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Abstract
Side weirs are broadly used in irrigation channels, drainage systems and sewage disposal canals for controlling and adjusting 
the flow in main channels. In this study, a new artificial intelligence model entitled “self-adaptive extreme learning machine” 
(SAELM) is developed for simulating the discharge coefficient of side weirs located upon rectangular channels. Also, the Monte 
Carlo simulations are implemented for assessing the abilities of the numerical models. It should be noted that the k-fold cross-
validation approach is used for validating the results obtained from the numerical models. Based on the parameters affecting 
the discharge coefficient, six artificial intelligence models are defined. The examination of the numerical models exhibits that 
such models simulate the discharge coefficient valued with acceptable accuracy. For instance, mean absolute error and root 
mean square error for the superior model are computed 0.022 and 0.027, respectively. The best SAELM model predicts the 
discharge coefficient values in terms of Froude number (Fd), ratio of the side weir height to the downstream depth (w/hd), ratio 
of the channel width at downstream to the downstream depth (bd/hd) and ratio of the side weir length to the downstream depth 
(L/hd). Based on the sensitivity analysis results, the Froude number of the side weir downstream is identified as the most influ-
encing input parameter. Lastly, a matrix is presented to estimate the discharge coefficient of side weirs on convergent channels.

Keywords Side weir · Discharge coefficient · Convergent channel · Self-adaptive extreme learning machine · Sensitivity 
analysis

Introduction

Side orifices, side slide gates and side weirs are divert 
structures usually installed on the main channel wall for 
diverting and controlling the flow into the divert channel. 
This type of hydraulic structures have many applications in 
environmental and engineering and irrigation practices and 
also used in wastewater treatment plants, drainage lands, 
sedimentation tanks, aeration ponds, irrigation networks 
and flocculation units. Numerous studies have been con-
ducted by different researchers on divert structures. In addi-
tion, several researchers such as Ghodsian (2003), Kra and 

Merkley (2004), Lewis (2011), Granata et al. (2013) Azimi 
et al. (2014, 2015), Nezami et al. (2015), Maranzoni et al. 
(2017) and Karami et al. (2018) have carried out some labo-
ratory, analytical and numerical investigations on hydraulic 
behavior of side weirs. Hussein et al. (2010) experimen-
tally studied the parameters affecting the passing discharge 
through circular sharp-crested side orifices. They concluded 
a relationship as a function of the Froude number and also 
the ratio of the orifice diameter to the main channel width 
for computing the discharge coefficient of this type of side 
orifices. Hussein et al. (2011) conducted an experimental 
study on the properties of the flow passing through a main 
channel with rectangular sharp-crested side orifices. Moreo-
ver, they also examined the parameters affecting the flow 
passing through rectangular side orifices. They presented 
an equation for calculating the discharge coefficient of such 
side orifices as a function of the Froude number and the 
ratio of the width of the rectangular side orifice to the main 
channel width.

Recently, artificial intelligence techniques such as the arti-
ficial neural network and fuzzy logic have been utilized as 
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powerful tools in modeling, pattern-cognition and solving non-
linear complex problems (Zambrano et al. 2019; Gholami et al. 
2019; Parsaie and Haghiabi 2019). Emiroglu et al. (2010) pro-
posed an equation for calculating the discharge coefficient of 
triangular labyrinth side weirs placed on a rectangular straight 
channel in subcritical flow conditions using ANFIS. Bilhan 
et al. (2010) compared the experimental discharge coefficient 
of sharp-crested side weirs located on the wall of a rectangu-
lar channel in subcritical flow conditions with the discharge 
coefficient predicted by different neural network techniques. 
Dursun et al. (2012) concluded the discharge coefficient of 
semi-elliptical side weirs located on a rectangular straight 
channel using ANFIS.

As discussed above, side weirs are widely used for conduct-
ing and diverting exceeded flows in urban sewage disposal 
systems and are utilized as flow control structures in flood 
control systems.

