsorption. If a ligand coordinates to a metal, 
the ligand material’s energy will most likely be disturbed, 
leading ultimately to shifts in the absorption peaks in the 
FTIR spectra. These FTIR adsorption bands are ordinarily 
shifted to lower or upper frequencies. In this regard, there 
are small shifts of vibration from 873, 1038, 2131, 2519, 
2874, and 3408 cm−1 in Odaracha adsorbent to 872, 1027, 
2127, 2518, 2870, 3408 cm−1 for chromium-loaded adsor-
bent, respectively. The disappearance of intensities and 
shifting of peaks to new values signify the involvement of 
functional groups in the adsorption process.

Fig. 1   SEM images of Odaracha 
adsorbent before adsorption (a, 
b) and after adsorption (c, d)
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XRD studies

X-ray diffraction (XRD) analysis was commenced using 
Cu Kα1 radiation on a computer-controlled XRD machine 
model of X’ pert pro-PANalytical. XRD patterns were 
recorded from 5° to 60° 2θ. The XRD peaks and analysis 
for raw Odaracha clay before adsorption are shown in Fig. 3. 
The XRD analysis of powder Odaracha clay revealed the 
presence of gypsum, alumina, quartz, calcite, dolomite, 
and magnetite. The characteristic peaks at 23.34, 29.5, 
39.6, and 43.36 for the raw Odaracha sample indicated cal-
cite (CaCO3) as the main constituent. Some characteristic 
peaks at 10.62, 11.74, and 36.1 show the presence of gyp-
sum (CaSO4.2H2O); the peaks at 20.82 and 26.64 show the 

presence of quartz (SiO2); the peak at 14.6 shows the pres-
ence of alumina (Al2O3); the peaks at 32 and 48.64 show the 
presence of dolomite (CaMg(CO3)2) and magnetite (Fe3O4), 
respectively.

Effect of various parameters on adsorption 
of chromium

Effect of contact time

Effect of contact time between the adsorbate and adsorbent 
particles is one of the important factors in the adsorption 
studies. To realize the effect of contact time on Cr adsorption 
on Odaracha adsorbent and to discern the optimum contact 
time between the adsorbate and adsorbent, the experiment 
was carried out at room temperature and led within the 
time range of 60–240 min in 60-min interval using 15 g/L 
adsorbent dose and by tuning pH of the solution at 3. Other 
parameters such as agitation speed and adsorbate concen-
tration were retained constant to 150 rpm and 110 mg/L, 
respectively.

The result of the effect of contact time revealed in Table 1 
shows that with an increase in contact time there is also an 
increase in percent adsorption of Cr. There was very rapid 

Fig. 2   FTIR spectrum (400–4000 cm−1 (I) and 400–1000 cm−1 (II)) of raw (a) and chrome-loaded (b) Odaracha powder

Fig. 3   X-ray diffraction patterns of raw Odaracha clay. Mineral 
assignments: gypsum (■), alumina (Δ), quartz (▼), calcite (□), 
dolomite (●) and magnetite (○)

Table 1   Effect of contact time on Cr removal efficiency 
(Co = 110 mg/L, agitation speed = 150 rpm)

Contact 
time 
(min)

pH Dose 
(g/L)

Cf (mg/L) Cr 
adsorp-
tion %

q (mg g−1)

60 3 15 32.792 ± 0.095 70.189 5.147
120 3 15 26.500 ± 0.063 75.909 5.567
180 3 15 5.854 ± 0.130 94.678 6.943
240 3 15 6.896 ± 0.072 93.731 6.874
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adsorption at the initial period up to 60 min, and after that, 
the increase in the adsorption rate was gradual. The adsorp-
tion process attained equilibrium in 180 min, which was 
94.68%. Then, no significant change in Cr removal was 
observed after 180 min. This is attributed to a large num-
ber of vacant surface sites which are available for adsorp-
tion during the initial stage of adsorption. As it is shown in 
Table 1, percentage of removal efficiency of chromium and 
adsorption of chromium in mg/g showed the same type of 
increasing trend since there was no variation of adsorbent 
dose in this set of experiments.

