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Abstract
Increase in industrial and anthropogenic activities leads to a decline in water quality. This necessitates the need for the 
removal of contaminants from industrial and domestic wastewater. Clay minerals are naturally abundant and non-toxic 
materials that found to be useful for remediation of emerging contaminants from wastewater. This review paper presents an 
insight into clay, the simplest material (in solgel techniques) for the synthesis of  TiO2 and ZnO, mechanisms of their reactions, 
analytical techniques used for characterizations, and their nanocomposites for wastewater treatment. Nanomaterials, such as 
nanoclay, titanium, and zinc oxide, have offered the opportunities of sequestering variety of pollutants in wastewater.  TiO2 and 
ZnO anchored on clay have been found to be good promising sequesters and have been explored for wastewater remediation 
via nanotechnology. This water treatment method includes adsorption/absorption, photocatalysis, and microbial disinfection. 
These nanocomposites provide more active surface sites and reduce the agglomeration of the nanoparticles, but leaching 
has been their shortcomings. To overcome this, the filtration technique may become significant for the removal and avoid-
ance of fouling of wastewater. This can be achieved through the fabrication of nano-based filters using the nanocomposites.
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Introduction

Population growth, migration, increasing urbanization, and 
industrialization over the years have influenced the demand 
for freshwater resources. It was projected by the World 
Health Organization (WHO) (2014) that 50% of the global 
population will be living in water-stressed regions. Industrial 
production, intensive agriculture, mining, and urban utiliza-
tion have led to an increase in water use, which eventually 
have greatly impacted the quality of water available world-
wide. Untreated domestic wastewater and industrial effluents 
contain a variety of organic and inorganic pollutants. Thus 
the discharge of wastewater from these sources into the eco-
system leads to its pollution.

It has been reported that more than 1.1 billion people 
globally have access to clean drinking water due to growing 
populations, and increasing economic activities which have 
actually led to the deprivation of environmental services 
(WHO 2015). These factors, coupled with inadequate waste-
water management, pose momentous threats to human health 
and well-being of the human race. Efforts to have access to 
safe drinking water have been hindered by the release of pol-
lutants to water bodies. These pollutants, which are organic 
or inorganic in nature, have become an important issue in 

human development due to their detrimental effects on man 
and his animals.

Wastewater management approaches for the supply of 
safe water are difficult due to the stringent and fast-growing 
demand for clean water. Thus, understanding water treatment 
methods which are basically aimed at remediating water 
pollution problems is necessary. In this vein, wastewater 
treatment methods with high efficacy that will require less 
processing time and production of non-toxic by-products in 
the water are urgently required. Several conventional detoxi-
fication techniques have been practiced, and these include 
reverse osmosis, membrane filtration, electrocoagulation, 
electrodialysis, chemical precipitation, and adsorption, 
among others. Of all these methods, adsorption is commonly 
used based on its distinct merits that include energy-saving, 
cost-effectiveness, simplicity, wide operating range of fac-
tors such as pH, concentration, dosage, and temperature. 
Others include environmental friendliness, fast reclamation 
of organic and inorganic pollutants, and easy recycling of the 
sorbent (Sani et al. 2017; Vahidhabanu et al. 2017).

Adsorption can be defined as a surface phenomenon in 
which pollutants in the form of a molecule known as adsorb-
ate or sorbate are adsorbed on the solid surface called adsor-
bents or sorbents. This simple method of pollutant removal 
involves physical or chemical bonding of the contaminants 
with the functional group’s presence in the adsorbents. 
In recent decades, there have been several natural adsor-
bents that are used for sequestering of contaminants from 
wastewater. These include hydrophilic biopolymers such 
as chitosan (Preethi et al. 2017), carboxymethyl cellulose 
(Zahedi et al. 2017), and clay minerals (Motshekga et al. 
2016). Among these aforementioned polymeric materials, 
wide documentations on clay minerals for examples kao-
linite, bentonite, montmorillonites (smectite), illites, ver-
miculites, and chlorites that are mainly made up of silica, 
alumina, water, and weathered rock which could serve as 
alternative cheap materials for remediation of wastewater, 
have been studied (Uddin 2016). These minerals are phyl-
losilicates class of adsorbents with layers that are composed 
of tetrahedral (T) and octahedral (O) sheets either at 1:1 or 
2:1 ratio (Brigatti et al. 2013; Zhu et al. 2016). They possess 
some unique characteristics among other natural adsorbents, 
used for adsorption of heavy metals and also serve as a rem-
edy for ailments. Therefore, they can be used as excellent 
adsorbents for environmental bioremediation and bacteria 
removal from wastewater (Unuabonaha et al. 2017).

Advanced studies in recent years in nanotechnology have 
facilitated the application of nanomaterials of high per-
formance in order to tackle problems related to water and 
wastewater treatment. Nanoscale materials are dimensional 
substances smaller than 100 nm that exhibit some great 
physical and chemical features for water treatment (Zhang 
et al. 2016). These nanoparticles are used as functional 
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materials in forms of metals/oxides, zeolites, dendrimers, 
and carbonaceous materials (Bhattachajee et al. 2016).

Recent investigations on nanoparticles have revealed their 
potentials in wastewater treatment, especially in the area of 
adsorption. However, there are demerits of the direct use of 
nanoparticles in wastewater in terms of their aggregation in 
fluidized systems, difficulty in separation from the treated 
water and their fates in the treated water (Al-Hamadani et al. 
2015; Dale et al. 2015; Lofrano et al. 2016). Hence, the 
application of nanoparticles due to these disadvantages is 
very stringent. It is, therefore, imperative that nanoparticles 
should be encapsulated onto supporting materials such as 
polymers in order to reduce their release and also increase 
their reactivity. This approach involves the fabrication nano-
composites of great characteristics that include high surface 
area, recyclability, and cost-effectiveness. In particular, the 
high surface area will provide strong interaction between the 
nanocomposites and pollutants during adsorption.

Nanosize-based adsorbents such as metal oxides, gra-
phene, carbon nanotubes, and nanofibers are widely used 
for improving treatment of water and wastewater. This is 
because these nanomaterials are considered to have higher 
adsorptive performance than conventional adsorbents. The 
nanosized metal oxides, for example, zinc oxide (ZnO) 
(Chouchene et al. 2017) and titanium oxide  (TiO2) (Syn-
gouna et al. 2017), have exhibited favorable sorption toward 
organic and inorganic pollutants. The semiconductor pho-
tocatalyst,  TiO2 with external dimension in nanosize, has 
a wide range of applications in the field of cosmetic mate-
rials (Syngouna et al. 2017) and decontamination or min-
eralization of compounds in water to harmless inorganic 
anions (Szczepanik et al. 2017). Thus,  TiO2 nanoparticles 
(T-NPs) have received much attention among researchers 
due to their extensive characteristics (Nasirian and Mehrvar 
2016; Dariania et al. 2016; Lin et al. 2018). It is popularly 
known that  TiO2 powders in anatase phase have powerful 
catalytic activities due to their large surface area, surface 
chemistry, and redox properties. Another inorganic metal 
oxide, ZnO, serves as a nanoadsorbent due to its non-toxic 
profile, adsorptive properties, effective antibacterial activity, 
chemical, mechanical, and thermal stability (Ibrahim and 
Asal 2017). The use of zinc oxide nanoparticles when com-
pared to titania nanoparticles has higher adsorption rates for 
heavy metals (Rafiq et al. 2014).

There are challenges in the large-scale utilization of nano-
particles such as  TiO2 and ZnO in water treatment due to 
difficulty in their separation and recovery after treatment. 
In addition, the use of both metal oxides nanoparticles for 
water treatment has some disadvantages, namely: (1) higher 
colloidal stability in aqueous solution, (2) agglomeration of 
the nanomaterials at high concentrations, and (3) difficulty in 
separating and recovering the nanomaterial after use (Mar-
tins et al. 2017; Lei et al. 2017). However, steps have been 

adopted in order to overcome these shortcomings. These 
include doping and co-doping of metal oxide nanomaterials 
and immobilization of nanomaterials on suitable matrices 
(Soltani et al. 2016; Belver et al. 2016). This suitable sub-
strate could function as support in order to overcome the 
difficulties involved in post-separation and recovery.

Moreover, the support of nanosized semiconductor mate-
rials on matrices could help to enhance their activity when 
compared with ordinary nanomaterials. In this respect, vari-
ous clay matrices such as kaolinite, montmorillonite, and 
bentonite have been successfully employed as support. Kao-
linite has exceptional crystal chemical features. Therefore, it 
could act as a suitable matrix for anchoring  TiO2 and ZnO 
nanoparticles (Dědková et al. 2015; Hadjltaief et al. 2017). 
Immobilizing and anchoring nanosized  TiO2 and ZnO nano-
particles on the surface of clay minerals provide more active 
surface sites, reduces the agglomeration of the nanoparticles, 
and prevents the release of nanoparticles into the environ-
ment. Clay nanocomposites have become major components 
of clay with metallic nanoparticles used in recent research 
findings in tackling environmental pollutants.

Since,  TiO2 and ZnO nanoparticles are cheap, non-toxic, 
and capable of removing emerging contaminants, and given 
the fact that rural communities are affected by contaminants 
from wastewater, cheaper and environmentally friendly 
methods for the wastewater treatment need to be adopted 
for water and wastewater treatment. Thus, this review of 
literature examines the simple methods for the preparation 
of  TiO2 and ZnO and discusses some classes of clay and 
their adsorptive and photocatalytic characteristics for their 
possible employment in the removal of contaminants from 
wastewater.

Wastewater treatment

Different methods have been developed and used for the 
treatment of wastewater. Some of the adopted techniques 
are centrifugation (Peeters 2015), filtration (Cardenas et al. 
2016), flotation (de Oliveira da Mota et al. 2015), evapo-
ration (Li et al. 2016), distillation (Ji 2018), ion exchange 
(Tan et al. 2017), precipitation (Sun et al. 2017), electroly-
sis (Huang et al. 2016), electrodialysis (Akhter et al. 2018), 
adsorption (Guillaume et al. 2018; You et al. 2019), crystal-
lization (Lu et al. 2017), micro and ultra-filtration (Pinto 
et al. 2017), sedimentation and gravity separation, reverse 
osmosis (Venzke et al. 2017), and coagulation (Mousa and 
Hadi 2016). However, these prevailing technologies have 
some setbacks such as being time-consuming and costly and 
leading to the generation of toxic sludge. Therefore, there 
is an urgent need to overcome these shortcomings. Among 
these methods, adsorption is found to be the most prom-
ising owing to its simplicity, environmental friendliness, 
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adsorption efficiency, and cost-effectiveness. Adsorption 
technology depends on the utilization of either modified 
or unmodified adsorbents controlled by parameters such as 
contact or residence time, pH, concentration, temperature, 
and adsorbent dosage (Al-Essa and Khalili 2018). The phe-
nomenon governing the uptake of pollutants from waste-
water onto different adsorbents is strong forces and weak 
bondings. Adsorption is established by batch and column 
adsorption studies. The batch adsorption is widely utilized 
for wastewater treatment based on its simplicity and general 
application on a small scale for the assessment of adsorptive 
capacities of adsorbents in static conditions.