Furthermore, Ebtehaj et al. (2015) predicted discharge 
coefficient of rectangular side weirs within a main flume by 
employing gene expression programming (GEP). In addi-
tion, a meta-heuristic hybrid artificial intelligence approach 
was developed by Khoshbin et al (2016) to estimate dis-
charge coefficient of side weirs located on rectangular 
canals. Besides, Akhbari et al. (2017) applied the radial 
base neural networks (RBNN) and M5’ approaches to model 
discharge coefficient of triangular weirs in a rectangular 
conduit. Azimi and Shabanlou (2018) simulated the flow 
turbulence and water surface nearby a side weir on circular 
channels in supercritical flow regime through renormaliza-
tion group (RNG) k-e turbulence model and volume of fluid 
(VOF) method. By using support vector machine (SVM), 
discharge coefficients of side weirs installed on trapezoidal 
channels were modeled by Azimi et al (2019).

Furthermore, usage of various artificial intelligence (AI) 
techniques is increasing every day so as to model multifarious 
fields, ranging from hydrological issues to hydraulic prob-
lems. It should be stated that discharge coefficient is one of 
the most important factor to design a side weir properly. Thus, 
simulation of the discharge coefficient of side weirs located 
on convergent channels through a new AI approach so-called 
“self-adaptive extreme learning machine” has enough novelty 
for both scholar and engineers. This means that, for the first 
time, the discharge coefficient of rectangular weirs located 
on convergent channels is simulated by the novel and robust 
self-adaptive extreme learning machine in this study.

Materials and methods

Extreme learning machine (ELM)

The extreme learning machine (ELM) which is a single-
layer feed-forward neural network was provided for the first 

time by Huang et al. (2004). The ELM randomly determines 
input weights and also analytically specifies output weights. 
The only difference between the ELM and the single-layer 
feed-forward neural network (SLFFNN) is the lack of using 
biases for the output neuron. Input layer neurons are related 
with all hidden layer neurons. Hidden layer neurons are cre-
ated by a bias. The activation function of hidden neurons can 
be in the form of piecewise continuous function, while this 
function is linear for output layer neurons. The ELM model 
uses different algorithms for calculating weights and biases; 
thus, it leads to decrease the learning time of the network. 
The mathematical expression of the feed-forward neural net-
work with n hidden node is as follows Huang et al. (2004):

where βi is the weight between the ith hidden node and the 
output node, ai ( ai ∈ Rn ) and  bi are the learning factors of 
hidden nodes and G(ai, bi, x) is the ith node output for the 
input x. The activation function g(x) (with many types) for 
the additive hidden node G (ai, bi, x) can be rewritten as fol-
lows Huang et al. (2004):

Activation functions are used for calculating the response 
of neurons. The behavior of neurons is composed of two parts 
including the total weighted of inputs and the activation func-
tion. When a set of weighted input signals is applied, activa-
tion functions are used to achieve the response. Also, the 
same activation functions are used for the same layer neurons 
which might be linear and nonlinear. In linear functions, a 
straight linear graph is drawn while a curved line is drawn for 
nonlinear. Since the number of input and output variables is 
not the same in nonlinear functions, classification issues are 
common among them (Pandey and Govind 2016). Nonlinear 
ELM activation functions discussed in this paper are: step 
function (hardlim), sigmoid (sig), sinusoidal (sin), triangular 
bias (tribas) and radial bias (radbas). In the ELM, weights 
and biases between hidden and output layer neurons are allo-
cated randomly. The activation of hidden layer neurons for 
each learning sample in an ELM network with j neurons in 
the hidden layer, i input neurons and k learning samples are 
computed as follows Huang et al. (2004):

where g(.) can be any nonlinear continuous activation func-
tion, Wji is the ith input weight and the neuron of the jth 
hidden layer, Bj is the bias of the jth hidden layer neuron, Xik 
is the input neuron for the kth learning sample and Hik is the 
activation matrix of the jth neuron of the hidden layer for the 
kth learning sample so that the activation of all hidden layer 