Effect of pH

The pH is a principal parameter in adsorption process 
because of its effect on the adsorption efficiency (Attia 
et al. 2010; Shahnaz et al. 2020a). The functional groups 
responsible for the binding of metal ions in the adsorbent 
surface are profoundly affected by pH. There is also a com-
petition between ions that are present in the solution for the 
adsorbent’s active sites. This competition is affected by the 
pH of the solution (Reddy et al. 2014). The effect of pH on 
the adsorption process was examined by undertaking the 
batch procedure at 120-min contact time, under room tem-
perature, constant agitation speed which is 150 rpm, and 
15 g/L of adsorbent dosage. The investigation results on the 
effect of pH on chromium removal by Odaracha adsorbent 
are revealed in Table 2. As illustrated in Table 2, it was 
found that the uptake of Cr increases with decreasing pH. 
Accordingly, the optimum pH for the maximum uptake of 
chromium was pH 3. In this regard, Odaracha adsorbent gave 
the highest removal percentage at pH 3, which is 76.31%.

Conversely, the minimum adsorption capacity was 
observed at pH 6, which is 74.15%. In this experimental 
condition, since the adsorbent dose and initial concentration 
of the adsorbate had been kept constant, both adsorption 
percent and removal in mg/g show similar increasing trends 
with decreasing pH of the solution (Ajmani et al. 2019b). 
As per the result, the maximum chromium uptake in mg/g 
was detected at pH 3, which is 5.596 mg/g. At acidic pH, 
the dominant form of hexavalent chromium is HCrO4

−, and 
at higher pH, other forms CrO4

2− or Cr2O7
2− predominate. 

Therefore, the higher adsorption capacity observed at lower 
pH is due to the strong electrostatic attraction between sur-
face groups and HCrO4

− (Singha and Das 2011; Zhu and 
Han 2013).

The interaction between HCrO4
−, CrO4

2− and Cr2O7
2− ion 

and adsorbent surface decreases at higher pH because the 
adsorbent surface becomes negatively charged, and also 
there is an abundance of OH− in aqueous solution, which can 
be attributed to the competitive adsorption of Cr2O7

2− and 
OH−. Other previous studies have also reported similar 
situations (Hsua et al. 2009; Owlad et al. 2010; Rangab-
hashiyam and Selvaraju 2015). In another way, at lower 
pH, the degree of surface protonation is high, so that the 
surface offers a maximum positive charge for adsorption of 
HCrO4

−, which is predominant at lower pH. Therefore, at 
lower pH, the predominant hydrogen chromate ion (HCrO4

−) 
requires one exchange site from Odaracha adsorbent to be 
adsorbed, while at higher pH, it requires two exchange sites 
from Odaracha adsorbent for one chromate ion (CrO4

2−) 
adsorption (Nizam Nik Malek 2007). Generally, adsorption 
of chromium is higher in acidic media because at lower pH, 
the degree of surface protonation is very high, which plays 
a vital role in capturing hydrogen chromate ion (HCrO4

−) 
in the solution.

Effect of adsorbent dose

As pointed out in Table 3, the effect of the dosage of Odara-
cha adsorbent on the removal efficiency of chromium was 
determined with varied adsorbent doses, which are 1 g/L, 
5 g/L, 10 g/L, and 15 g/L under different experimental 
conditions.

As shown in Table 3, the adsorption percentage of chro-
mium increased from 60.04 to 94.68% as the adsorbent dose 
increased from 1 to 15 g/L, whereas the uptake of Cr in mg/g 
falls from 66.042 mg/g to 6.943 mg/g when the adsorbent 
dose increases from 1 to 15 g/L. Higher chromium adsorp-
tion percentage with the increase in the adsorbent dose can 
be attributed to increasing in surface area and the availability 
of more binding sites for adsorption (Karthik et al. 2018; 
Rao et al. 2002; Reddy et al. 2014; Umoren et al. 2013). The 
decrease in uptake of Cr in mg/g with increased adsorbent 

Table 2   Effect of pH on Cr removal efficiency (Co = 110 mg/L, agita-
tion speed = 150 rpm)

pH Contact 
time 
(min)

Dose (g/L) Cf (mg/L) Cr adsorp-
tion %

q (mg g−1)

3 120 15 26.063 ±  0.125 76.307 5.596
4 120 15 26.500 ±  0.063 75.909 5.567
5 120 15 28.375 ±  0.062 74.205 5.442
6 120 15 28.438 ± 0.625 74.148 5.438

Table 3   Effect of adsorbent dose on Cr removal efficiency 
(Co = 110 mg/L, agitation speed = 150 rpm)

Dose (g/L) pH Contact 
time 
(min)

