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Abstract
Mountain creek areas are a type of flood-prone area, and the flood control in these areas has not been well understood. This 
study aims to evaluate the impact of rain patterns on the water level and the establishment of flood control standard in moun-
tain creek areas by conducting a case study. The case study was performed on a typical mountain creek area, called Shiliqu 
watershed in Hangzhou, China. A MIKE11 model was first established to analyze the required flood control standard through 
investigating the river level impacted by two rain patterns (the designed rainstorm and the typhoon Fitow). The results show 
that the designed rainstorm pattern and the typhoon Fitow rain pattern have the single-peak and multi-peak profile, respec-
tively. The peak rainfall value of the designed rainstorm pattern is much higher than that of the typhoon Fitow. However, the 
large fluctuations under the typhoon Fitow rain pattern causes multi-level overtopping which threats the safety of the flood 
control. Also, the typhoon Fitow could have a greater influence on the water level of the tributaries of the river than that of 
the mainstream. The selection of rain pattern on the design of flood control standard in mountain creek areas is discussed.
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Introduction

With the rapid urbanization, much attention has been 
paid to improve the flood control standard of cities, and 
flood control countermeasures have been continuously 
improved. Protection against f looding has become a 
national policy in the world (Brouwer and Van Ek 2004; 
Dircke and Molenaar 2015). The implementation of this 
policy is critical to the flood control management. Cruz 
et al. (2007) reported that people affected by flooding will 
rise to 94 million annually by the end of the  21st Century. 

To date, many global flood damages have occurred in Asia, 
particularly in China (Tingsanchali 2012). China’s hilly 
area exceeds two-thirds of the country’s land area with 
steep riverbed slope; this is conducive to the formation 
of mountain flood (Liu et al. 2017). Among these areas, 
the mountain creek area is flood-prone where flooding 
could lead to large disasters. Thus, the flood control for 
the mountain creek area is critical to protecting people’s 
safety and property. Floods in the creek area are difficult 
to discharge considering the following special character-
istics: (1) The terrain varies greatly, and the geological 
structure is rather complicated; (2) The river slope is steep, 
and collecting area is small; (3) Heavy rain with large 
intensity is rather concentrated; (4) Having a strong sand-
carrying and scouring capacity. The mountain creek area is 
also challenged by other factors. For example, the typhoon 
influences the mountain creek. The water level in the river 
is generally high during the typhoon season, which may 
cause flooding and destruction of villages, roads, bridges 
(Gaillard et al. 2007; Liu et al. 2009a, b). Typhoon pre-
cipitation is an important cause of heavy rain and floods. 
The rain pattern induced by typhoon could be different 
from that caused by other precipitations. The rainfall pat-
tern is the rain intensity that shifts with time, reflecting 
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the surface runoff. Liu et al. (2009a, b) reported that the 
occurrence of geological disasters is related to rain pat-
terns besides rain duration and rainfall. Currently, typical 
historical rainstorms have often been used as the designed 
rainstorm patterns for the flood control standard, which is 
calculated by the flood frequency method. The flood con-
trol standard is the design flood of a certain return period, 
and the actual flood is used as the flood control standard in 
some places. When a flood that is not greater than the flood 
control standard occurs, the proper use of the flood control 
system can generally ensure the safety of the protected 
objects. The rain pattern is thus expected for being consid-
ered to design the flood control standard, but little research 
studied the influence of the typhoon rain pattern on the 
flood control in small watersheds. Most studies focus on 
other rain patterns. Huff (1967) proposed four types of 
typical rain patterns as designed rain patterns to construct 
storm models for hydrologic applications. Yen and Chow 
(1980) proposed an asymmetric triangular rain pattern, 
and the peak rainfall position was determined by the sta-
tistical moment method. Forestieri et al. (2016) applied a 
hydrological model to simulate the rainstorm-type flood-
ing process of different design areas in the Sicilian Basin 
research and obtained the early warning mechanism of 
critical rainfall. Pedrozo-Acuña et al. (2017) researched 
the flood caused by the historical torrential rains of differ-
ent rain patterns in the various return periods of Tabasco, 
Mexico. Various schemes were obtained for identifying 
the flooding points under various rain patterns and the 
countermeasures. The above studies have not discussed 
the impact of different rain patterns on the water level and 
flood control in a mountain creek. The research of different 
rain patterns can help us adopt a safer design of flood con-
trol standard and thus benefits flood control projects (Dale 
et al. 2018). It is important to analyze the flood control 
standard under different rain patterns in small watersheds. 
Besides, with the rapid urbanization, the environment of 
the underlying surface changes, and the hydrological con-
ditions have changed greatly (Kang et al. 1998; Klöcking 
and Haberlandt, 2002; Bari et al. 2005; Bronstert et al. 
2007; Lee et al. 2018). Further studies are needed for the 
applicability of the current rain pattern.

