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Abstract
Surface water pollution is one of the serious environment pollution problems, posing threat to human and other creatures. 
Extraction, change detection and environment evaluation of surface water are prerequisite for water resource management. 
Undoubtedly, remote sensing data play an important role in these researches because of its large geographic coverage and 
high temporal frequency. In this study, the Tianjin Binhai New Area was chosen as the study area and the surface water 
extraction method Modified Normalized Difference Water Index (MNDWI) was used by combining with adaptive dynamic 
threshold to extract surface water and detect its change. Comparing with single-band threshold, model of multi-band spectral 
relationship, Iterative Self-organizing Data Analysis Technique Algorithm and MNDWI, MNDWI-based adaptive dynamic 
threshold method performed better, which considered the influence of background. Analysis on dynamic change of water 
showed the area of lake and river had increased and the area of seawater had decreased. Meanwhile, the correlation analysis 
between area change of surface water and impact factors indicated both climatic and anthropogenic factors made positive 
contribution to the present water environment situation. Finally, an improved model of surface water environment evaluation 
was established to evaluate water quality by combining genetic algorithm (GA) and backpropagation (BP) neural network 
model. And the test results proved that the optimized GA-BP neural network is better than the single BP neural network. 
The environment evaluation indicated that water quality of the Haihe River section in the study area was poor. Therefore, 
water environment protection should be strengthened in this area. Some suggestions on practical management were given 
accordingly.

Keywords Surface water · Extraction · Change detection · Environment evaluation · Landsat

 * Qiaozhen Guo 
 gqiaozhen@tcu.edu.cn

 Xiaoxu Wu 
 wuxx@bnu.edu.cn

 Xiao Sang 
 sangxiao1993@126.com

 Ying Fu 
 fuying19900707@163.com

 Yuchen Zang 
 m15822289627@163.com

 Xuemei Gong 
 gxmgxm201303@163.com

1 School of Geology and Geomatics, Tianjin Chengjian 
University, Tianjin 300384, China

2 State Key Laboratory of Remote Sensing Science, College 
of Global Change and Earth System Science, Beijing Normal 
University, Beijing 100875, China

3 School of Optics and Photonics, Beijing Institute 
of Technology, Beijing 100081, China

Introduction

The investigation and research on surface water resources 
have always been a hot topic, since it is a key to social, 
ecological, healthy and economic developments (Sun et al. 
2012). Meanwhile, quality evaluation of water environment 
becomes more and more important (Meng et al. 2015; Per-
rin et al. 2014; An et al. 2014). Accurate water environment 
evaluation can not only reveal water pollution situation, but 
also provide scientific basis for decision-making in water 
pollution control.

Surface water information extraction is the prerequisite 
for surface water resources investigating and environment 
monitoring. There are two types of data sources, i.e., the 
traditional field survey data and remote sensing data. The 
former tends to be limited in terms of spatial coverage and 
temporal resolution (Palmer et al. 2015). Therefore, remote 
sensing data have become primary sources extensively 
used for extracting surface water and detecting its changes 
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(Rokni et al. 2014; Li et al. 2013), with the advantages of 
large observation range, high speed, strong timeliness, rich 
information, precise measurement and low costs (McFeeters 
2013; Bukata 2013). There are numerous remote sensing 
satellite images used for extracting surface water. Among 
them, Landsat imagery is one of the most widely used data 
in extracting surface water information, due to its moderate 
spectral resolution and sensitive response to surface water.

Surface water extraction can be realized through many 
methods, including single-band threshold method, multi-
band spectral relationship method, Iterative Self-organizing 
Data Analysis Technique Algorithm (ISODATA) and water 
index method. Most of the above-mentioned surface water 
extraction methods consider the extraction model as integral 
and simple, which works well for large-area waters. Nev-
ertheless, there usually exists a transition section between 
small-area surface waters and other land-use types, where it 
is difficult to automatically determine the threshold for the 
small-area waters since only one threshold is used for each 
land-use type. Therefore, a method, which is able to deter-
mine the threshold for all types of waters, is a key to extract-
ing surface water accurately. In this study, a MNDWI-based 
adaptive dynamic threshold method of surface water extrac-
tion was proposed, which combined advantage of MNDWI 
in removing shadow from waters and determining threshold 
for all types of waters. And then, a preliminary correlation 
analysis was done between surface water area change and 
climatic as well as human factors.