(1)fn(x) =

n∑
i=1
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neurons for samples used in the learning are presented by 
this matrix. In this matrix, j and k represent the column and 
row, respectively. The matrix H is expressed as the matrix 
of the output hidden layer of the neural network. Weights 
between hidden and output layer neurons are utilized by the 
fitness of the least square for objective values in the learn-
ing mode versus outputs of hidden layer neurons for each 
learning sample. The mathematical equivalent is expressed 
as follows Huang et al. (2004):

where β denotes the weight between the output layer neu-
ron and hidden layer neurons and the vector T represents 
objective values for learning samples which is expressed as 
follows Huang et al. (2004):

Finally, weights are calculated as follows Huang et al. 
(2004):

where

I n  t h e s e  e q u a t i o n s , 
ã = a1,… ,aL; b̃ = b1,… ,bL;x̃ = x1,… ,xL , β is the weight 
vector between hidden and output layer neurons and H′ is 
the Moore–Penrose inverse of the matrix H. T is the vec-
tor between weights of learning samples. It can be said the 
ELM learning process includes two stages: (1) the random 
allocation of weights and biases to hidden layer neurons 
and the calculation of the matrix H hidden layer output 
and (2) the calculation of output weights using the matrix 
H Moore–Penrose inverse and objective values for differ-
ent learning samples. The learning process in finding the 
Moore–Penrose inverse of the hidden layer matrix (H) is 
fast. This procedure is faster than common iteration-based 
algorithms such as Levenberg–Marquardt which does not 
include any step of nonlinear optimization. Therefore, the 
learning time of the network is noticeably reduced (Huang 
et al. 2006). The ELM model works with a large number 
of nonlinear random input space simulations so that each 
neuron is related to a single random sample.

(4)H� = T

(5)� =
(
�1,… ,�j

)
j×1

(6)T =
(
T1,… ,Tk

)
k×1

(7)� = H�T
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TT
1

⋮
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L
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Differential evolution

The differential evolution (DE) method is one of the rela-
tively new techniques in the field of meta-search optimiza-
tion proposed by Storn and Price (1997). In recent years, 
differential evolution algorithm has been introduced as 
a powerful and fast method for optimization problems in 
continuous spaces and has a good ability to optimize non-
linear indifferentiable functions. Like other evolutionary 
algorithms, this algorithm starts by creating an initial popu-
lation. Then, by applying operators such as combinations, 
mutations and intersections, the offspring is formed and 
in the next step called selection stage, the offspring of the 
offspring is compared with the offspring for the amount of 
competency measured by the target function. Then the best 
members move on to the next stage as the next generation. 
This process continues until the desired results are achieved.

Self‑adaptive extreme learning machine

Using the differential evolution algorithm as self-adaptive 
has the ability to overcome limitations such as control 
parameters in the algorithm, choosing the trial vector strat-
egy. Therefore, the robust self-adaptive learning machine 
algorithm (SAELM) is proposed by Cao et al. (2012) to opti-
mize network input weights and hidden node bias. Having 
the training dataset, L hidden nodes and the activation func-
tion g(x), the SAELM algorithm can be formulated. To this 
end, the initial population is first represented by population 
vectors (NPs) which include hidden nodes.

Physical model

In the current study, two groups of data including the 
experimental values obtained by Bagheri et al. (2014) and 
Maranzoni et al. (2017) are used for validating the numeri-
cal results. Bagheri et al.’s (2014) model is composed of a 
prismatic channel with a side weir installed on its sidewall. 
Additionally, Maranzoni et al.’s (2017) experimental model 
consists of a rectangular convergent channel with a side weir 
attached to the convergence point of the channel and on the 
sidewall. The layout of the experimental models is illustrated 
in Fig. 1.

Discharge coefficient of side orifices located 
on convergent channels

Maranzoni et al. (2017) considered discharge of side weirs 
placed on convergent channels (Qw) as a function of the 
main channel width before convergence (B), the main 
channel width after convergence (bd), the weir height (w), 
the weir length (L), the crest thickness of the side weir (s), 
the channel bed slope (S0), the roughness coefficient of the 
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channel ( � ), the downstream depth of the side weir (hd), 
discharge at the side weir downstream (Qd), viscosity of 
water (ρ), specific weight (γ), dynamic viscosity (μ) and 
surface stress tension ( � ) (Maranzoni et al. 2017):

By introducing six groups, they considered the dis-
charge coefficient of side weirs placed upon convergent 
channels as follows (Maranzoni et al. 2017):

In this relationship, θ is the convergence factor and Fd 
denotes the Froude number at the downstream of the side 
weir. Thus, the dimensionless parameters of this equa-
tion are taken into account as the input parameters of the 
numerical models. In this study, six different numerical 
models are defined and the combinations of input param-
eters are shown in Fig. 2.