This study focuses on the understanding of rainfall pat-
tern and its impact on water level and flood control stand-
ards. A case study in Shiliqu, a typical mountain creek 
area in the northern part of Zhejiang Province, China was 
carried out. The influences of the conventional designed 
rainstorm pattern and the typhoon Fitow rain pattern on 
the water level and flood control are investigated. These 
two rainstorm patterns with distinguishable features are 
representative. Suggestions for flood control strategies 
in the mountain creek area are also proposed. Our study 
could provide guidelines for the selection of rain pattern 

on the design of flood control standard in mountain creek 
areas.

Methods

Study area

The Shiliqu small watershed in Yuhang District of Hang-
zhou is in the transition zone of the mountain plain with the 
mountainous hills to the west and the tidal flats to the east 
(Fig. 1). The drainage area is about 49.30 km2. Penggongji 
town is in the mountainous area and surrounded by moun-
tains in the north. Xiangpeng road and 104 national road are 
on the south. The terrain of Penggongji town, which is flood-
prone, is similar to a small basin. Qikengxi and Banshixi are 
the tributaries of the Shiliqu small watershed.

Because the rainstorm and plum rain appear alternately, 
the occurrence of bimodal rain pattern is short. The larg-
est peak rainfall is 152.0 mm (in June) and 155.6 mm (in 
September), respectively. The average annual rainfall is 
1363.3 mm, the maximum rainfall is 2018.2 mm (in 1954), 
and the minimum annual rainfall is 837.6 mm (in 1967). 
The rainfall distribution during the year was uneven mainly 

Fig. 1  Shiliqu drainage diagram
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concentrated in April and September, accounting for 66% 
of the annual rainfall.

Establishment of river networks model

A hydraulic software developed by the DHI (Danish Hydrau-
lic Institute), MIKE11 (Kumar et al. 2019) is used to study 
one-dimensional hydrodynamics, such as water quality (Cox 
2003; Liang et al. 2015), rainfall runoff (Kumar et al.  2019), 
flood forecasting (Panda et al. 2010), reservoir operation 
strategies (Lee et al. 2018), and water resources manage-
ment (Doulgeris et al. 2012). It is a widely used commer-
cial hydrodynamic calculation model (Havnø et al. 1995). 
The HD (hydrodynamic) module in the MIKE11 software 
is used to calculate unsteady flow and analyze the variation 
of water level in each control section along the river. By 
using Structure Operation (SO) modules, gates, bridges and 
other buildings are simulated according to the position and 
form of the actual structures. The discharge capability of the 
structures coupled with hydrodynamic matrix equation is 
first calculated. If the highest water level of the river channel 
for different rain patterns is lower than the bank elevation, 
the flood control standard is regarded to be safe. The highest 
water level is thus obtained for the flood control standard.

Basic equations and discrete formats

The hydrodynamic calculation model is based on the 
Saint–Venant’s equations to simulate the river flow state:

where x (m) is the distance coordinate; t (s) is the time coor-
dinate; A(m2) is the area of the river section; Q(m3/s) is the 
discharge of the river section; q(m2/s) is the discharge of 
the lateral inflow per unit of length; inflow is positive and 
outflow is negative; α is the dimensionless correction factor 
of momentum; g(m/s2) is the gravity acceleration; h(m) is 
the water level; C is the Chézy coefficient, C = R1/6/n; n is 
the roughness coefficient of the river; R(m) is the hydraulic 
radius; Vx (m/s) is the inflow rate along the flow direction. 
The Abbott six-point central implicit difference method 
(Liang et al. 2015) was used to numerically discretize the 
Saint–Venant equation, and the “catch-up method” was 
applied to solve the difference equation. The water level 
and flow value are calculated at different grid points with 
alternative order. The position of each measured section is 
the water level calculation point, and the midpoint of the two 
water level calculation points is the discharge calculation 
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point. As the Abbott six-point difference method is uncon-
ditionally stabilized, select 2 min as the time step.