Generally, some theoretical approaches have been 
employed for the explanation of the interactions between 
sorbents/adsorbents and sorbates/adsorbates, and these 
include equilibrium isotherm, kinetic, and thermodynamic 
studies. Adsorption equilibrium, on the one hand, explains 
the physicochemical processes involved in sorption and 
kinetic measures. The degree of the transport mechanism 
of wastewater in adsorbent which comprises of the external 
mass transfer of the sorbate from the bulk solution to the 
surface of the sorbent, the internal diffusion of the sorbate 
to the adsorption site, and the overall adsorption process 
(González and Pliego-Cuervo 2014), while thermodynamic 
describes the attractive and repulsive interaction such as 
electrostatic or dipole and van der Waals, expressed in terms 
of free energy. The thermodynamic parameters at different 
temperature are computed using the following equations 
(You et al. 2018):

Over the years, various equilibrium isotherms and kinetic 
models have been established by researchers in order to 
explain the dynamic adsorption behavior of pollutants onto 
adsorbents. Table 1 shows some equilibrium isotherms and 
kinetic models proposed for the adsorption of pollutants in 
wastewater samples. 

Nanotechnology for water sustainability

The applications of physical, chemical, and biological pro-
cesses to wastewater treatment have some disadvantages 
due to the presence of some non-biodegradable pollutants 
which frequently are toxic to microorganisms, man, and 
his farm animals. Hence, wastewater treatment technology 
with prolific efficiency and low cost is always required for 

(1)K
d
=

q
e

C
e

(2)ΔG = −RT lnK
d

(3)ΔG = ΔH − TΔS

wastewater treatment. As a result of this, nanotechnology, in 
lieu of other treatment methods, has shown some potential 
for wastewater remediation by adsorption (Zekic et al. 2018). 
Thus, in recent years, researchers have shown vast interests 
in this topic as an improvement over existing methods.

Nanotechnology is a field of nanoscience where nano-
materials with dimensions less than 100 nm are developed 
in various forms and used for many purposes (Jeevanandam 
et al. 2018). These include nanotubes, nanowires, parti-
cles, films, fiber, colloids, nanorods, and quantum dots or 
nanocrystals as shown in Fig. 1. 

The environmental applications of nanotechnology 
include the removal or degradation of hazardous materials, 
sensors for the level of environmental pollution, and pollu-
tion preventer (Khan et al. 2017). The unique properties of 
these nanomaterials are high reactivity, large surface area, 
easy separation, small size, high catalytic properties, and 
presence of many active sites for binding of pollutants.

In general, these nanomaterials are categorized into: 
(1) nanoadsorbents (2) nanomembrane (3) nanocatalysts, 
and (4) nanofiber. Numerous works have been done using 
nanoadsorbent, nanofiber, and nanocatalyst materials in 
water nanoadsorption technology in recent years (Rafati 
et al. 2019; Voigt et al. 2019; Mousavi et al. 2019). The 
properties of these nanomaterials are responsible for their 
high adsorption capacities in wastewater treatment. The 
commonly used materials for wastewater remediation are 
clay, activated carbon and silica, metal oxides such as 
titanium oxide, zinc oxide, nickel oxide, iron oxide, tung-
sten oxide, copper oxide, and alumina. Along with other 
metal oxides nanomaterials,  TiO2 and ZnO have attracted 
the interest of scientists in wastewater treatment processes. 
Therefore, nanomaterials have effectively contributed to the 
establishment of robust and cost-effective water adsorption 
techniques (Gehrke et al. 2015).

Synthesis and characterization 
of nanoparticles

Several techniques have been employed for the synthesis 
of titanium oxide and zinc oxide nanoparticles. These have 
been categorized into three major classes: (1) liquid phase, 
(2) gas phase, and (3) vapor phase.

The wide employment of these materials for nanomate-
rial production is, as a result, their properties such as envi-
ronmental friendliness and moderate prices. Among the 
techniques used for the production of these nanomaterials, 
wet chemical methods have been known to be the best, and 
these include microemulsion, hydrothermal/solvothermal, 
precipitation, and solgel methods which have been well stud-
ied. Of these, the solgel method is reported to be the sim-
plest and the most economical thus the most often used to 
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synthesize  TiO2 (Dodoo-Arhin et al. 2018) and ZnO (Kaneva 
et al. 2016) nanoparticles. However, there are still ongoing 
researches on the synthesis of  TiO2 and ZnO nanoparticles 
using the solgel method.

Solgel method

Among the wet chemical methods, the solgel is a sophisti-
cated method also known as chemical solution deposition 
which is the most often used method for the production of 
 TiO2 and ZnO and practically used in the field of material 
science, wastewater treatment, and ceramic engineering. In 
general, the solgel method mainly encompasses the use of 
chemical solutions which act as the precursors for the gel 
of either separate or network particles. The method helps to 
control the stability and phase formation of the precursors. 

During this process, the gel which contains alcohol, precur-
sor, and water constitutes the interconnected porous matrix. 
Therefore, an integrated network gel-like diphasic solution 
containing both liquid and solid phases is produced, while 
the typical precursors of the metal oxide nanoparticles on 
the addition of water form a colloid (Kumar et al. 2015). 
At this stage, the particle density may be low in such a way 
that some amount of fluid may need to be evacuated for a 
complete gel-like property to be established. This can be 
achieved firstly, by allowing sedimentation to occur and then 
the liquid is poured off, and secondly, by centrifugation for 
phase separation.

The removal of the remaining solvent phase needs a dry-
ing process to enable densification and reduction in size. 
Afterward, the metal oxide as an aerogel would be obtained 
either by evaporation of the solvent used during the time 

Table 1  List of adsorption isotherms and kinetics models used for the elucidation of pollutants removal from wastewater

Model Equation Linear form References

Isotherm Freundlich ln qe = lnKF +
1

n
lnCe

Freundlich (1906)

Langmuir Ce

qe
=

1

bQm

+
Ce

Qm

Langmuir (1916)

Tempkin qe = a + BT lnCe Temkin and Pyzhev (1940)
Dubinin–Radushkevich ln qe = lnQm − k�2 Dubinin and Radushkevich (1947)
Redlich–Peterson ln

Ce

qe
= � lnCe − lnA Redlich and Peterson (1959)

Sips �s ln
(

Ce

)

= − ln
(

Ks

qe

)

+ ln
(

as
) Sips (1948)

Harkin–Jura 1

q2
e

=
B

A
−

(

1

A

)

lnCe
Livingston (1949)

Jovanovic lnqe = lnqmax − KJCe Jovanovic (1969)
Koble–Carrigan 1

qe
=

(

1

AKC
p
e

)

+
BK

AK

Koble and Corrigan (1952)

Jossens ln
(

Ce

qe

)

= − ln (H) + Fq
p
e

Jossens et al. (1978)

Elovich ln
(

qe

Ce

)

= lnKeqm −
qe

qm

Elovich and Larinov (1962)

Flory–Huggins ln
(

�

Co

)

= lnKFH + nH ln (1 − �)
Flory (1941)

Hill–Deboer ln
[

Ce(1−�)

�

]

−
�

1−�
= − lnK1 −

K2�

RT

De Boer (1953)

Kiselev 1

Ce(1−�
=

Ki

�
+ KiKn

Kiseler (1958)

Brunauer–Emmett–Teller Ce

qe(Cs−Ce)
=

1

qmCBET

+
(CBET−1)Ce

qmCBETCs

Bruanuer et al. (1938)

Kinetic Pseudo-first-order ln
(

qe − qt
)

= ln qe − k1t Lagergren (1898)
Pseudo-second-order t

qt
=

1

q2
e
k2
+

t

qe

Elovich qt =∝ ln (a�) + � ln t Roginsky and Zeldovich (1934)
Avrami ln [− ln (1− ∝)] = nAVKAV + nAV ln t Avrami (1940)
Boyd F =

qt

qe
= 1 −

6

�2
exp

(

−Bt

) Boyd et al. (1947)

Bangham log
[

log
(

Ci

Ci−qtM

)]

= log
(

KjM

2.303V

)

+ � ln t

Weber and Morris qt = Kid

√

t + A Weber and Morris (1963)

Fractional power log qt = logK + V log t
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of washing from the wet gel or by supercritical drying as 
shown in Fig. 2.

Importantly, the produced gel can be classified into two 
forms depending on the kind of solvent utilized, namely 
aqueous (use of water) and non-aqueous (use of organic 

Fig. 1  Images of some nano-
materials

Quantumdot or Nanocrystal Nanotube Nanoparticles 

Nanofiber Nanocolloid Nanowire

Nanofilm

Fig. 2  Different stages and routes of the solgel method



Applied Water Science (2020) 10:49 

1 3

Page 7 of 36 49

solvent) solgel (Rao et  al. 2017). Further treatment of 
the wet gel could also convert the gel into dense glass or 
ceramic, which offers high purity, uniform nanoparticles at 
low-temperature processing, molecular homogeneity, and 
fine particle size. However, parameters such as the addition 
of reactants, temperature or calcination, pH, and solubility of 
chemicals in the solvents affect the molecular homogeneity 
of the gel (Bahar et al. 2017).