In this paper, Monte Carlo simulations (MCs) are used to 
investigate the capability of numerical models. The Monte 
Carlo method is a class of computational algorithms that 
rely on random iterative sampling to calculate their results. 
Monte Carlo methods are often used when simulating a 
mathematical or physical system. Because of their reli-
ance on duplicate calculations and random or random num-
bers, Monte Carlo methods are often configured to be run 

(10)Qw = f1
(
B, bd, w, L, s, S0, �, hd, Qd, �, � , �, �

)

(11)Qw = f1

(
�,

bd

hd
,
w

hd
,
L

hd
, Fd

)

by a computer. The tendency to use Monte Carlo methods 
becomes even more difficult when it is impossible to cal-
culate the exact response using deterministic algorithms. 
Monte Carlo simulation methods are especially useful in 
studying systems where there are many variables associated 
with pair related degree of freedom. In the present study, the 
algorithms of ANFIS, genetic, and particle swarm optimiza-
tion have a set of coefficients that provide one response at 
a time. In general, the purpose of the Monte Carlo method 
is to adjust the coefficients in a fixed range, which is then 

Fig. 1  Experimental models a Bagheri et al. (2014) and b Maranzoni et al. (2017)

Fig. 2  Combinations of input parameters for self-adaptive extreme 
learning machine models
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presented as the average of all performances (e.g., 1000 
runs) as optimized values. If the Monte Carlo method is not 
used at each step, coefficient values change and do not follow 
the stump pattern. In general, Monte Carlo is an algorithm 
that is implemented to optimize the coefficients used in other 
algorithms in the programming language environment and 
the statistical distribution is not used. In addition, the mul-
tilayer validation method is used for performance evalua-
tion. The aforementioned models are used. In the multilayer 
validation method, the original sample is randomly divided 
into k subsamples of equal size. Among subsamples k, one 
subsample is used as the validation data and the remainder 
as the test data of this model. The k-fold cross-validation 
approach is then repeated k times (equal to the number of 
layers), each of the k subsamples being used exactly once as 
validation data. The results of the k-layer are averaged and 
presented as an estimate. The advantage of this method is 
the random repetition of subsamples in the test and training 
process for all observations and each observation is used 
exactly once for validation. In this study, k is assumed to be 
4. The outline of the k-fold cross-validation method can also 
be seen in Fig. 3.

Results and discussion

Criteria for examining accuracy of numerical models

In this study, to study the accuracy of the self-adaptive 
extreme learning machine models, the statistical indices 
including mean absolute error (MAE), root mean square 
error (RMSE), the coefficient of determination (R2) and 
mean absolute percent error (MAPE) are used as follows:

(12)MAE =
1

n

n∑
i=1

|||R(Pridicted)i − R(Observed)i
|||

(13)RMSE =

√√√√1

n

n∑
i=1

(
R(Pridicted)i − R(Observed)i

)2

In the above equations, R(Observed)i , R(Pridicted)i , R̄(Observed)i 
and n are experimental dats, results predicted by numerical 
models, the average of experimental data and the number of 
experimental measurements, respectively. Desirable value of 
the MAE, RMSE and MAPE closes to zero, while closeness 
of the R index to one is ideal.

The presented statistical indices do not provide a simul-
taneous comparison of average and variance of models. 
Thus, the Akaike information criterion (AIC) is introduced 
for comparing predicted and experimental discharge coef-
ficients as follows:

where k is the number of estimated parameters used in the 
numerical model. The parameter ACI is taken into account 
as a criterion for suitable agreement of a statistical model. 
In addition, this criterion is used as a tool for choosing them 
model which simultaneously describes the complexity and 
accuracy of the numerical model. The best model has the 
lowest value of the AIC index.