For the evaluation of surface water quality, chlorophyll-a 
and suspended matter are important parameters that charac-
terize water quality (Nechad et al. 2010). Remote sensing 
technology can monitor the spatial and temporal changes of 
water quality parameters effectively within a certain period, 
which is very suitable for large-scale monitoring of water 
bodies. Chen et al. (2013) improved three-band semi-ana-
lytical algorithm which was used to monitor chlorophyll-a 
in Yellow River estuary. Park et al. (2015) predicted chloro-
phyll-a concentration for the early warning in the Juam Res-
ervoir and Yeongsan Reservoir used artificial neural network 
and support vector machine (SVM); meanwhile, SVM model 
showed better. Chow et al. (2016) analyzed water quality 
data of the Feitsui Reservoir basin by different multivari-
ate statistical techniques. Essam et al. (2017) developed a 
remote sensing framework based on the backpropagation 
(BP) neural network which described relationship between 
surface water quality parameters and satellite. And the used 
self-learning ability is suitable for surface water environ-
ment evaluation, but it still has some imperfections, such 
as local extremum and randomness of initial weights and 
thresholds. Therefore, an optimized model is needed for 
water environment evaluation. In this study, based on field 
survey data on water quality parameters, and using genetic 
algorithm (GA) to optimize BP neural network, multifactor 

water environment evaluation model was built to evaluate 
water quality. And based on GIS technology, the evaluation 
results were visualized, so as to provide accurate, reliable 
and intuitive technical support for protecting and improving 
regional water environment.

Materials and methods

Study area

The Tianjin Binhai New Area is located in the east of Tianjin 
and the northeast of North China Plain, covering latitude 
of 38°40′N–39°00′N and longitude of 117°20′E–118°00′E. 
Its surface belongs to alluvial plain, with main geomorphic 
types including strand plain, lagoons and beach. Climate 
change in four seasons is distinct: high temperature, high 
humidity and much rain in summer; coldness and snow-
less weather in winter; warmness in autumn; and drought 
and windy weather in spring. The Tianjin Binhai New Area 
covers all lands of the three administrative regions (Tanggu 
District, Hangu District and Dagang District) and part land 
of the two administrative regions (Dongli District and Jinnan 
District). Haihe River, Jiyunhe River, Chaobai River, Duliu-
jian River and other major rivers all flow into the Bohai Sea 
through the district of Tianjin. The surface water is large in 
area and low flat in relief. Geographic location of the study 
area is shown in Fig. 1 which is derived from the OLI true 
color image acquired in April 22, 2014.

In the study area, there are 8 rivers with flood discharge 
meeting the first level, 22 drainage channels with flood 
discharge meeting the second level, 1 large reservoir, 7 
medium-sized reservoirs and 23 small reservoirs. Among 
them, the Beidagang Reservoir built in 1974 is the largest 
plain reservoir in North China, and it occupies 164 km2. 
Ecological resources of waters are very rich in the study 
area.

The Tianjin Binhai New Area is one of the most rap-
idly developed regions in China during the past decades. Its 
rapid socioeconomic development has a heavy demand for 
water resources; thus, it is of great significance to thoroughly 
study surface water in the region. Poor condition of surface 
water, combined with non-compliance emissions of indus-
trial and domestic wastewater, worsened water pollution and 
destructed the ecosystem within Tianjin. So water resources 
are relatively scarce and the problem of water environment 
is very serious in Tianjin.

Data source

Data used in this study include remote sensing images and 
basic geographic data such as administrative boundary 
map, meteorological data, socioeconomic data and field 
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survey data. Remote sensing images include five scenes of 
Landsat TM images with spatial resolution of 30 m, respec-
tively, in 1985, 1990, 1995, 2005 and 2010, one scene of 
ETM + image with spatial resolution of 15 m in 2000, and 
one scene of OLI image with spatial resolution of 15 m in 
2014. Landsat images were acquired from the US Geologi-
cal Survey (USGS) Global Visualization View and all free 
of clouds. Meteorological data include average annual tem-
perature and precipitation data collected from the Tanggu 
meteorological station in the Tianjin Binhai New Area. 
The socioeconomic data include population and GDP data 
obtained from the statistical yearbook of the Tianjin Binhai 
New Area.