Synthesis and mechanism of  TiO2

TiO2 is a white solid crystalline powder insoluble in water. It 
has been considered a non-toxic material that can be used for 
the production of nanomaterials with a high concentration of 
hydroxyl groups, stability, and catalytic efficiency (Bagheri 
et al. 2014).  TiO2 is also known as titania, which naturally 
exists in three forms, namely, anatase, rutile, and brookite. 
Both the anatase and rutile forms have tetragonal shapes, 
while brookite has orthorhombic shape. Other phases that 
can be synthesized are  TiO2B,  TiO2H (hollandite-like form), 
 TiO2R (ramsdellite-like form),  TiO2II (α-PbO2-like form), 
akaogiite (baddeleyite-like form, 7 coordinated Ti),  TiO2O, 
cubic form, and  TiO2 OII (cotunnite  PbCl2 like) (Ullatti and 
Periyat 2017). To synthesize anatase, rutile and brookite 
 TiO2 nanoparticles, hydrolysis, condensation, and calcina-
tion are employed (Fig. 3).

The solgel method is commonly used to synthesize  TiO2 
nanoparticles, and the most commonly used precursors are 
titanium(IV) tetraisopropoxide (TTIP), titanium chloride, 
titanium(IV) tert-butoxide, bis (cyslooctatraene) titanium, 
tetraisopropylorthotitanate (TIPT), potassium titanium oxa-
late (KTO), butyl titanate (TBT), and titanium(IV) butox-
ide (Morales et al. 2013; Singh et al. 2017). During this 

process, the formation of colloid is as a result of hydrolysis 
and polycondensation reactions. An acid and a base help in 
the hydrolysis of the precursor. However, the four stages that 
occur during the solgel formation are hydrolysis, conden-
sation, growth, and agglomeration of particles. Thus, this 
process proceeds by hydrolytic polycondensation of titanium 
precursors being alkoxides or chlorides in the presence of 
solvents, modifiers, and organic templates. The reaction 
starts with hydrolysis, which is the formation of Ti–OH 
moieties by the substitution reaction of water with Ti–OR 
groups. The precursors undergo condensation reactions to 
produce Ti–O–Ti by oxolation or Ti–OH–Ti bonds by ola-
tion (Islam et al. 2017). The mechanisms for the formation 
of  TiO2 nanoparticles are presented in Fig. 4.

Various researchers have outlined some steps for the syn-
thesis of  TiO2; for instance, about 20 cm3 of titanium tetrai-
sopropoxide solution was added to isopropanol solution in 
a beaker, and the resultant mixture stirred at 80 °C for 1 h. 
To the mixture, 8 cm3 of concentrated nitric was added and 
kept under constant stirring at 60 °C for 6 h after which a 
gelatinous solgel solution was obtained. The obtained solgel 
was calcined at the 300 °C for 2 h to obtain  TiO2 nanocrys-
tals by Sharma et al. (2014).

According to Devi et al. (2014), titanium tetraisopropox-
ide was used as a precursor and then mixed with ethanol, 
deionized water and adjusted to the pH of 1.5 with HCl. This 
was stirred for 30 min, and further 10 cm3 of deionized water 
was added and then stirred for 2 h. The resultant mixture was 
dried at 120 °C for 1 h.

A little modification was made by Phonkhokkong et al. 
(2016) for the preparation of the nanoparticles. About 
9 cm3 of titanium (IV) butoxide (Ti(OBu)4) solution was 
measured into 35 cm3 of ethanol and then stirred for 2 h. 

Fig. 3  Steps for the synthesis of crystalline anatase, rutile, and brookite  TiO2 nanoparticles (Yahaya et al. 2017)
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A hydrolyzed solution was obtained and further stirring 
was done for 2 h. Comprehensive washing was done on 
the white precipitate obtained with ethanol and water and 
then dried at 100 °C for 3 h. This was then calcined at 
400 °C for 2 h.

Titanium isopropoxide (Ti(OCH(CH3)2)4) and citric acid 
((C3H5O(COO)3)H3·H2O) were used as precursors at a mole 
ratio of 1:3, respectively, according to the method adopted 
by Pookmanee and Phanichphant (2014). The solutions were 
adjusted with ammonium hydroxide  (NH4OH) to the pH of 
2, 4, and 6. The final solutions were firstly oven-dried at 
80 °C for 24 h and calcined at 400 and 800 °C, respectively, 
for 2 h.

According to Liu et al. (2014), dibutyl phthalate was used 
as a precursor, and a certain amount of it was measured into 
a beaker that contained 20 cm3 of ethyl alcohol. The solution 
was stirred for 60 min, and then drops of concentrated HCl 
were added to the mixture. The authors failed to ascertain 
the exact pH of the solution. The gel was oven-dried at 80 °C 
for 7 h and calcined at 550 °C for 2 h.

The synthesis of  TiO2 was performed by Yin et al. (2016) 
using 10 cm3 of tetrabutyl titanate to which 15 cm3 of deion-
ized water, 8 cm3 of 5% nitric acid, and 300 cm3 ethanol 
were added. In their study, polyacrylamide (PAM) and poly-
ethylene glycol (PEG) were used as composite templates 
to produce mesoporous  TiO2 samples with large specific 
surface area and high crystallinity. Vigorous stirring was 
done on the resulting mixture to produce a white gel, dried 
at 80 °C for 1 h, and then two-step calcined at 500–700 °C 
and 500 °C, respectively.

TiO2 colloidal solution was prepared by hydrolysis of 
titanium tetraisopropoxide (TTIP) by Kavitha et al. (2014) 
who reacted 1 cm3 of titanium tetraisopropoxide with 4 cm3 
of acetic acid. The resultant mixture was hydrolyzed with 
10 cm3 of distilled water and vigorously stirred for 1 h. This 
was kept in an oven at 100 °C and then annealed at 300 and 
600 °C for 1 h.

Bahar et al. (2017) synthesized  TiO2 nanoparticles using 
 TiCl4 as the precursor.  TiCl4 was added to ethanol, isopro-
panol, and butanol at a molar ratio of  TiCl4/alcohol of 1:10. 
The solutions were stirred and calcination process was per-
formed at 450 °C. Effects of alcohol type, calcination, gelati-
nizing time, and microwave exposure on the particle size, 
morphology, crystallinity and particle-phase were studied.

Divya et al. (2017) prepared double precursors for the 
synthesis of  TiO2 nanoparticles. The first precursor was 
made by adding TTIP with 2-propanol. To this solution, 
200 cm3 of distilled water was added and 2 M nitric acid 
was used to adjust the pH to 2. A 5 cm3 of TTIP taken to 
be the second precursor was added in drops to the firstly 
prepared solution and allowed to settle down under a tem-
perature of 60 °C for 30 min. The sol was washed with 
distilled water and methanol to remove the impurities. The 
resultant precipitate was dried to obtain a fine white pow-
der of  TiO2. In another study, about 50 cm3 of deionized 
water was added to 3.5 cm3 of the  TiCl4. To this mixture, 
a drop of ammonium hydroxide  (NH4OH) was added to 
obtain a yellow gel. The formation of the yellow color 
was taken as an indication of the presence of Ti(OH)4. 
The solution was stirred for 30 min and then centrifuged. 
The precipitate was allowed to dry at 200 °C for 4 h. The 
amorphous white  TiO2 was calcined in the furnace at 250, 
400, and 600 °C for 4 h (Hayle and Gonfa 2014). Mous-
saoui et al. (2017) prepared nanocrystalline powders of 
 TiO2 xerogel and aerogel using an acid-catalyzed solgel 
method. The synthesis of these nanoparticles began by 
reacting the solution of TTIP in isopropyl alcohol with 
water. The solution was stirred at room temperature and 
the formation of white precipitate known as Ti(OH)4 was 
left overnight in order to ensure complete hydrolysis. 
The alcohol was then separated from the mixture using 
rotary evaporator, and drops of acetic acid were added. 
The precipitate was transferred to a Teflon-lined stainless-
steel autoclave and heated at 300 °C at 100 bars for 1 h to 

Fig. 4  Hydrolysis and conden-
sation reactions of titanium iso-
propoxide for  TiO2 production (H3C CH
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produce  TiO2 aerogel. However, the second class of the 
nanoparticles known as  TiO2 xerogel was prepared by dry-
ing at 200 °C under an atmospheric condition for 10 days. 

Table 2 describes the characterization, experimental con-
ditions, and crystallite sizes of synthesized  TiO2 nanopar-
ticles using solgel.

Table 2  Summary of synthesized  TiO2 nanoparticles via solgel method from 2013 to 2018

Crystallite size (nm) Characterization Raw material Condition References

– XRD, FTIR, SEM, TEM, 
TGA 

Titanium isopropoxide, 
tetra-n-butyl orthotitanate, 
ammonia, sodium hydrox-
ide, nitric acid

pH 10 Gómez-de-Salazar et al. 
(2016)

8 XRD, DRS Titanium isopropoxide, plu-
ronic P123, acetylacetone, 
nitric acid

Calcined at 400 °C Smirnova et al. (2017)

9–23 XRD, SEM, EDX Tetra-n-butyl orthotitanate, 
hydrochloric acid, ammo-
nia solution, methanol

pH 4–6, calcination tem-
perature of 450–750 °C

Dalvandi and Ghasemi (2013)

13 XRD, HRTEM-EDXS, XPS, 
RAMAN, UV–Vis

Titanium butoxide, ethanol, 
hydrochloric acid

Calcined at 400 °C Mathews et al. (2014)

9–12 TGA, XRD, TEM, FTIR, 
UV–Vis

Titanium isopropoxide, gla-
cial acetic acid, gelatin

Calcination temperature of 
500 °C

Bagheri et al. (2014)

8.27–19–96 XRD, BET, XPS, UV–Vis, 
RAMAN, FESEM, FTIR, 
HRSEM

Titanium isopropoxide, etha-
nol, nitric acid, ammonia 
solution

Aging time for 24 h, cal-
cination temperature of 
400–600 °C

Kassahun et al. (2017)

10 XRD, EDS, TEM, FTIR, 
UV-DRS, UV–Vis

Titanium oxysulfate, 
ammonia

Calcined at 400 °C Khade et al. (2016)

– XRD, FESEM, FTIR, DRS, 
EDX, PL

Titanium isopropoxide, 
acetic acid

Calcination temperature of 
400 °C

Marami et al. (2018)

~6 XRD, SEM, FTIR Titanium isopropoxide, dis-
tilled water, nitric acid

Calcined at 400 °C Thangavelu et al. (2013)

58–111 XRD, AFM, FETEM, PL Titanium chloride, ethanol Gelatinization time, cal-
cination temperature of 
500–900 °C

Sabry et al. (2016)

– XRD, SEM, TEM, BET Titanium isopropoxide, 
nitric acid, ethanol

– Sheikhnejad-Bishe et al. 
(2014)