Cf (mg/L) Cr adsorp-
tion %

q (mg g−1)

1 3 180 43.958 ± 0.072 60.038 66.042
5 3 180 14.667 ± 0.036 86.667 19.067
10 3 180 9.063 ±  0.063 91.761 10.094
15 3 180 5.854 ± 0.130 94.678 6.943
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dose may be due to the unchanged initial concentration of 
metal ion and the substantial adsorption capacity of the 
smallest adsorbent dose or less availability of surface area 
per unit weight (Ajmani et al. 2019a). Similar trends have 
also been reported by other authors relating to the effect of 
adsorbent doses on adsorption efficiency of Cr (Garg et al. 
2007; Ghorbani et al. 2008).

Effect of initial concentration of adsorbate

The rate of adsorption is a function of the initial concentra-
tion of adsorbate, making it a substantial factor to be consid-
ered for the optimum experimental conditions of adsorption. 
The effect of the various initial concentrations of chromium 
(30, 50, 70, 90, 110, 130, and 150 mg/L) on Cr removal 
efficiency at constant experimental conditions like pH 3, 
180-min contact time, 150 rpm agitation speed and 15 g/L 
adsorbent dose is presented in Table 4.

The adsorption percentage of chromium with the vari-
ous initial concentrations of adsorbate in different constant 
experimental conditions such as pH, contact time, agita-
tion speed, and the adsorbent dose is presented in Table 4. 
According to the result exemplified in Table 4, the effect 
of initial concentration of Cr on the adsorption percentage 
shows a decreasing trend, which is 95.69, 95.33, 95.09, 
94.70, 94.68, 86.88 and 83.94% with 30, 50, 70, 90, 110, 130 
and 150 mg/L of adsorbate concentration, respectively. This 
can be explained by the fact that all adsorbents have a lim-
ited number of active sites, and at a specific concentration, 
the active sites become saturated (Banat et al. 2000; Tsai and 
Chen 2010). In another way, the reverse trend is observed in 
the case of Cr uptake in mg/g, which shows the increasing 
trend of Cr uptake, which is 1.91, 3.18, 4.44, 5.68, 6.94, 
7.53, and 8.39 mg/g with increasing initial concentration of 
adsorbate from 30 to 150 mg/L by 20 mg/L interval. This 
is maybe because, at constant adsorbent dose, the number 
of active sites to accommodate the chromium ions remains 
unchanged while with rising adsorbate concentrations, the 
chromium ions to be accommodated increased. Therefore, 
the loading was faster, with a higher initial concentration 
of adsorbate.

Kinetic study for adsorption of chromium

To understand the rate and type of adsorption that takes 
place, the study applies pseudo-first-order and pseudo-sec-
ond-order kinetic models.

Pseudo‑first‑order kinetic model

The pseudo-first-order model is expressed by Eq. (3):

where qe and qt (mgg−1) represent the amount of Cr ions 
adsorbed per unit weight of the adsorbents at equilibrium 
and time t (min), respectively, and k1 is the rate constant of 
the pseudo-first-order kinetic model.

The pseudo-first-order kinetics is applicable if the plot of 
log (qe − qt) against time (t) shows a linear relationship. In 
addition, the straight-line plot of log (qe − qt) versus t was 
used to determine the rate constant (k1), qe (cal) and the cor-
relation coefficient (R2). The values of k1 and qe (cal) in mg/g 
of Cr predicted from the plot shown in Fig. 4 are 4.836 × 
10–2 and 49.162 mg/g, respectively. As the result presented in 
Table 5, the correlation coefficient (R2 = 0.5552) indicates that 

(3)log(qe − qt) = logqe −
k1t

2.303

Table 4   Effect of initial 
concentration of adsorbate on 
Cr removal efficiency

Co (mg/L) Agitation 
speed (rpm)

Contact 
time (min)

Dose (g/L) pH Av Cf (mg/L) Cr adsorption% q (mg g−1)

30 150 180 15 3 1.294 ± 0.128 95.688 1.914
50 150 180 15 3 2.333 ± 0.095 95.333 3.178
70 150 180 15 3 3.438 ± 0.062 95.089 4.438
90 150 180 15 3 4.771 ± 0.036 94.699 5.682
110 150 180 15 3 5.854 ± 0.130 94.678 6.943
130 150 180 15 3 17.063 ± 0.108 86.875 7.529
150 150 180 15 3 24.083 ± 0.072 83.944 8.394

y = -0.021x + 1.6916
R² = 0.5552
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Fig. 4   Pseudo-first-order kinetics plots for the adsorption of Cr ions 
onto Odaracha adsorbent
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the experimental data of the adsorption kinetics of chromium 
are not accurately supported by the pseudo-first-order model.