Number of hidden layer neurons

In this section, the number of hidden layer neurons is eval-
uated. Generally, by increasing the number of hidden layer 
neurons, the modeling accuracy increases. In this paper, 
two hidden layer neurons are utilized for modeling the 
discharge coefficient of side weirs placed on convergent 
channels. Then, by increasing the number of neurons, the 
error of each step is calculated and compared with the 
previous step. This procedure continues until the numeri-
cal model error reaches an acceptable range. In Fig. 4, the 
changes of different statistical indices versus the changes 
of the number of hidden layer neurons are depicted. As 
shown in Fig. 4, after reaching the number of the opti-
mized hidden layer neurons to 6, the numerical model 
error is calculated in an acceptable range. For example, 
the RMSE and MAPE values of the numerical model in 
the case where the number of hidden layer neuron is equal 
to 6 are computed 0.034 and 5.135, respectively. Also, the 
MAE for this number of hidden layer neurons is calculated 
0.027. The coefficient of determination calculated for this 

(14)
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∑n
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�
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��
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1
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)2
]
+ 2k

Fig. 3  Dealing of k-fold cross-validation method with experimental 
values
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condition is approximated 0.963. Therefore, the number 
of the hidden layer neurons is considered 6 for the rest of 
the modeling process.

Activation functions

In the next section, the results of the activation functions of 
the self-adaptive extreme learning machine model are exam-
ined. As discussed previously, the self-adaptive extreme 
learning machine model has five activation functions enti-
tled sigmoid, sine, hardlimit, triangle basis and radial basis. 
In Fig. 5 and Table 1, different values of statistical indices 
for the SAELM model activation functions are arranged. 
Also, the discharge coefficient values simulated by sigmoid, 
sine, hardlimit, tribas and radbas are given in Fig. 6. For 

example, the values of R2, RMSE and MAPE for the sigmoid 
activation function are computed 0.963, 0.034 and 5.135, 
respectively. Furthermore, MAE for this activation function 

Fig. 4  Changes of different statistical indices versus changes of number of hidden layer neurons

Fig. 5  Comparison of statistical indices for different activation functions of SAELM

Table 1  Results of statistical indices for different activation functions 
of self-adaptive extreme learning machine

Activation functions R2 MAE RMSE MAPE AIC

Sig 0.963 0.027 0.034 4.135 377.259
Sin 0.818 0.056 0.077 9.248 275.205
Hardlim 0.812 0.056 0.078 9.012 273.169

–
Tribas 0.584 0.094 0.118 16.915 216.645
Radbas 0.868 0.050 0.065 8.317 296.206
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Fig. 6  Comparison of observed and experimental discharge coefficients with different activation functions of SAELM

Fig. 7  Changes of different statistical indices for SAELM 1 to SAELM 6 models
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is estimated to be 0.027. For the sine activation function, 
the MAE is calculated almost equal to 0.056, while the 
sine function predicts the ACI and R2 values − 275.205 and 
0.818, respectively. It is worth noting that the MAE, R2 and 
ACI values for the hardlim activation function are estimated 
0.056, 0.812 and − 273.169, respectively. The triangle basis 
activation function calculates the RMSE and MAPE values 
equal to 0.118 and 16.915, respectively. Furthermore, the 
value of R2 for the radial basis activation function is equal to 
0.548. Also, the MAE, MAPE and ACI values for this func-
tion are calculated 0.050, 8.317 and − 296.206, respectively. 
As can be seen, the sigmoid activation function predicts the 

discharge coefficient values with higher accuracy than the 
other activation functions.

Results of sensitivity analysis

In order to conduct the sensitivity analysis, six SAELM 
models are introduced by combining the input param-
eters. The results of the statistical indices calculated for 
different models are shown in Fig. 7. Also, the results of 
the statistical indices are given in Table 2. For example, 
the SAELM 1 is a function of all input parameters. For 
this model, the R2, MAE and MAPE are estimated 0.975, 
0.023 and 4.369, respectively. The ACI for the SAELM 
1 is obtained equal to − 401.826. Moreover, the scatter 
plots of different SAELM models are depicted in Fig. 8. 
In the following, the influence of each input parameter is 
removed to identify the most effective input parameter. 
For example, the SAELM 2 model is a function of the 
parameters L/hd, w/hd, bd/hd and .θ In other words, the 
influence of the Froude number at the downstream of the 
side weir (Fd) is neglected for this model. For this model, 
the values of MAE and RMSE are calculated 0.039 and 