8–10 XRD, TEM, DRS-UV Titanium isopropoxide, ace-
tic acid, sodium hydroxide

pH 2–5, aging time of 
0–21 days

Fajriati et al. (2017)

10 XRD, UV–Vis, FTIR, 
FESEM, EDS

Titanium isopropoxide, 
ethanol, distilled water

Calcination temperature of 
450 °C

Sakthivel and Jagannathan 
(2017)

17 XRD, UV-DRS, BET, 
FESEM, HRSEM, EDXA

Titanium isopropoxide, 
deionized water

Calcined at 450 °C Govindaraj et al. (2015)

– XRD Titanium isopropoxide, 
distilled water

Calcination at 400 °C Oganisian et al. (2015)

15 and 32 XRD, TEM, SEM, FTIR Titanium tetrachloride, 
ethanol

pH 1–2, calcined at 500 °C 
and 900 °C

Haider et al. (2015)

10 XRD, SEM, FTIR, UV–Vis Titanium isopropoxide, etha-
nol, water nitric acid

Oven-dried at 50 °C Kaler et al. (2016)

– XRD, SEM, EDX Titanium tetrachloride, 
distilled water, ammonia 
hydroxide

pH 1.1–10, annealed at 
500–800 °C

Elbushra et al. (2018)

7.64–11.21 XRD, TEM, BET, DR-UV–
Vis, TG-DSC

Tetrabuylt titanate, nitric 
acid, ethanol, polyethylene 
glycol, polyacrylamide

Calcination temperature of 
500–700 °C

Yin et al. (2016)

29.8 XRD, TEM, SEM, FTIR Titanium isopropoxide, 
2-propanol, distilled water, 
hydrochloric acid

Calcined at 500 °C Nachit et al. (2016)

19.11 UV, XRD, SEM, FTIR Titanium isopropoxide, 
ethanol, distilled water

Calcined at 400 °C Mallika and Narsaiah (2017)
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In general, the solgel method which consists of the trans-
formation of a system from a liquid phase (sol) to a solid 
phase (gel) as discussed above, involves the use of various 
precursors such as organic alkoxides and acetates, in addi-
tion to inorganic salts like chlorides. Alcohols are greatly 
used among various kinds of solvents, although some other 
solvents could be used for some alkoxides.

Using this method, some parameters such as the order 
of addition of reactants, the temperature, stirring time, the 
ratio of water to titanium, the solubility of reagents in the 
solvent, and the pH affect the homogeneity of the gel. Cal-
cination temperature and pH are paramount factors which 
help in giving the nanoparticles better surface areas. Among 
the researchers who worked on the production of  TiO2-NPs 
using the solgel method and examined some of the proper-
ties of the produced nanoparticles using various instruments 
such X-ray diffraction (XRD), scanning emission microscope 
(SEM), photoluminescence (PL), high-resolution trans-
mission microscopy (HRTEM), Brunauer–Emmett–Teller 
(BET), thermogravimetric analysis (TGA), and selected 
area electron diffraction (SAED) were Sharma et al. (2014), 
Phonkhokkong et al. (2016), and Kavitha et al. (2014).

Factors affecting  TiO2 nanoparticles

The forms of  TiO2 depend on the arrangement of titanium 
and oxygen atoms in the crystal lattice. Therefore, it has been 
reported that the solvent, precursor type, particle size, cal-
cination temperature, pH, additives, and stirring time affect 
solgel-synthesized  TiO2 nanoparticle phases (Agarthan et al. 
2013; Islam and Basu 2015). It has been reported that the 
particle sizes of the synthesized nanoparticles increase as 
their surface areas increase (Chen et al. 2014b; Pavel and 
Radovan 2015). Thus, this section offers a brief discussion 
on the influence of some parameters on the formation of 
 TiO2 nanoparticles.

Effect of calcination

Calcination is a thermal treatment process in the absence of 
a limited supply of air required for thermal decomposition. 
The effect of calcination temperature on the phase of  TiO2 
from 100 to 1000 °C was evaluated by Pavel and Radovan 
(2015). The authors reported that at 500 °C, the observed 
peaks conformed to the anatase phase, but as the peak grew 
to 800 °C, the anatase phase was transformed to rutile. They 
concluded that 600 °C was convenient to achieve higher effi-
ciency nanoparticles due to the finer grains of the anatase 
phase of  TiO2 synthesized.

Abdullah et al. (2017a, b) demonstrated the effect of cal-
cination temperature on nanocomposite used in the photo-
catalytic degradation of phenol under the visible light. The 
nanocomposite (ZnO/TiO2) produced at 600 °C was found 

to be more effective in the destruction of the pollutant as a 
result of the formation of hydroxyl radical on the surface of 
the nanocomposite. They also deduced that the formation 
of anatase phase enhanced the degradation of the targeted 
pollutant.

Thus, calcination temperature controls the crystalline 
phase of  TiO2 nanoparticle, their homogeneity, and surface 
area. Also, the particle size of  TiO2 was found to increase 
with calcination temperature, suggesting that different cal-
cination temperatures affect the degradation of pollutant in 
wastewater.

Furthermore, calcination temperature affects the applica-
tion or activity of a particular nanoparticle produced. In this 
vein, He et al. (2014) indicated that uncalcined  TiO2 showed 
a low photocatalytic effect as a result of low crystallization. 
With an increase in calcination temperature, the photocata-
lytic effect of the  TiO2 increased due to the high crystalliza-
tion of the particles and evacuation of  CO2 from the system. 
In another research conducted by Wang et al. (2017) on  TiO2 
nanoparticles at temperature range of 300–600 °C for pho-
todegradation of an organic pollutant, it was observed that 
at lower temperatures, the crystals of  TiO2 were not formed, 
but as the calcinating temperature increased, crystallization 
and change of phase were observed. During the degradation 
of the organic pollutant, the removal efficiency became low 
signifying the importance of  TiO2 phase in its application. A 
recent contribution made by Haq et al. (2018) submitted that 
decrease in the surface area and pore volume was observed 
as the temperature of calcination increased and opined that 
these were as a result of rearrangement and growth of  TiO2 
crystallites.

Effect of pH

The pH of a medium significantly affects crystal structure 
and surface morphology such as the size and entanglement 
of  TiO2 nanostructures (Xue et al. 2014; Selman et al. 2014; 
Mohite et al. 2015). Due to the small particle size of nano-
particles, the van der Waals interaction is significant, and 
this increases exponentially as the particle size decreases, 
thus favoring the growth of clusters. Ibrahim and Sreekan-
tan (2010) reported that lower acidity promotes anatase 
structure while high acidity results in rutile phase forma-
tion. This shows that the degree of crystallinity of anatase is 
pH-dependent and lower acidity enhances the crystallinity, 
which also promotes the formation of big crystallite size. 
Tsega and Dejene (2017) reported that the morphology and 
crystallinity of  TiO2 nanoparticles depend on the pH of the 
precursor solution. Lower acidity promotes anatase structure 
and greater crystallite size. This shows that the degree of 
crystallinity of anatase is pH-dependent, and lower acidity 
enhances the crystallinity, which also promotes the forma-
tion of large crystallite size. In another study conducted by 
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Mutuma et al. (2015), mixed phase (anatase and brookite) of 
 TiO2 calcined at 600 °C in a strongly acidic medium. While 
in the investigation reported by Cassaignon et al. (2007), a 
rutile crystalline phase was formed at the pH conditions less 
than 4.5, and only anatase structure formed at pH greater 
than 4.5.

Although the possibility of obtaining anatase structures in 
acidic medium is apparent. However, investigation of  TiO2 
nanoparticles synthesized by a facile solgel method under 
acidic and basic media is necessary. This is because this will 
go a long way in exploring the microstructure and optical 
properties of  TiO2 nanoparticles produced.

Synthesis and mechanism reaction of ZnO

Zinc oxide is a white-yellowish crystalline substance soluble 
in both acid and base. It has attracted the interest of research-
ers due to its strong activity. ZnO agglomerates in water due 
to its polarity which could lead to deposition. It exhibits 
three highly crystalline forms, namely: zinc blende, wurtzite, 
and rock salt (Sirelkhatim et al. 2015). The wurtzite struc-
ture is the most common and stable form of zinc oxide at 
room conditions. At high pressure, ZnO transforms to rock 
salt phase. This oxide has a small covalent property and a 
very strong ionic character. The crystals of ZnO are depicted 
in Fig. 5, and the gray and yellow-shaded spheres signify Zn 
and O atoms, respectively.

Various approaches for the synthesis of ZnO nanomateri-
als can be categorized into a solution and vapor-based tech-
niques. Among these methods, the solgel method is found to 
offer better control of the size and distributions of the nano-
materials. As-obtained ZnO nanomaterials can be prepared 
either at the pilot or at the laboratory plant scale. Synthetic 
methods have to do with the zinc precursors, precipitat-
ing agent, unit and process conditions which occur in four 
stages, namely, solvation, hydrolysis, polymerization, and 
transformation. According to scholars, physical and chemi-
cal parameters such as solvent types, pH, precursors, and 
temperature affect the morphological structures and the sizes 
of ZnO nanoparticles. Examples of precursors used are zinc 
acetate dihydrate, zinc nitrate hexahydrate, zinc chloride, 

zinc sulfate, and zinc acetylacetonate. The commonly used 
precursors are zinc acetate dihydrate and zinc nitrate hexa-
hydrate. The reaction mechanism for the synthesis of ZnO 
nanomaterials is controlled in a basic medium using these 
precursors as initial materials which is shown in Fig. 6.

Zinc hydroxide is produced in both steps, and upon heat-
ing, ZnO is produced. This zinc hydroxide separates into 
 Zn2+ and  OH−, followed by polymerization of hydroxyl 
complex to yield Zn–O–Zn which finally converted to 
ZnO. Thermochromism is a unique property of ZnO dur-
ing synthesis which is the change of color as a result of 
a change in temperature. The color of ZnO changes from 
white to yellow at temperatures above 400 °C and becomes 

Fig. 5  Different forms of ZnO 
crystals
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white on cooling. This could be as a result of the formation 
of crystalline lattice due to loss of oxygen.