Boundary conditions

The discharge boundary is adopted for the upstream area 
of the model. The 10% frequency-designed rainstorm flood 
discharge was used as the discharge boundary according to 
the flood control standard in Banshixi, Qikengxi, Shiliqu. 
The flood calculation was applied for the Banshixi, Qikengxi 
tributary, and the calculated discharge was imported to the 
entry point of the tributaries in the model through the inflow 
boundary. The directly measured stage-discharge curve is 
adopted for the downstream area.

Parameter calibration

The water level change of the Banshixi hydrological station 
during the landfall of the typhoon Fitow was used for the 
parameter calibration, considering the lack of floodplain sur-
vey data in the river channel. The discharge calculated from 
the flooding data during the landfall of the typhoon Fitow 
is adopted for the boundary condition in the upstream. The 
stage-discharge curve (Darby and Thorne 1996) is adopted 
for the downstream. The calculation results of the water level 
and the measured data of the Banshixi hydrological station 
are shown in Fig. 2a and consistent with the measured data 
and the verification requirements. The main-channel bed 
roughness of the Shiliqu mainstream, Qikengxi and Banshixi 
tributary is set as 0.026–0.032, 0.03–0.036 and 0.025–0.03, 
respectively.

Design of the rain patterns

Design rainstorm pattern

There is no general rainfall data of the Shiliqu small water-
shed. The atlas method was applied to obtain the designed 
rainstorm pattern. The rainstorm distribution pattern can 
be calculated according to the rainfall ranking rules of the 
“Zhejiang Short-Term Rainstorm” period.

Typhoon Fitow rain pattern

Two major floods in Penggongji town during the typhoon 
landfall occurred, “Rosa” in 2007 and “Fitow” in 2013 
(Wang et al. 2017). “Fitow” caused the most dangerous 
flooding. To obtain the data under extreme conditions, the 
typhoon Fitow rain pattern is used from the data measured 
in the Penggongji automatic water level gauge station.

Figure 2b shows the comparison between two rain pat-
terns. From 1 to 13 o’clock, the rainfall of the typhoon Fitow 
rain pattern is close to that of the designed rainstorm pattern. 
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The designed rainstorm pattern is single-peak, and the main 
rainfall is concentrated around 18 o’clock. The peak value 
of the designed rainstorm pattern is higher than the typhoon 
Fitow rain pattern about 40 mm, which leads to safer flood 
control standards. The typhoon Fitow rain pattern shows 

a multi-peak shape, and the main rainfall is concentrated 
around 14–22 o’clock. The peak value of the typhoon Fitow 
rain pattern is much lower than the designed rainstorm pat-
tern. However, rainfall fluctuations under the typhoon Fitow 
rain pattern are large and consistent with the actual situation.
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Fig. 2  a Evaluation of Shiliqu hydrodynamic model and b comparison of the designed rainstorm and the typhoon Fitow rain pattern
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Results and discussion

The calculated water surface curve under the designed 
rainstorm pattern and the typhoon Fitow rain pattern, left 
and right bank elevation of the mainstream of the Shiliqu 
watershed are compared in Fig. 3a. The bank elevation of 
the mainstream shows large fluctuations, especially in the 
left side bank, and the maximum difference is about 4.8 m. 
The calculated water surface profile under the designed 
rainstorm pattern experienced a rapid downward trend 
from the upstream to downstream. The maximum gradi-
ent was observed in the No. 23 pile. The downward trend 
of water surface profile is slower under the typhoon Fitow 
rain pattern than under designed rainstorm pattern. The 
water surface profile height is lower under the typhoon 
Fitow rain pattern than under designed rainstorm pattern. 
The water surface profiles are close from the No. 24 pile 
to the No. 28 pile under two rain patterns. Most water sur-
face profile under the designed rainstorm pattern is higher 
than the bank elevation. Most water surface profile under 
the typhoon Fitow rain pattern is lower than the bank ele-
vation. The comparison shows that it is safer to use the 
designed rainstorm pattern than the typhoon Fitow rain 
pattern for formulating the flood control standard.