Table 2  Results of different statistical indices of SAELM models

Model R2 MAE RMSE MAPE AIC

SAELM 1 0.975 0.023 0.028 4.369 41.826
SAELM 2 0.901 0.039 0.057 6.438 326.181
SAELM 3 0.963 0.026 0.035 5.059 279.956
SAELM 4 0.951 0.029 0.040 5.030 299.019
SAELM 5 0.957 0.028 0.037 4.831 354.203
SAELM 6 0.977 0.022 0.027 3.997 406.018

Fig. 8  Comparison of simulated and experimental discharge coefficients for different SAELM models
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0.057, respectively. Furthermore, the R2, MAPE and ACI 
values for the mentioned model are 0.901, 6.438 and 
− 326.181, respectively. Among all SAELM model, the 
SAELM 2 model has the lowest accuracy. Therefore, by 
eliminating the flow Froude number, the numerical model 
accuracy is significantly decreases. For the SAELM 3 
model, the influence of the input parameter L/hd is 
neglected. In other words, this model simulates the dis-
charge coefficient values in terms of Fd،, w/hd, bd/hd and 
θ. For instance, the R2 value for this model is calculated 
0.962. Also, the values of MAE and RMSE for the men-
tioned model are obtained 0.026 and 0.035, respectively. 
Among the models with four input parameters, this model 
has the highest correlation with the experimental values. 
In the following, the SAELM 4 model is evaluated. This 
model simulates the objective function values in terms 
of Fd, L/hd, bd/hd and θ. The influence of the parameter 
w/hd is removed for this model. This model estimated 
the R2 and ACI values equal to 0.951 and − 299.019, 
respectively. In addition, the RMSE, MAPE and MAE 
values are 0.040, 5.030 and 0.029, respectively. Also, the 
RMSE, MAPE and MAE values for the SAELM 5 model 
are calculated 0.037, 4.831 and 0.028, respectively. The 
values of R2 and ACI for the SAELM 5 model are 0.957 
and − 354.203, respectively. This model simulates the 
discharge coefficient values as a function of Fd, L/hd, 
w/hd and θ. It should be noted that for the mentioned 
model the influence of the dimensionless parameter 
bd/hd is eliminated. The SAELM 6 model predicts the 
discharge coefficient values in terms of Fd, w/hd, bd/hd 
and L/hd and the influence of θ is neglected. Based on 
the modeling results, the R2, MAPE and RMSE values 
for the SAELM 6 model are approximated 0.977, 3.997 
and 0.027, respectively. In addition, the ACI value for the 
mentioned model is computed − 406.018. According to 
the modeling results, the SAELM 6 model is introduced 
as the superior model. This model estimates the discharge 
coefficient values in terms of Fd, w/hd, bd/hd and L/hd. It 
is worth noting that the Froude number at the downstream 
of the side weir (Fd) and w/hd are, respectively, identified 
as the most influencing input parameters.

Superior model

In the following, the superior model (SAELM 6) which 
estimates the discharge coefficient values in terms of Fd, 
w/hd, bd/hd and L/hd. The mentioned model has higher 

accuracy compared to the other artificial intelligence 
models. Next, a formula is proposed for calculating the 
discharge coefficient of labyrinth weirs for the superior 
model as follows:

where In W, In V, BHN and Out W are the matrices of input 
weights, input variables, the bias of hidden neurons and out-
put weights, respectively. Values of each of these matrices 
are presented as follows:

(17)Cd =

[
1

(1 + exp(InW × InV + BHN))

]T
× OutW

(18)InV =

⎡⎢⎢⎢⎣

Fd

w∕hd
bd∕hd
L∕hd

⎤⎥⎥⎥⎦

(19)

InW =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.152 −0.655 0.269 0.674 0.585 −0.243