The use of different precursors, variation in temperature 
and calcination temperature, pH, and organic solvents has 
been employed in studies for producing ZnO nanomateri-
als with unique properties using the solgel method. Bhard-
waj et al. (2018) synthesized ZnO nanoparticles using 
Zn(CH3COO)2·2H2O and KOH. The solution was stirred 
to form a milky mixture, centrifuged at 3000 rpm and then 
dried at 80 °C for 6 h. This synthetic approach for the 
production of ZnO nanoparticles was relatively different 
from the method used by Shaban et al. (2018). The precur-
sor, organic solvent, and stabilizer used are zinc acetate 
[Zn(CH3COO)2·2H2O], 2-methoxy ethanol  (C3H8O2), and 
monoethanolamine  (C2H7NO), respectively. The effects of 
precursor concentration and pH were investigated on the 
resultant solution. Oven-drying was done at 60 °C for 2 h, 
and it was allowed to age for 24 h at room temperature. 
Similar precursor and stabilizer but a different organic sol-
vent were employed in the study reported by Aryanto et al. 
(2017). In their study, Zn(CH3COO)2·2H2O,  C2H5OH, and 
 C2H7NO mixture was stirred at ambient temperature with 
a magnetic stirrer for 1 h.

Acosta-Humánez et al. (2015) prepared ZnO by solgel 
method using Zn(NO3)2·6H2O as the precursor and cit-
ric acid  (C6H8O7·H2O) as a complexing agent. This was 
conducted at 70  °C with vigorous stirring until a gel 
was obtained. This gel was calcined at 130 °C for 12 h. 
Mohan and Renjanadevi (2016) synthesized ZnO using 
 ZnSO4·7H2O as a precursor and NaOH as the precipitating 
agent. The mixture obtained was stirred for several hours. 
The white precipitate was filtered and washed with dis-
tilled water, calcined at 100 °C, and then ground to form 
a fine powder. The prepared ZnO powder obtained from 
the previous step was calcined at a temperature ranging 
from 500 to 900 °C at 200 °C interval. Akkari et al. (2017) 
prepared ZnO nanoparticles by dissolving zinc acetate in 
methanol with methanolic KOH solution under vigorous 
stirring. The resulting precipitate was washed with ethanol 
and then sealed in a container.

The resulting ZnO nanomaterials strongly had differ-
ent physicochemical properties. Some of the factors that 
affect the physicochemical properties of the prepared ZnO 
nanoparticles were precursor types, temperature, and pH. 
The effect of pH in the acidic medium resulted in non-uni-
formity and agglomeration of ZnO but as the pH increased 
giving rise to an alkaline solution, there was significant 
growth of ZnO nanocrystallites (Shaban et  al. 2018). 
Increase in the precursor concentration affected the Zn–O 
bond length in the range of 1.9651–19,745 Å as reported 
by Aryanto et al. (2017). They confirmed that there was 
an increase in the lattice volume of the ZnO nanomaterial.

The particle sizes of ZnO nanomaterials increased 
with an increase in calcination temperature (Kayani et al. 
2015). Likewise, Thirumavalavan et al. (2013) revealed 
that the nano-ZnO increased as the calcination tempera-
ture increased. In addition, they found that surface areas 
of the nano-ZnO at various temperatures are reduced, and 
their crystal sizes became agglomerated. They further gave 
explicit explanations on this effect viz, (1) particle size 
broadening was as a result of the morphological diffracting 
domain within the grains, and (2) the microstrain broaden-
ing was due to disparity in the d-spacing by odd crystalline 
stresses. In the ensuing section, the characterization, experi-
mental conditions, and crystallite sizes of synthesized ZnO 
nanoparticles using solgel are presented in Table 3.

Characterization of  TiO2 and ZnO

TiO2 and ZnO nanoparticles are characterized based on the 
purpose for which they are produced. This section gives the 
overview of different characterization techniques for mor-
phological, structural, particle size, and surface area studies 
of  TiO2 and ZnO nanoparticles. These include the use of 
electron microscopy (SEM), transmission electron micros-
copy (TEM), X-ray diffraction (XRD), Fourier transform 
infrared spectroscopy (FTIR), Brunauer–Emmett–Teller 
(BET), X-ray photoelectron spectroscopy (XPS), dynamic 
light scattering (DLS), photoluminescence (PL), and ultra-
violet–visible (UV–Vis).

SEM

SEM is a technique that provides information on the particle 
size, shape, and surface morphology of powdered sample 
but offers limited information on size distribution. The use 
of SEM has the disadvantages of time consumption and 
high cost. However, its major advantage is that easy sample 
preparation is needed. The SEM images in Fig. 7a and b 
signify the hexagonal wurtzite structure of ZnO nanopar-
ticles. It was observed that at low calcination temperature, 
the particles formed were clusters, but particles of better 
morphology were obtained as the temperature of calcination 
increased. Likewise, at high temperature, less agglomera-
tion was observed and the particles changed to the spherical 
nanocrystals in the range of 20–80 nm in diameters. The 
authors failed to give reliable information on this dispar-
ity of their findings. This is because the differences in their 
morphologies could be a result of weak physical forces in 
the synthesized ZnO nanoparticles.

The SEM micrographs of the  TiO2 nanoparticles at dif-
ferent calcination temperatures are depicted in Fig. 8. The 
scholars observed that the higher the calcination tempera-
ture, the larger the particle sizes. At the highest calcination 
temperature, grain boundaries were clearly observed. At 



Applied Water Science (2020) 10:49 

1 3

Page 13 of 36 49

Table 3  Summary of as-synthesized ZnO nanoparticles via solgel methods from 2013 to 2018

Crystallite size (nm) Characterization Raw material Condition References

12–30 XRD, AFM Zinc acetate dihydrate, 
ammonia hydroxide, 
methanol

pH 9 and 11, Calcination 
temperature of 500 °C

Abdullah et al. (2017a, b)

– XRD, SEM–EDS, RAMAN, 
UV–Vis

Zinc acetate, sodium 
hydroxide

Temperature of 450 °C Zargar and Arora (2017)

17 XRD, UV–Vis, FESEM Zinc acetate dihydrate, 
sodium hydroxide, iso-
propyl alcohol, ammonia 
solution

pH 9, calcined at 200 °C, 
solvent ratio

Davis and Singh (2016)

49–200 XRD, FESEM Zinc acetate dihydrate, meth-
anol, sodium hydroxide

pH 9, calcined at 800 °C, the 
aging time of 4–24 h

Harun et al. (2016)

19.8 XRD, TEM Zinc acetate dihydrate, oxalic 
acid, ethanol

Molar ratio precursor to 
water, calcination tempera-
ture of 400–600 °C, pH 2

Chung et al. (2015)

32–128 XRD, SEM, UV–Vis Zinc acetate, sodium 
hydroxide

Calcination temperature of 
100–700 °C

Shaikh et al. (2016)

20–30 XRD, SEM Zinc acetate, methanol Heat treatment at 400 °C Shastri et al. (2014)
18.9 TGA, XRD, FESEM, UV–

Vis, BET, XPS
Zinc acetate, oxalic acid Calcination temperature of 

400 °C, pH 2
Ba-Abbad et al. (2017)

8–100 XRD, TEM Zinc acetate, polyethylene 
glycol, ethanol, ammonia

pH 5.5–8.5, molar ratio, 
temperature of 800 °C

Jin et al. (2014)

20–140 XRD, SEM, TGA Zinc acetate dihydrate, oxalic 
acid, ethanol

Calcined at 400 °C Yusoff et al. (2017)

20–30 XRD, SEM, EDAX Zinc nitrate, zinc chloride, 
sodium hydroxide

Temperature at 100–200 °C Preethi et al. (2016)

27 XRD, FESEM, EDS, FTIR Zinc acetate dihydrate, 
ethylene glycol, ammonia 
solution

pH 6, calcined at 450 °C Assi et al. (2017)

36 XRD, FTIR, BET, FESEM, 
EDX

Zinc acetate dihydrate, oxalic 
acid, ethanol

Calcination temperature of 
400 °C

Kadhim and Bin-Ab-Rahim 
(2017)

21–84–40 XRD, FTIR, RAMAN, UV–
Vis, FESEM, EDAX

Zinc acetate, ethanol, sodium 
hydroxide

pH 8, annealed at 500 °C Manikandan et al. (2017)

31–53 XRD, SEM, UV–Vis, FTIR, 
EDX, PL

Zinc acetate dihydrate, citric 
acid

Calcination temperature of 
400–600 °C

Hedayati (2015)

32 XRD, SEM–EDS, UV–Vis Zinc acetate dihydrate, citric 
acid, ammonia solution

Calcined at 600 °C Khan et al. (2013)

28 XRD, UV–Vis, TEM, 
RAMAN, PL

Zinc acetate, methanol, ethyl 
ethanol

– El-Ghoul et al. (2015)

36.1 XRD, SEM UV–Vis – – Ansari et al. (2015)
18 XRD, SEM, EDX, UV–Vis Zinc acetate, methanol, 

trisodium citrate
Annealed at 450 °C Brintha and Ajitha (2015)

19.3–83.6 AAS, FESEM, EDAX, XRF, 
XRD, TEM, DLS

Alkaline batteries, nitric 
acid, hydrogen peroxide, 
starch, dextrose

Calcination temperature of 
400–800 °C

Díaz-de-León et al. (2017)

47.55–51.23 TGA, XRD, FTIR, FESEM, 
DRS, UV–Vis

Zinc acetate dihydrate, 
isopropanol, monoethanol 
amine

Annealed at 350–450 °C Habibi and Karimi (2014)

10.05–19.2 XRD, SEM, FTIR Zinc chloride, ethanol, 
sodium hydroxide, potas-
sium hydroxide

– Vanaja and Rao (2016)

> 80 XRD, ESEM Zinc acetate dihydrate, 
isopropyl alcohol, triethyl 
acetate, sodium hydroxide

pH 2–10 Ashraf et al. (2013)

58.3 XRD, FTIR, SEM, Uv–Vis Zinc acetate dihydrate, 
sodium hydroxide

– Alwan et al. (2015)
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Table 3  (continued)

Crystallite size (nm) Characterization Raw material Condition References

3–25 XRD, SEM, TEM, FTIR, 
TGA, DSC, UV–Vis

Zinc acetate dihydrate, 
sodium hydroxide

Stirring time of 500–
2000 rpm

Khan et al. (2016)

18–34.7 TGA, XRD, BET, FTIR, 
FESEM, DRS, EDX

Zinc acetate, oxalic acid, 
ethanol, hydrochloric acid, 
ammonia solution

Molar ratio, pH 1–5, cal-
cination temperature of 
400–600 °C

Ba-Abbad et al. (2013)

Fig. 7  SEM image of prepared ZnO nanoparticles a as-synthesized b calcined at 500 °C for 3 h (Jurablu et al. 2015)

Fig. 8  SEM images of  TiO2 at calcination temperature, a 300 °C b 500 °C c 700 °C d 900 °C (Yudoyono et al. 2016)
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300–700 °C, crystalline sizes of anatase and brookite  TiO2 
nanoparticles were 10–18 nm and 4–13 nm, respectively. 
This appears that the higher the calcination temperature, the 
higher the grain size.