Field survey data were collected on April 22, 2014, from 
water sampling points along the Haihe River. Water quality 
parameters were extracted based on collected water sam-
plings, including pH value, oxidation–reduction potential 

(ORP), total dissolved solids (TDS), suspended matter, dis-
solved oxygen, conductivity, chlorophyll-a, transparency, 
water temperature and physical state. Values of pH, ORP, 
TDS, dissolved oxygen and conductivity were measured in 
filed using water quality instrument. Chlorophyll-a concen-
tration was measured using the spectrophotometric method 
when water samples were taken back to the laboratory. Sus-
pended matter was obtained using the membrane method 
based on the Specification of Oceanographic Survey (GB 
17378.4-2007). Transparency was derived based on data 
conversion table between suspended matter and transpar-
ency of water. The input data were the suspended matter, 
and the output data were the corresponding transparency. 
Water environment evaluation was conducted with reference 
to the national surface water environment quality standards 
(GB3838-2002). Evaluation factors included dissolved 
oxygen, chlorophyll-a and transparency. The unqualified 

Fig. 1  Location of the study area
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sampling points were eliminated, and finally, 21 sampling 
points were left, i.e., a 3 × 21 matrix.

Methods

Data processing

The data preprocessing included atmospheric correction, 
geometric correction and resampling. Atmospheric correc-
tion was applied to seven scenes of images using the Fast 
Line-of-Sight Atmospheric Analysis of Spectral Hyper-
cubes module. A binary quadratic polynomial was used 
to do geometric correction with six control points and two 
check points selected. And the images were georeferenced 
with a root mean square error less than 0.5 pixels. Then, the 
images of the Tianjin Binhai New Area from 1985 to 2014 
were cut out by the boundary. The projection was defined as 
UTM zone 50 North using WGS-84 datum for all images. 
The data were resampled to the same size using the nearest 
neighbor method.

Water extraction

In order to analyze spectral luminance feature of water and 
other land use types, land use classification was conducted 
according to the current land use classification national 
standard (GB/T 201010-2017), regional characteristics of 
the Tianjin and the study purposes. In this study, land use 
was divided into five types: lake, river, salt evaporation 
pond, seawater and land. The lake refers to natural lake and 
artificial reservoir. The river refers to natural river, ditches 
and artificial river. The salt evaporation pond refers to the 
place where salt is extracted by evaporation. The seawater 
refers to water in the sea or from the sea. The land refers 
to land use type other than the above-mentioned. Using 
MNDWI method in combination with adaptive dynamic 
threshold, the study area was divided into these land use 
types. A sample was selected for each land use type in 
remote sensing images, and spectrum reflectance of each 
band was determined. The reflectance of water is stronger 
in the range of 450–600 nm, but spectrum contrast is not 
obvious for other land use types. The average reflectance of 
each land use type was obtained by statistics.

Water is generally divided into linear structure and area 
structure in the remote sensing images. For example, rivers, 
ditches and continuous bead rivers belong to linear waters, 
while lakes and ponds belong to area waters. Although riv-
ers, lakes and salt evaporation ponds are all filled with water, 
the morphological characteristics of them are different in 
remote sensing images. Salt evaporation pond is composed 
of many fields with square shape. Lake is generally smaller 
in area and its distribution is more scattered. River usually 
shows a regularly long strip shape.

The dynamic threshold affects accuracy of surface water 
extraction directly. MNDWI was a formula proposed by Xu 
(2006) used to extract water and was defined as the quotient 
of the difference and sum between reflectance of the visible 
light channel and mid-infrared channel. For the Landsat OLI 
image, the visible light channel corresponds to band 3 and 
the mid-infrared channel corresponds to band 6, and there-
fore, its MNDWI was derived according to Eq. (1).

The proposed water extraction method applied MNDWI 
method in combination with adaptive dynamic threshold. 
This method considers local information with adaptive 
dynamic threshold. Using the local context information, it 
can eliminate false change information effectively. To apply 
this new method, the MNDWI was calculated from the 
images. Then we separated water from background using 
segmentation method and selected the appropriate training 
samples, and finally, end elements were gotten. The pixels 
within the whole image have different segmentation thresh-
old values, and local features of pixels were also taken into 
account. Finally, each type of surface water was extracted 
from images according to 5 shape features.