In a second way, the plot of log (qe − qt) against time (t), 
which is shown in Fig. 4, does not display a linear relationship, 
which again communicates the unsuitability of the pseudo-
first-order model. Furthermore, the experimental adsorp-
tion result ( qe (exp)) was not closer to qe (cal). Therefore, the 
pseudo-first-order model is not suitable to explain the adsorp-
tion kinetics of Cr ions on Odaracha adsorbent (Arshadi et al. 
2014; Sag and Aktay 2002).

Pseudo‑second‑order kinetic model

The pseudo-second-order model is expressed by Eq. (4):

where qe and qt (mg g−1) represent the amount of Cr ions 
adsorbed per unit weight of the adsorbents at equilibrium 
and time t (min), respectively, and k2 is the rate constant of 
the pseudo-second-order kinetic model. The rate constant 
(k2) and calculated equilibrium adsorption capacity ( qe (cal)) 
can be determined from the slope and intercept of the plot 
t∕qt versus t, which is shown in Fig. 5. The plot t∕qt versus t 
should give a straight line to apply the pseudo-second-order 

(4)
t

qt
=

1

K2qe.
2
+

t

qe

kinetic model. The plot of t∕qt versus t for pseudo-second-
order yields a good straight line with the highest correla-
tion coefficient result approaching 1 (R2 = 0.971). In addi-
tion, as presented in Table 5, the experimental adsorption 
equilibrium value ( qe (exp.) = 6.943  mg  g−1) was well 
matched with the calculated adsorption equilibrium value 
( qe (cal.) = 7.745 mg g−1). Therefore, the experimental data 
of the adsorption kinetics of chromium are accurately sup-
ported by a pseudo-second-order model. Thus, this finding 
suggests that the rate-limiting factor in the adsorption of 
chromium by Odaracha adsorbent is chemisorption involv-
ing the exchange of Cr ions with functional groups in the 
adsorbent (Rahman and Sathasivam 2015; Senthil and Gayo-
thri, 2013).

Isotherm model for adsorption of chromium

In this study, the evaluation of the equilibrium of the adsorp-
tion process was carried out by introducing the experimental 
results into Langmuir and Freundlich isotherm models.

Langmuir adsorption isotherm model 
for chromium

Equilibrium study for the removal of chromium was per-
formed on the Odaracha adsorbent powder by Langmuir 
adsorption model. According to the Langmuir isotherm 
model, the adsorption sites are uniformly equal and no 
attraction occurs between the adsorbed molecules; hence, 
monolayers of the molecules are deposited on the Odaracha 
powder (Langmuir 1916).

The linearized form of this model is presented in Eq. (5) 
and was used in the determination of its parameters in 
accordance with Fig. 6.

where qe represents the amount of adsorbed Cr in mg/g of 
the adsorbent, and Ce is the concentration of Cr at equilib-
rium in mg/L. KL and qm represent Langmuir adsorption 

(5)
1

qe
=

1

qm
+

1

qmKL

.
1

Ce

Table 5   Line-fit model of pseudo-first- and second-order kinetics for Cr

Adsorbent Metal First-order

Odaracha Chromium qe(exp) mg g−1 qe(cal) mg g−1 k1 (min−1) R2

6.943 49.162 4.836 × 10–2 0.5552

Adsorbent Metal Second-order

Odaracha Chromium qe(exp) mg g−1 qe(cal) mg g−1 k2 (g mg−1min−1) R2

6.943 7.7459 3.9989 × 10–3 0.971

y = 0.1291x + 4.1679
R² = 0.971

0
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10

15

20

25
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0 50 100 150 200 250

t/
qt

Time
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Linear fit

Fig. 5   Pseudo-second-order kinetics plots for the adsorption of Cr 
ions onto Odaracha adsorbent
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constant and the maximum amount of adsorbate that can 
be adsorbed on Odaracha adsorbent (Langmuir 1918). The 
values of KL and qm for this study were determined from 
the slope and intercept shown in Fig. 6. One of the essen-
tial features of this model is its ability to determine RL as 
shown in Eq. (6), which is a dimensionless parameter known 
as equilibrium parameter or separation factor (Webber and 
Chakravarti 1974).