To display the different water levels caused by the two 
rain patterns, data from the Station of Banshixi tribu-
tary were analyzed and shown in Fig. 3b. When the town 
encounters a ten-year flood under the designed rainstorm 
pattern, the water surface profile displays a single-peak 
shape and the maximum water level is 10.3 m, which 
exceeds the ground elevation by 1.7 m. The water level 
exceeds the ground elevation at 4:25 pm and the overtop-
ping time is about 2 h. Under the typhoon Fitow rain pat-
tern, the water surface profile displays a multi-peak shape 
and the maximum water level is 9 m, which exceeds the 
ground elevation by 0.4 m at around 16 o’clock. The sec-
ond peak at 18 o’clock reaches the ground elevation at 
8.6 m again. The water level fluctuates intensely from 6 
to 21 o’clock. Figure 3 shows the comparison of different 
rain patterns. The water level under the designed rainstorm 
pattern is lower than that under the typhoon Fitow rain pat-
tern from 1 to 13 o’clock in the tributaries, and its water 
level’s fluctuation is less than that of the Fitow rain pat-
tern. Larger fluctuations under the Fitow rain pattern may 
result in multi-level overtopping which threats the safety 
of the flood control. Therefore, different rainstorm patterns 
should be considered in the actual flood control design.

Given that most river banks and channels in mountain 
creek area are not well designed and properly maintained, 
the protection of river bank and remediation of river chan-
nels are necessary to avoid the water level exceeds the 
ground elevation under the impact of typhoon rain. The 

analysis shows that the tributary water level fluctuates 
greatly under the typhoon Fitow rain pattern and reaches 
the ground elevation twice. If the channel is blocked or 
damaged, the water level of the narrow channel signifi-
cantly increases and exceeds the flood control standard. 
The effect of the typhoon rain pattern on the water level 
and the flood control design should be considered. The 
flood discharge capacity of the river channel should meet 
the minimum requirement because the water level rises 
rapidly under the designed rainstorm pattern.

Currently, the typical single-peak rainstorm pattern is 
mostly used for flood control. Our study shows that the 
multiple-peak typhoon is an important cause of flood dis-
asters besides single-peak rainstorm. The typhoon rain pat-
tern should be considered for establishing the flood control 
standard. The mountainous area may encounter a second 
heavy rainstorm during a bimodal rainstorm, which would 
cause an accumulated rainfall higher than the designed 
rain pattern. An efficient flood control system that consid-
ers terrain shape, ground elevation, surrounding road traf-
fic, and rain pattern could improve the discharge capacity 
and prevent floods (Cheng 1999; Perry and Benet 2000; 
Wittenberg et al. 2004; Chang et al. 2008).

Conclusions

The hydrodynamic mathematical model of the river net-
work was established to analyze the influence of rain pat-
terns (typically designed rainstorm and the typhoon Fitow) 
on the flood control of the mountain creek area. The fol-
lowing conclusions are obtained:

• The large fluctuations under the typhoon Fitow rain pat-
tern cause twice overtopping which threats the safety 
of the flood control. Different rain peaks may overlap, 
and the water level could be rather high and exceed the 
ground elevation.

• The typhoon Fitow rain pattern has a greater impact on 
the tributary water level but less impact on the main-
stream water level than the designed rainstorm pattern.

• The maximum water level varies under different rain 
patterns in the mountain creek areas. The water level 
under the designed rainstorm pattern is significantly 
higher than that under the typhoon rain pattern.

• Strong typhoon rain could produce accumulated high-
water levels that exceed the ground elevation and cause 
large losses. Considering the multi-peak rain pattern in 
the flood control design can enhance flood resistance.
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