Surface water environment evaluation based on GA‑BP 
model

The GA-BP model was used to evaluate surface water 
environment. First, network parameters were determined. 
The network input layer included three node data, namely 
chlorophyll-a, transparency and dissolved oxygen data. The 
output layer was one layer that was ultimate evaluation result 
of water quality. Hidden layer included the number of hid-
den layer nodes after processed by tansig function. Output 
layer included the number of output nodes after processed 
by purelin function. Figure 2 shows the structure of BP neu-
ral network. Second, the weight and threshold of BP neural 
network were intervened by GA. The first step was initiali-
zation. Using initialization function, the whole network was 
initially set. After initialization, weight and threshold val-
ues of BP neural network began to enter selection process 
of GA. The evolutionary process was accomplished using 
distributed population, combined with the appropriate selec-
tion operator, crossover operator and mutation operator. The 
choice of operators was mainly determined by the compari-
son of test results, followed by the parameters needed for 
the data call. In this study, normGeomSelect was chosen as 
the selection operator, arithXover as the crossover operator 
and nonUnifMutation as the mutation operator. After evo-
lution, the system entered evaluation phase. According to 
the evaluation function and the difference of system output, 
whether the weight and threshold values meet the required 

(1)MNDWI = (Band 3 − Band 6)∕(Band 3 + Band 6)
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accuracy was evaluated. If it does not meet, the optimiza-
tion process of GA was repeated. If it meets, the optimized 
weights and thresholds of BP neural network were output 
into the original network; thus, the optimization of BP neural 
network was completed with GA. Figure 3 shows the run-
ning process of basic training parameters based on GA-BP 
neural network. Third, training of BP neural network was 
conducted by using the assigned weight and threshold val-
ues. After the weight and threshold were intervened with 
GA, system would transmit new weight and threshold to BP 
neural network according to codec function, and then, they 
were trained with BP neural network again. Updated weight 
and threshold were assigned to corresponding part of the 
neural network. The process of training was implemented 
in MATLAB. The test data were part of field survey data.

After GA-BP neural network training, output results were 
stored and should not be an integer. Numerical estimation 
values using common methods were relatively rough when 
the numerical data were centered. It was likely to reduce 
accuracy in water quality assessment. So in this study, the 
method of interval taking value was used to determine water 
quality grade (Table 1).

Results

Dynamic change of surface water

Due to diversity and complexity of local surface water, the 
study area was partitioned. Surface water extraction results 
using MNDWI-based adaptive dynamic threshold method 
during 1985–2014 are shown in Fig. 4. The classification 
accuracy was evaluated using visual interpretation based 
on high-resolution images from Google Earth. The accu-
racy evaluation of surface water extraction results is shown 
in Table 2. The overall accuracy was above 95%, and the 

kappa coefficients were above 0.9100. Thus, the classifica-
tion results can satisfy the requirements of the accuracy.

Based on the remote sensing interpretation results of 
land use in seven periods, change of land use in the Tianjin 
Binhai New Area is shown in Table 3. Area of salt evapo-
ration pond and seawater showed a decreasing trend in this 
area for nearly 30 years. The seawater area had decreased 
most by 90.69 km2. Area of salt evaporation pond had 
reduced by 57.92 km2. Lake area had increased most by 
187.40 km2. River area also had increased by 12.56 km2. 
Area of land also had decreased by 51.35 km2. From 1985 
to 2014, lake area changed greatest and showed an instable 
trend as a whole; river area increased as a whole and it 
reached the highest value of 70.99 km2 occupying 2.80% 
of the whole study area in 1990; area of salt evaporation 
pond reached the highest value of 410.42 km2 in 1990, 
accounting for 16.20% of the whole study area; seawater 
area reached the highest value of 160.55 km2 in 1990, 
accounting for 6.34% of the whole study area. From 1985 
to 1990, area and proportion of all types of surface waters 
had increased. Among them, lake area had increased great-
est by 61.48 km2 and its proportion also rose from 6.51% 
to 8.93%. From 1990 to 1995, area of lake and land had 
increased, and the most significant decrease occured for 
the area of salt evaporation pond and its proportion had 
decreased by 1.95%. From 1995 to 2000, area of salt evap-
oration pond and land had increased; lake area reduced 
most and its proportion had decreased by 1.10%. From 
2000 to 2005, area of lake and salt evaporation pond had 
increased; lake area had increased most and its propor-
tion had increased by 2.88%. From 2005 to 2010, only 
land area had increased; area of other surface waters had 
reduced, and lake area had reduced most and its proportion 
had decreased by 2.13%. From 2010 to 2014, area of lake 
and river had increased, while it for other land use types 
had decreased.