−0.613 0.179 −1.032 −0.391 −0.247 −0.012

−0.081 0.585 0.381 −0.240 0.390 −0.024

−0.354 −0.261 −0.062 0.456 −1.334 −1.026

0.424 0.261 −0.746 0.679 0.428 0.461

0.447 −0.550 −1.058 0.157 −0.029 0.332

−0.063 −0.539 −0.577 0.547 −0.524 −0.923

−0.643 −0.847 0.639 0.550 −0.370 −0.842

0.427 0.055 −0.532 0.536 0.054 0.267

−0.288 −0.265 0.299 0.199 0.388 −0.768

0.681 −0.069 −1.041 0.182 0.503 −0.221

0.0737 −0.338 −0.907 0.113 0.915 −0.177

−0.675 −0.986 0.325 0.294 0.105 −0.383

−0.329 0.307 0.636 0.293 0.824 0.691

0.617 0.501 0.025 −0.377 0.538 −0.178

−0.093 −0.432 −0.873 0.943 0.176 0.082

0.727 0.433 0.059 −0.043 0.537 0.715

−0.338 0.463 0.935 −0.700 −0.429 −0.782

−0.330 −0.255 0.558 −0.235 0.056 0.136

−1.119 0.011 0.394 −0.282 0.160 0.304

−0.290 0.531 −0.918 0.052 −0.054 −0.360

0.583 0.269 0.269 −0.042 −0.544 −0.488

0.236 0.365 −0.581 −0.562 −0.198 0.085

−0.356 0.013 −0.030 −1.005 −0.417 0.557

−0.359 0.199 −0.246 −0.648 0.192 0.066

0.229 0.183 −0.567 −0.202 0.120 −0.052

0.079 −0.516 0.654 0.551 0.468 0.235

0.201 −0.485 −0.702 −0.365 −0.079 0.513

−0.489 0.001 0.264 0.224 −0.520 −0.627

−0.341 0.078 0.725 −0.896 −0.652 0.057

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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(20)BHN =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.598

−0.042

−0.456

−0.397

0.354

−0.001

0.650

0.520

−0.683

0.350

0.618

−0.535

0.033

−0.383

0.464

0.275

0.209

0.518

−1.156

0.462

0.161

−0.340

0.488

−0.640

−0.869

−0.016

0.802

−0.132

−0.624

0.339

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21)OutW =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

33421.56

13588.23

−49219.20

−86.16

176.90

−11.10

15.64

−3012.74

350252

427.36

11.95

12645.82

−49.77

−793753

54700.22

726.93

173.72

−19918

399888.50

363657.20

337550.30

54469.64

−2137.21

−17.92

226884.50

−31.81

−47.77

−21614.80

−53.29

61249.13

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Conclusions

In the study, discharge coefficient of side weirs located 
on convergent flumes simulated by employing a novel 
approach entitled “self-adaptive extreme learning 
machine” (SAELM). Then, the parameters affecting the 
discharge coefficient of side weirs placed upon convergent 
channels were introduced. In this study, the value of k for 
the k-fold cross-validation method was taken into account 
equal to 6. After that, the number of the hidden layer neu-
rons was evaluated. The optimized number of the hidden 
layer neurons was obtained to be equal to 6. Subsequently, 
the results of the activation functions for the SAELM 
model were assessed. Based on the modeling results, the 
sigmoid activation function predicted the discharge coeffi-
cient values with higher accuracy than the other activation 
functions. To perform a sensitivity analysis, six SAELM 
models were introduced through the combination of the 
input parameters. Then, the effect of each input param-
eter was eliminated to detect the most influencing input 

parameter. According to the results obtained from the 
numerical modeling, the SAELM 6 model was identified 
as the superior model. This model approximated the dis-
charge coefficient values in terms of Fd, w/hd, bd/hd and 
L/h. Based on the sensitivity analysis results, the values 
of R2, MAPE and RMSE for the superior model were esti-
mated 0.977, 3.997 and 0.027, respectively. Based on the 
sensitivity analysis, the Froude number at the downstream 
of the side weir and the ratio of the side weir height to the 
downstream depth of the side weir (w/hd) were, respec-
tively, detected as the most influencing input parameters.
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