The adsorption process can be described as unfavorable 
if RL > 1, linear if RL = 1, favorable if 0 < RL < 1 and irre-
versible if RL = 0. The value of RL obtained in this study as 
presented in Table 6 is between 0 and 1, which suggests the 
Langmuir isotherm model is favorable in this study. The 
maximum monolayer coverage capacity (qm) obtained was 
200 mg g−1. This result indicates that the maximum adsorp-
tion potential of 1 g of Odaracha adsorbent.

Freundlich adsorption isotherm model for Cr

The Freundlich isotherm model is an empirical equa-
tion employed to describe heterogeneous systems. In this 
model, it is described that during the adsorption process 

(6)RL =
1

1 + (1 + KL + Co)

different sites of the adsorbent are involved with several 
adsorption energy (Kumar and Kirthika 2009). The lin-
earized form of the Freundlich isotherm model is shown 
in Eq. (7).

where qe is the metal uptake (mg g−1) at equilibrium, Kf is 
the measure of the adsorption capacity, 1/n is the adsorption 
intensity, and Ce is the final concentration of Cr in solution, 
or equilibrium concentration (mg L−1). The Freundlich iso-
therm constants Kf and 1/n are evaluated from the intercept 
and the slope, respectively, of the linear plot of log qe versus 
log Ce shown in Fig. 7.

If n is between 1 and 10, it indicates favorable adsorp-
tion (Goldberg 2005). However, if 1/n is < 1 it indicates 
normal adsorption, but if it is > 1, it implies cooperative 
adsorption (Mohan and Karthikeyan 1997). The numeri-
cal value of 1/n presented in Table 6 is 0.998, indicating a 
favorable adsorption process (Kannan et al. 2013).

(7)log qe = logKf + (1∕n) logCe

y = 0.7797x + 0.005
R² = 0.9884
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Fig. 6   Langmuir adsorption isotherm model for chromium

Table 6   Langmuir and Freundlich isotherm model constants for adsorption of Cr

Adsorbent Metal Langmuir

Odaracha Chromium qm mg g−1 KL RL R2

200 0.0064 0.01 0.9884

Adsorbent Metal Freundlich

Odaracha Chromium Kf 1∕n R2

1.2045 0.998 0.9656

y = 0.9989x + 0.0808
R² = 0.9656
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Fig. 7   Freundlich adsorption isotherm model for chromium
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Comparison of Odaracha and other natural 
adsorbents

A comparison results between the maximum adsorption 
capacity of Cr ions onto Odaracha adsorbent and other 
adsorbents are presented in Table 7. Table 7 shows that the 
maximum adsorption capacity obtained in this study was 
higher than other natural adsorbents illustrated in Table 7. 
Therefore, Odaracha soil can be used as effective and an 
alternative low-cost adsorbent for chromium.

Conclusions

In the exploration result of this study, Odaracha soil sourced 
from Saketa district of Ethiopia was used for the removal 
of chromium from synthetic wastewater. The characteriza-
tion results of Fourier transform infrared, X-ray powder dif-
fraction analysis, and the surface morphology of Odaracha 
adsorbent, which shows the pores of the surface of the adsor-
bent before and after adsorption, were an indicator for its 
adsorption capacity. The adsorption capacity of Odaracha 
adsorbent was influenced by a number of factors such as con-
tact time, pH, adsorbent dosage, and initial concentration of 
adsorbate. The optimum range of contact time, pH, Odara-
cha dose, and initial concentration of chromium obtained 
by the batch experiment was 180 min, pH 3, 15 g/L, and 
30 mg/L, respectively. With optimum experimental condi-
tions and at room temperature, Odaracha adsorbent removed 
94.68% Cr from the wastewater. The adsorption kinetics of 
chromium is accurately supported with a pseudo-second-
order model. The isotherm data were analyzed by Lang-
muir and Freundlich isotherms. The maximum monolayer 
coverage adsorption capacity from the Langmuir adsorption 
isotherm model was 200 mg g−1. Generally, the ability of 
Odaracha adsorbent in removing Cr from aqueous solutions 
has the potential to solve the problem of chromium-contain-
ing industrial effluents, which continue to pose increasing 
risks to human health and environment.
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