Fig. 2  Structure of BP neural network (P is the source data; IW is the weight from input layer to hidden layer; LW is the weight from hidden 
layer to output layer; B is the threshold from input layer to hidden layer;  B2.1 is the threshold from hidden layer to output layer)
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Impact factors for surface water change

Dynamic change of surface water is related to climatic and 
human factors. Influential climatic factors include tempera-
ture, precipitation, evaporation and others, but this study 

only focused on temperature and precipitation. Human fac-
tors mainly include population and economic growth.

The study area features warm temperate semi-humid 
continental climate and is affected by monsoon circulation 
greatly from the Bohai Sea. The yearly average temperature 
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and precipitation during 1985–2014 are shown in Fig. 5. 
The increasing trend of temperature was obvious, and the 
temperature was increased by 3.0 °C during nearly 30 years. 
However, the yearly average precipitation showed a decreas-
ing trend during the whole period. It rained more in the late 
1980s and decreased significantly in 1990s. The precipita-
tion only showed increasing trend in two periods, respec-
tively, from 2002–2005 to 2008–2012.

The correlation analysis between the yearly average pre-
cipitation, yearly average temperature and water area from 
1985 to 2014 was done. The results showed that a three-
polynomial correlation exists between these three variables 
(Eq. 2).

where y denotes the area of freshwaters including river 
and lake, x1 denotes the yearly average precipitation and x2 
denotes the yearly average temperature. The coefficient of 
determination was 0.9093, which indicated strong correla-
tion existed between them. An increase in temperature led 
to increase in freshwater area. However, precipitation had a 
more complicated impact on water area.

The correlation between population size and all water 
area in the study area was analyzed. According to the sta-
tistics, the total population increased from 81.59 million in 
1985 to 289.43 million in 2014, increasing by 3.55 times. As 
a nation-level New Area, the Tianjin Binhai New Area was 
developing rapidly and its gross domestic product (GDP) 
had been growing. The GDP was 24.164 billion RMB in 
1995 and 876.015 billion RMB in 2014, increasing by 35.25 
times. With economic development, utilization demand of 
surface water also increased. However, protection and man-
agement of water environment had also been strengthened by 
local government. Therefore, utilizing seawater and protect-
ing freshwater became an effective measure. Accordingly, 
area of lake and river had been increased and area of salt 
evaporation pond and seawater had been decreased during 
1995–2014.

Based on the above analysis, surface water change was 
driven by both climatic and human factors. From climatic 
perspective, freshwater area increased with increasing tem-
perature; thus, climate change favored increase in freshwater 

(2)
y = −0.24964 × x

1
+ 55.5353 × x

2
+ 0.01256 × x

1
× x

2
− 345.87173

area. From human perspective, increasing population and 
economic growth brought a decrease in seawater area; mean-
while, local government’s protection and management of 
water environment led to no decrease in area of freshwater. 
Therefore, we can conclude that dynamic change of sur-
face water in the study area mainly due to positive effect 
of climate change and national use and protection of water 
resources by local government.

Surface water environment evaluation

Water quality evaluation

According to surface water environment evaluation method 
and the test output results of GA-BP neural network, water 
quality of 21 sampling points was determined as shown in 
Table 4. According to the grade evaluation of water quality, 
water of the Haihe River section in the study area was pol-
luted severely. Grades of water quality among 21 sampling 
points were as follows: no sampling points for Grade I; 6 for 
Grade II; 8 for Grade III; 6 for Grade IV; and 1 for Grade V. 
Grade II water quality indicated that water had been polluted 
slightly. Grade III water quality indicated that water had 
been polluted moderately. And chemical content of Grade 
III water was several times more than that of Grade II water. 
It is polluted water when water quality is below Grade III, 
and this type of water is generally used as industrial as well 
as agricultural water or as the landscape water, with which 
human usually has non-direct contact. In this study, water 
quality of a third of sampling points was below Grade III. 
This indicated that water quality of the whole study area was 
not good, and most of waters were seriously polluted, which 
was also related to a rapid development of the Tianjin Binhai 
New Area in recent years.