TEM

The TEM provides information on the morphological, sur-
face behavior, and lattice fringes of nanomaterials. High-
resolution transmission electron microscopy (HRTEM) 
can give information on the porosity and structural defects 
within crystals and crystallinity. The operating system is 
quite different from SEM; hitherto, it produces a similar type 
of information. Images generated by HRTEM are different 
from those of the high-resolution scanning electron micros-
copy (HRSEM). On the other hand, the energy-dispersive 
X-ray (EDX) combined with this equipment (HRTEM) 
provides the information on the elemental constituents of 

the nanomaterials. Importantly, EDX explains the effects of 
some parameters such as calcination temperature, pH, and 
aging time on the equivalent elemental compositions of the 
nanoparticles. Figures 9 and 10 show the TEM images of 
ZnO and  TiO2 nanoparticles annealed at different tempera-
tures. Figure 18 images revealed that ZnO nanoparticles pre-
pared at calcination temperatures of 500–600 °C gave a high 
magnification of HRTEM image of the ZnO nanoparticles. 
The synthesized nanoparticles are spherical, lattice fringes 
space of 0.24 nm, and the average particle size increased 
with an increase in the calcination temperature.

The TEM analysis of the synthesized  TiO2 nanoparticles 
at the various experimental conditions: pH, drying, and cal-
cination temperatures, was studied by EL-Mekkawi et al. 
(2017). It was established that as the temperature gradually 
increased from 450 to 650 °C as depicted in Fig. 10, the 
predominant  TiO2 phase was anatase in a mixture of anatase 
and rutile phases. Phase transformation of the nanoparticles 

Fig. 9  HRTEM images of ZnO 
nanoparticles at a 500 °C, b 
600 °C and c 700 °C as well as 
d high magnification of the ZnO 
(Golsheikh et al. 2017)

Fig. 10  TEM patterns of  TiO2 
nanoparticles at calcination 
temperature a 450 °C b 550 °C 
c 650 °C (EL-Mekkawi et al. 
2017)
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was not only affected, and the degree of crystallinity and 
size distribution also slightly changed. The measured par-
ticle sizes of the synthesized  TiO2 at 450 °C, 550 °C, and 
650 °C ranged from 5 to 25, 35 to 70, and 40 to 120 nm, 
respectively. The authors clearly pointed out that as the 
temperature increased crystallite size and phase ratio were 
influenced.

XRD

XRD is a rapid characterization method for identification of 
a phase of crystalline material. In this case, diffraction peaks 
are obtained. It helps to provide information on unit cell 
dimensions of nanomaterials: interatomic distance and angle 
of the atom. This analysis also gives a rough estimate of 
crystallite size through Debye–Scherer formula. It is invalu-
able for a successful structural characterization of nanoma-
terials in both single and multiphase. Figure 11 reveals the 
XRD patterns of as-prepared ZnO nanoparticles at different 
calcination temperatures as described by Golsheikh et al. 
(2017). The authors declared that the wurtzite phase of ZnO 
nanoparticles was indexed and the average crystallite sizes 
of the nanoparticles at 500, 600, and 700 °C were 15, 18, and 
22 nm, respectively. It was established that as the calcina-
tion temperature increased the peak intensities and crystal-
lite sizes also increased.

The X-ray diffractograms of  TiO2 nanoparticles calcined 
at 400 °C and 500 °C are shown in Fig. 12 as studied by 
Romeiro et al. (2017). They demonstrated that the prominent 
peaks at Bragg’s angle of 25° signify the anatase phase while 
small amounts of rutile was also observed at other diffrac-
tion angles. Using the Scherrer equation, the scholars came 
up with the crystalline sizes of 10.5 and 19.6 nm for the 
synthesized nanoparticles at 400 and 500 °C, respectively. 

A similar finding was reported by Haider et al. (2017) on 
the prepared  TiO2 nanoparticles by solgel method calcined 
at different temperatures. They went further to explain the 
transformation of the  TiO2 phase. It was also established 
that the particle size of the anatase phase became smaller 
than other  TiO2 phases at low calcination temperature due to 
aggregation of the nanoparticles. However, the formation of 
anatase  TiO2 at low temperature could be as a result of high 
cell lattice energy involved in the calcination and growth 
coupled with bond breaking and reformation.

Some other analytical techniques

The large surface area of nanomaterials plays a vital role 
during applications. BET analysis is known to be the best 
method to determine the surface area of nanomaterials. This 
technique is based on adsorption and desorption theory and 
possible types of adsorption isotherms are Type-I, Type-II, 
Type-III, Type-IV, and Type-V. Most often, the Type-V is 
very similar to Type-IV and is not applicable to BET.

Golsheikh et al. (2017) synthesized  TiO2 nanoparti-
cles and obtained the BET surface areas under different 
temperatures of 300, 600, and 700 °C as 26.7, 19.7, and 
14.8 m2/g, respectively. A previous study on ZnO doped 
with CuO nanoparticles annealed at the temperature range 
of 250–550 °C showed that remarkable decreases in sur-
face areas were observed with a decrease in pore volumes 
and increase in pore diameter (Modwi et al. 2016). During 
their investigation, the obtained isotherms for pure ZnO 
and doped ZnO calcined at 550 °C were similar. A plau-
sible reason could be that clogging pores resulted from 
aggregation at high temperatures. Following the opinion 
of different scholars, multi-element-doped  TiO2 via solgel 
method was calcined at 200, 300, and 400 °C by de-Luna 
et al. (2018), and they found that the decrease in the spe-
cific area (204.23 to 127.31 m2/g), increase in average pore 

Fig. 11  XRD patterns of ZnO nanoparticles prepared using different 
calcination temperature: a 500, b 600 and c 700 °C (Golsheikh et al. 
2017)

Fig. 12  X-ray diffraction patterns of anatase (A) and rutile (R) phases 
of  TiO2 nanoparticles at 400 °C and 500 °C
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size (7.79 to 10.99 nm), and decrease in volume (0.40 to 
0.35 m3/g) were due to pore blocking during the  N2 gas 
adsorption–desorption isotherm. Also, the synthesized 
 TiO2 nanoparticles at pH 8 and calcination temperatures 
of 300–800 °C (Khan 2017) and  TiO2 samples calcined at 
350–600 °C (Fu et al. 2017) gave similar trends. There-
fore, the findings of different scholars signify that these 
nanoparticles, when subjected to intense calcination tem-
peratures tend to have lower surface areas due to the crum-
bling of pores.

FTIR and Raman spectroscopies are used for vibra-
tional information of nanoparticles. They provide infor-
mation on the fingerprint regions of chemical bonds in 
molecules. In this context, FTIR spectra of synthesized 
ZnO and  TiO2 nanoparticles calcined at different tem-
peratures by a solgel technique using zinc acetate dihy-
drate and titanium isopropoxide as their precursors have 
been provided (Kayani et al. 2015; Fernández-Catalá et al. 
2017). Figure 13 depicts the FTIR spectra of ZnO nano-
particles calcinated at 300–750 °C. The strong peaks of 
C=O and O–H stretching modes of vibration gradually 
diminished at high temperatures. The ZnO peak appears 
between 435.06 and 413.36 cm−1 and became sharpened 
indicating an increase in the crystallinity of nanoparticles 
as the temperature increased.

The FTIR spectra of the  TiO2 samples prepared at 
250–900  °C by Fernández-Catalá et  al. (2017) were 
analyzed as shown in Fig. 14. The broad bands at 3000 
to 3500 cm−1 and 1600 cm−1 were attributed to the OH 
stretching of physisorbed water on the surface of  TiO2. As 
the calcination temperature increased, the OH band dimin-
ished in intensity, signifying the loss of the physisorbed 
water on the  TiO2 surface. As such, the weakness in the 
Ti–OH vibration bands during calcination according to 
them might be detrimental to its applications industrially.

Adsorption activity of ZnO and  TiO2

Numerous adsorbents have been developed for the treatment 
of pollutants, but they are associated with certain drawbacks. 
Owing to the properties such as surface area, porosity, site 
density and crystallinity of  TiO2 and ZnO, these photocata-
lysts have been recognized to be effective in removing heavy 
metal cations and organic pollutants from aqueous solutions. 
Additionally, pore size and surface chemistry govern the 
adsorption capability of nanomaterials. Porous nanomate-
rials are generally categorized into microporous (< 2 nm), 
mesoporous (2–50  nm) and macroporous (> 50  nm) as 
defined by the International Union of Pure and Applied 
Chemistry (IUPAC). The microporous sizes of  TiO2 and 
ZnO nanoparticles help to perfect the adsorption and sepa-
ration techniques using these oxide nanoparticles, while the 
use of meso- and microporous nanomaterials would ease 
mass transfer.

Basically, adsorption processes in wastewater using  TiO2 
and ZnO as shown in Fig. 15 can be divided into physisorp-
tion (physical) and chemisorption (chemical). The degrees 

Fig. 13  FTIR spectra of wurtzite nanoparticles (a) before and after 
calcinated temperature at b 300 °C, c 500 °C, d 650 °C, e 700 °C, and 
f 750 °C (Kayani et al. 2015)

Fig. 14  FTIR spectra of  TiO2 nanoparticles calcined at 250–900  °C 
(Fernández-Catalá et al. 2017)

TiO 2ZnO

Nanoparticles

+
Adsorption

Nanoparticles

Wastewater

Treated wastewater

Fig. 15  Adsorption process using nanoparticles
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of the two types of adsorption are influenced by weak inter-
molecular interactions like London van der Waals forces, 
hydrogen bonding, covalent bonding, electrostatic interac-
tion, dipole–dipole interaction, polarity, and hydrophobic-
ity. On the other hand, ion exchange between sorbents and 
sorbates occurs in chemisorption.

TiO2 and ZnO as adsorbents for water treatment have 
been pointed out to be advantageous due to the high adsorp-
tion capacity and great affinity for pollutants. They are per-
haps the most promising nanomaterials for water treatment. 
However, of particular interest, is the fact that certain cir-
cumstances during the time of applications of these nanoma-
terials occasionally render them ineffective. Thus, interests 
should be developed toward incorporating  TiO2 and ZnO 
into natural materials like clay for the development of nano-
composites in order to increase their interfacial interactions 
and overcome the problems of recycling after treatment.

Clay as natural adsorbents

Clays are indispensable nonpolluting natural materials and 
their wide ranges of applications include polymer, water, 
cosmetics, ceramics, paints, pharmaceutical, pulp, and 
paper industries. Depending on academic contexts, clays are 
referred to as natural by occurring fine particles composed 
of fine-grained and crystal minerals such as silicon oxide, 
carbonates, and metal oxides, which become harden when 
fired. The components in clay are in different structural 
layers and compositions as a result of their polytypic and 
structural arrangements called polytypism. Clay minerals 
are hydrous aluminosilicates that can retain large amounts 
of water with other properties such as colloidal behavior, 
swelling, and adsorption capacities. The clay minerals are 
classified into kaolinite, illite, montmorillonite (smectite), 
and chlorite (Adeyemo et al. 2015).

The kaolinite, montmorillonite, illite, and bentonite are 
commonly used because they exhibit high surface area, 
availability, stability, and structural characteristics. These 
minerals are found to be naturally abundant, non-toxic, and 
have significant roles in scavenging pollutants in wastewa-
ter either via ion exchange or adsorption processes or both. 
Hence, they are basically used as depolluting agents.

The adsorption processes which occur on the solid sur-
face in contact with ionic solution involves the adsorption 
of ions called potential determining ions which gives the 
surface either positive or negative charge with respect to the 
charge originated from the crystal lattice. The layer which 
comprises double (negatively charged) and the edge double 
layers that are amphoteric (either negatively or positively) 
charged depends on the composition of the aqueous solu-
tion. Notably, the adsorption processes are cation exchange 

adsorption on the surface layers and the chemisorption of 
anions at the edge surfaces. The ensuing sections will focus 
on the application of these clay minerals and their compos-
ites in the treatment of wastewater.

Forms of clay minerals

Kaolinite

Kaolinite group is classified as 1:1 type layer silicates with 
a tetrahedral layer of silica  (SiO4) joined together with an 
oxygen atom and an octahedral sheet of alumina  (AlO6). 
Figure 16 describes the structure of kaolinite, and it pos-
sesses high chemical stability, low expansion, and cation 
exchange capacity. The kaolinite group is structurally 
divided into dioctahedral and trioctahedral minerals (Uddin 
2016). The dioctahedral minerals include kaolinite, dickite, 
nacrite, and halloysite, while the trioctahedral minerals com-
prise the antigorite, chrysotile, chamosite, and cronstedite, 
with a general formula of  Al2Si2O5(OH)4 and theoretical 
structural composition of 46.54%  SiO2, 39.50%  Al2O3, and 
13.96%  H2O. The mentioned subgroups of this clay min-
eral consist of silicate sheet  (Si2O5) bonded to aluminum 
hydroxide  [Al2(OH)4] known as the gibbite layer. There are 
no interlayer swelling and charges. The kaolinite, dickite, 
and nacrite are polytypes which occur as plates, while the 
halloysite is the hydrated polymorph that is tubular in shape.

The clay mineral that is rich in kaolinite is called kaolin. 
Kaolin is a soft and whitish powder; it has a melting point 
of 1750 °C. It is naturally found together with other minerals 
such as muscovite, feldspar, quartz, and anatase. Structural 
transformations occur upon thermal treatment of the kao-
linite group in the air at atmospheric pressure. At 100 °C, 
the water in the kaolin is dried off and the end state is called 
leather dryness. Bone dryness is observed at temperatures 
between the range of 100 °C and 550 °C. Endogenic dehy-
dration of kaolin starts from 550 to 600 °C to produced 
metakaolin,  Al2Si2O7, but the continuous loss of hydroxyl 

Oxygen

Hydroxyl

Aluminium

Silicon

Fig. 16  Structure of kaolinite
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(dehydroxylation) is achievable at 900 °C. Further applica-
tion of heat transforms the metakaolin to aluminum–silicon 
spinel,  Al4Si3O12 (at the temperature of 925–950 °C), and 
then finally to platelet and needle mullite, upon calcination 
at the temperature of 1050 °C to 1400 °C.

Montmorillonite

Montmorillonite believed to be smectite is a 2:1 phyllosili-
cate mineral consisting of two tetrahedral silica sheets and 
an octahedral sheet of alumina (Brigatti et al. 2013). The 
structure of montmorillonite as presented in Fig. 17 allows 
the passage of water causing swelling and cation exchange 
ability. The cation exchange capacity is as a result of the 
replacement of Mg for Al leaving the neighboring oxygen 
atoms negatively charged. On the application of heat to this 
type of clay, it changes to arcillite. Montmorillonite has been 
reported to be cheap and is used for the adsorption of con-
taminants (Yuan et al. 2013).

Illite

Illite is a 2:1 type of clay mineral with tetrahedral silica (T) 
and octahedral layers (O). It is a silica–gibbsite–silica sand-
wich (T–O–T). The structure illite as exemplifies in Fig. 18 
includes phengite, celadonite, hydrous micas, brammallite, 
and glauconite. The negative charge on the surface layers is 

as a result of the replacement of aluminum for silicon in the 
tetrahedral sheet. The balancing charge comes from potas-
sium as shown in Fig. 18, and possible balancing cation 
could be from cesium and ammonium (Mukherjee 2013). 
The presence of these interlayer cations makes illite clay 
to be nonexpanding, disallowing the incorporation of water 
molecules into its structure.

Characteristics common to clays

The features of clay minerals strongly depend on their 
chemical compositions, sizes, and surface layers. These 
characteristics allow more understanding of the nature of 
clay minerals. The common properties associated with clay 
are plasticity, surface area, and ion exchange capacity. Clays 
become plastic when combined with water and variations in 
plasticity are as a result of conserved interstitial materials 
during weathering. Shrinkage determines the plasticity of 
clay; the greater the shrinkage the more plastic a clay mate-
rial. When fired, the new form of clay is achieved without 
any attempt to return to the original physical and chemical 
properties.

In general, the surface area enhances the adsorption 
capacities that result from the negative charge on the struc-
ture of clay mineral. Importantly, the sizes and charges of the 
cations of clay determine its swelling property. A swelling 
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Fig. 17  Structure of montmorillonite
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clay is that with the ability to retain water and expand upon 
hydration (Carrier et al. 2013, 2014).

Adsorption characteristics of clay minerals, 
clay/ZnO, and clay/TiO2 nanocomposites

The chemistry of phyllosilicate in clays determines their 
adsorptive behavior, and their exchangeable cations, 
hydroxyl, and oxygen are responsible for their physical 
adsorption due to van der Waals interaction, chemisorption, 
and catalytic capacity. The adsorption ability of a given clay 
is explicitly explained under the influence of parameters like 
contact time, pH, initial concentration, dosage, and tempera-
ture. In this review, the literature of last 5 years (2013–2018) 
by various researchers in the use of clays, clay/ZnO, and 
clay/TiO2 nanocomposites for the removal or degradation 
of contaminants from wastewater has been studied. This is 
because the comprehensive overview of these adsorbents 
and their adsorptive abilities for various pollutants is quite 
important.

Clays for wastewater treatment

The interests of scholars preferably using clay for removing 
pollutants from contaminated waters as shown in Table 4 
have been in the used as adsorbents around the globe.

Nanocomposites like clay/TiO2, clay/ZnO, and clay/
TiO2/ZnO are multiphase solid materials in nanosize 
explored as good adsorbents for water treatment. The 
formation of new materials with unique flexibility and 
improved properties such as affinity to contaminants, mit-
igate the release of nanoparticles, and enhanced strong 
antibacterial activity is a welcome idea. The development 
of nanomaterials that have been shown to possess most of 
these properties is attracting the attention of researchers. 
Thus, researchers have considered their applications to be 
important in the field of water sanitation.

Clay/TiO2

The use of  TiO2 nanocomposites for the treatment of 
water has served as an alternative to that of commercial 
 TiO2 due to their high adsorptive properties, low cost, and 

Oxygen AluminiumHydroxylSilicon Potassium

Fig. 18  Structure of illite
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regeneration possibilities. Table 5 shows the synthesis and 
characterization of clay/TiO2 nanocomposites used for the 
removal/degradation of contaminants in wastewater.

Clay/ZnO

The advantages of embedded ZnO nanoparticles in or on 
the surface layers of clay for the formation of matrices are 
due to swelling, photocatalytic and ion exchange properties. 
Table 6 presents the synthesis and characterization of ZnO 
nanocomposites for adsorption and photocatalytic degrada-
tion of pollutants in wastewater.

Clay/TiO2/ZnO

Only a few research studies have been done on the synthe-
sis and characterization of  TiO2/ZnO/clay nanocomposites. 
Thus, to date, the synthesis and application of heterogene-
ous catalysts immobilized on clay are still being awaited. 
 TiO2/ZnO was anchored on Tunisia clay for the photocata-
lytic degradation of methylene green in water (Bel-Hadjl-
taief et al. 2016). The heterogeneous nanocomposites were 
characterized by SEM, HRTEM, and zero-point charge of 
pH (pHzpc). The working operations of the experimental 
setup were evaluated under the effects of catalyst dosage, 
pH, initial dye concentration, and UV irradiation intensity. 
They found that almost complete mineralization occurred 
at 30 min in the presence of the nanocomposites under UV 
irradiation, demonstrating a positive effect of ZnO nano-
particles in the catalytic process. In the study reported by 
Vaizoğullar (2017), the photocatalytic activities of  TiO2, 
ZnO,  TiO2/ZnO, and  TiO2/ZnO/sepiolite catalysts were 
determined. The composites were synthesized for the deg-
radation of flumequine antibiotic. The photocatalysts were 
characterized by SEM, XRD, FTIR, and zero-point charge 
for their photocatalytic performance. The operating condi-
tions which included pH, initial sorbate concentration, and 
dosage were investigated. It was reported that sepiolite and 
ZnO played a vital role in the adsorption and degradation of 
flumequine on the surface of the catalyst.

As reported by Huanhuan et al. (2018), a novel clay 
nano-based catalyst of ZnO/TiO2/rectorite was synthesized 
and characterized for photodegradation and adsorption of 
methylene blue from the aqueous phase. The experiment 
was conducted by varying the conditions of the solution pH, 
catalyst dosage, and  TiO2 mass ratio. The study showed that 
the degradation kinetics of methylene blue obeyed the Lang-
muir–Hinshelwood model. They found that  TiO2 enhanced 
the photocatalytic activity of the nanocomposites in the 
removal of the dye, while ZnO/rectorite was responsible for 
both the photodegradation and adsorption processes.
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Antibacterial activity of clay/TiO2, clay/ZnO, 
and clay/ZnO/TiO2 nanocomposites

Microbes are pathogens that are a menace and lethal to 
human beings. Microbes such as virus, fungi, algae, pro-
tozoa, and bacteria cause waterborne diseases like dysen-
tery, abscesses, diarrhea, and typhoid. Both natural and 
synthesized adsorbents have been developed in recent years 
including clay minerals, nanoparticles, clay-supported 
metal/oxide nanoparticles, and clay-based nanocomposites 
for the removal of microbial organisms from water (Annan 
et al. 2018). Method of adsorption for the removal of bacte-
ria from water has been found not to produce by-products, 
making it a better advantage over other water purification 
methods.

As depicted in Fig. 19, Morrison et al. (2016) described 
the antimicrobial mechanism of Oregon Blue clays. They 
opined that interlayer cation exchange, pyrite oxidation, and 
mineral dissolution of illite–smectite gave soluble cations 
like  Ca2+,  Al3+,  Fe3+, and  Fe2+ as presented in Fig. 19a. 
The generated  Fe2+ and  Al3+ attack the bacteria via oxida-
tion, destroying the multiple cellular components. Also, the 
hydrogen peroxide released through the cell envelops and 
reacts with the intercellular  Fe2+ to form radicals that react 
or oxidize the protein and DNA molecules, thus activating 
the SOS stress response as shown in Fig. 19b.

Although a lot of findings on the antibacterial activity 
of clay have been documented, robust applications of clay-
based nanocomposites such as clay/TiO2, clay/ZnO, and 
clay/TiO2/ZnO in microbial water treatment are not yet fully 
established. However, the information obtained so far signi-
fies that these nanocomposites could emerge as a promising 
alternative for the removal of bacteria in water.

The mechanism of the antibacterial activity of clay-based 
nanocomposites can be classified into two stages namely: 
adhesion and killing. The application of nanoparticles and 
nanocomposites strongly depends on the classes or types of 
bacteria in water and the physicochemical characteristics of 
the nanomaterials. Other parameters worthy of consideration 
are involved in particle size concentration, morphology, pH, 
and calcination temperature of the nanomaterials.

The antibacterial study on ZnO–nanoclay hybrids against 
Escherichia coli and Staphylococcus aureus was conducted 
under the influence of contact time and temperature by Gar-
shasbi et al. (2017). The nanocomposites were characterized 
by XRD, XRF, SEM, and UV–Vis diffuse reflectance spec-
troscopy. It was established that the two aforementioned fac-
tors affected the pore sizes of the nanoclay particles and the 
type of bacteria in the results. The obtained results indicated 
that the toxic effect on the bacteria was attributable to the 
photocatalytic activity of ZnO nanoparticles, along with the 
generation of hydrogen peroxide leading to the degradation 
of the cell wall of the bacteria.Ta

bl
e 

6 
 (c

on
tin

ue
d)

A
ds

or
be

nt
C

ha
ra

ct
er

iz
at

io
n

Ex
pe

rim
en

ta
l c

on
di

tio
n

Fi
nd

in
g

Po
llu

ta
nt

Re
fe

re
nc

es

Zn
O

/c
la

y
X

R
D

, B
ET

, F
TI

R
, S

EM
, H

RT
EM

, 
ED

X
Ti

m
e,

 p
H

, d
os

ag
e,

 in
iti

al
 c

on
ce

nt
ra

-
tio

n,
 in

or
ga

ni
c 

an
io

ns
Th

e 
re

m
ov

al
 o

f d
ye

 v
ia

 h
et

er
og

en
e-

ou
s p

ho
to

ca
ta

ly
tic

 p
ro

ce
ss

 u
nd

er
 

so
la

r i
rr

ad
ia

tio
n

Th
e 

na
no

co
m

po
si

te
s h

av
e 

hi
gh

 
re

cy
cl

ab
ili

ty

D
ye

B
el

-H
ad

jlt
ai

ef
 e

t a
l. 

(2
01

8)

Zn
O

/k
ao

lin
PL

, X
R

D
, S

EM
C

on
ce

nt
ra

tio
n,

 d
os

ag
e,

 p
H

Th
e 

na
no

co
m

po
si

te
s a

ct
 a

s p
ho

to
-

ca
ta

ly
st 

in
 w

at
er

 p
ur

ifi
ca

tio
n 

un
de

r 
su

nl
ig

ht
Th

e 
na

no
co

m
po

si
te

 c
at

al
ys

ts
 w

er
e 

ea
si

ly
 re

co
ve

re
d 

th
ro

ug
h 

fil
tra

-
tio

n 
an

d 
no

 si
gn

ifi
ca

nt
 lo

ss
 in

 th
e 

ad
so

rb
en

t a
fte

r s
uc

ce
ss

iv
e 

cy
cl

es

2-
C

hl
or

op
he

no
l

Zy
ou

d 
et

 a
l. 

(2
01

9)



 Applied Water Science (2020) 10:49

1 3

49 Page 28 of 36

In the study of Copcia et al. (2013), ZnO/clinoptilolite 
and  ZnTiO3/clinoptilolite nanoparticles were used against 
Gram-negative E. coli and Gram-positive S. aureus. 
The composites were characterized using XRD, SEM, 
and EDX. Their results showed that ZnO/clinoptilolite 
improved the antimicrobial effect against S. aureus, while 
TiO/ZnTiO3/clinoptilolite had a higher better antimicro-
bial effect on E. coli. More so, in the work of Mariselvi 
and Alagumuthu (2016),  TiO2/illite nanocomposites were 
synthesized and characterized using XRD, SEM, TEM, 
and UV–Vis spectroscopy. The antibacterial activity of 
the as-obtained nanocomposites against E. coli, S. aureus, 
and Bacillus were determined. It was established that the 
as-synthesized nanocomposites showed promising anti-
bacterial activities against the selected bacterial species. 
The performance of as-synthesized zinc/bentonite clay as 
an antibacterial material was studied by Pouraboulghasem 
et al. (2016). The produced nanocomposites showed prom-
ising antibacterial features against E. coli.

Silver–zinc oxide nanoparticles were immobilized on 
the surface of bentonite and characterized using XRD, 
TEM, FTIR, and BET by Motshekga et al. (2013). They 
reported that the antibacterial activities of the nanocom-
posites were pretty good. In other report by Motshekga 
et al. (2015, 2016), blends of silver–zinc oxide benton-
ite chitosan nanocomposites and three composites (Ag/
bentonite/chitosan, ZnO/bentonite/chitosan and silver/

ZnO/bentonite/chitosan nanocomposites were evaluated 
for their antimicrobial activities against gram-negative 
E. coli and gram-positive Enterococcus faecalis bacteria, 
respectively. It was concluded that silver/ZnO/bentonite/
chitosan nanocomposites proved to be the best bactericide.

Fig. 19  The mechanism of antimicrobial activity of Oregon Blue clays

Porous clay-based 
nanocomposites pot

Contaminated water

Collection bucket

Porous clay pot

Treated water

Fig. 20  The mini-scale nanocomposite filtration technique
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The need for stringent applications 
of nanoparticles and nanocomposites 
in water treatment

As earlier mentioned, nanomaterials have drawbacks in 
their applications. One of the principal difficulties of the 
two nanoparticles under consideration,  TiO2 and ZnO, is the 
large bandgap energy of the photocatalysts which require 
excitation by UV on applications during photodegradation 
of the contaminants in wastewater. In most articles, these 
nanoparticles are not classified as pollutants but their stabil-
ity in water is paramount in assessing their potential risks. 
Considering their application in water, another crucial prob-
lem is regeneration. These nanoparticles in suspension are 
difficult to recover, and therefore, effort needs to be devoted 
in order to overcome these problems. To achieve this, incor-
porating nanoparticles in clay has attracted much attention. 
Thus, filtration techniques may become paramount for the 
removal of pollutants in wastewater. This technology can 
be improved through the production of nano-based filters. 
This nano-based filtration technology as shown in Figs. 20 
and 21 will allow for regeneration and reducing toxicity 
and cost, thus giving room for industrial-scale production.

On the other hand, clay has proved to be a promising natu-
ral material for removing pollutant and microorganism from 
water due to its physicochemical characteristics, but the use 
of clay nanocomposites as filters for wastewater treatment is 
still lacking. This review gives insight into the importance 
and literature on different of clays, clay/TiO2, and clay/ZnO 
blends for adsorption studies, but integrated method like 
adsorption and filtration technique for wastewater treatment 
is still lacking. More so, there is little or no information 

available in previous research on the fabrication of nano-
filters from the combination of kaolin with  TiO2 and ZnO 
nanoparticles (nanocomposites) for the removal of pollutants 
from wastewater. In order to materialize this goal, research 
needs to focus on developing nano-based filters which will 
require less energy, less intensive synthesis techniques, and 
cheap feedstock. This can be accomplished by examining the 
compositions of clay minerals and their mechanical proper-
ties before employing them for applications.

Conclusion

This review paper offers an insight into recent developments 
in the field of clay nanocomposites used for wastewater 
treatment. Insight into the use of clay minerals, prepara-
tion, and characterization of  TiO2 and ZnO nanoparticles 
and their application as composites in water treatment has 
been reviewed. Nanotechnological applications of nanoclay 
materials,  TiO2, ZnO, and their composites are capable of 
adsorbing, photocatalyzing, and biological elimination of 
pollutants in wastewater. The challenges such as the recov-
ery and reuse of the nanomaterial and nanocomposites need 
to be overcome in order to effectively apply this technol-
ogy. However, the removal of foul-smelling pollutants in 
wastewater can be achieved through water filtration nano-
technology. The production of nano-based filters through 
the combination of clay/TiO2/ZnO nanocomposites should 
be put into practice in innovative water treatment processes. 
Thus, integration techniques during water treatment incor-
porate adsorption, photocatalysis, and biological treatments 
are recommended to ensure sufficient quality of water.
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Fig. 21  The large-scale nanocomposite filtration technique
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