Visualizing distribution of water environment

Based on the grade of evaluation results, water quality in the 
study area was visually displayed using GIS visualization 
technology. Evaluation grade of 21 sampling points was used 
as input data, and interpolation was realized using Kriging 
interpolation method. Figure 6 shows a partial enlargement 
map using spherical model of ordinary Kriging interpolation 
for the water quality sampling points.

Clearly, the sampling area was most seriously polluted 
in the Haihe River section from Jiajiatai to Liuzhuang. 
Water quality was mainly of Grade IV and Grade V in this 
part of river, indicating water was under heavy pollution. 
There were mainly residential and industrial lands from 
Jiajiatai to Liuzhuang; thus, water pollution there led to 
continuous deterioration of surrounding ecological envi-
ronment. For the river section from Luzui to Hujiayuan, 
water quality was mainly of Grade III, which indicated 

Table 1  Water quality grade 
and corresponding output value

Water quality 
grade

Output value

I 0.5–1.5
II 1.5–2.5
III 2.5–3.5
IV 3.5–4.5
V > 4.5
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that water pollution there was more serious. The sewage 
of residents, combined with such pollutants as dirt and 
chemicals resulted from urban expansion, rendered water 
pollution to become more serious in the river section from 

Luzui to Hujiayuan. For the Tianjin Binhai New Area, 
water with Grade I quality seldom existed, and distribu-
tion of areas with Grade II water quality was too rare to 
cluster. The reason lies in that water was polluted in the 

Fig. 4  Maps of surface water extraction using MNDWI-based adaptive dynamic threshold method: a 1985; b 1990; c 1995; d 2000; e 2005; f 
2010; g 2014; h location
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Fig. 4  (continued)

Table 2  Overall accuracy and 
kappa coefficients of surface 
water extraction results during 
1985–2014

Year 1985 1990 1995 2000 2005 2010 2014

Overall accuracy 97.31% 95.38% 97.31% 97.69% 96.54% 97.31% 98.00%
Kappa coefficient 0.9505 0.9100 0.9411 0.9503 0.9307 0.9437 0.9539
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whole study area and water quality of the whole river was 
primarily Grade III or even higher. The scattered distri-
bution of areas with Grade II water quality existed due 
to effective environment management including clean-
ing of the local rivers and clearing up of some polluting 
industries located around the rivers. According to water 
quality evaluation, output values for nearly half of Grade 

II sampling points were higher than the median value of 
Grade II, and even the value of one point was close to the 
critical value between Grade II and Grade III. In other 
words, the overall water quality of the Haihe river section 
could be evaluated as inferior Grade III or Grade IV in the 
Tianjin Binhai New Area. Therefore, we can conclude that 
the Haihe River was seriously polluted.

Table 3  Land-use change in the 
Tianjin Binhai New Area during 
1985–2014

Index Year Lake River Salt evapora-
tion pond

Seawater Land

Area/km2 1985 164.81 58.12 383.60 157.14 1770.03
1990 226.29 70.99 410.42 160.55 1665.45
1995 275.88 66.45 361.15 133.84 1696.38
2000 248.02 61.34 375.28 128.60 1720.46
2005 321.02 61.26 397.93 123.93 1629.56
2010 267.14 58.74 353.61 83.69 1770.52
2014 352.21 70.68 325.68 66.45 1718.68

Proportion of area/% 1985 6.51 2.29 15.14 6.20 69.86
1990 8.93 2.80 16.20 6.34 65.73
1995 10.89 2.62 14.25 5.28 66.95
2000 9.79 2.42 14.81 5.08 67.90
2005 12.67 2.42 15.71 4.89 64.32
2010 10.54 2.32 13.96 3.30 69.88
2014 13.90 2.79 12.86 2.62 67.83

Variation/km2 1985–1990 61.48 12.87 26.82 3.41 − 104.58
1990–1995 49.59 − 4.54 − 49.27 − 26.71 30.93
1995–2000 − 27.86 − 5.11 14.13 − 5.24 24.08
2000–2005 73 − 0.08 22.65 − 4.67 − 90.9
2005–2010 − 53.88 − 2.52 − 44.32 − 40.24 140.96
2010–2014 85.07 11.94 − 27.93 − 17.24 − 51.84

Proportion of variation/% 1985–1990 2.42 0.51 1.06 0.14 − 4.13
1990–1995 1.96 − 0.18 − 1.95 − 1.06 1.22
1995–2000 − 1.10 − 0.20 0.56 − 0.20 0.95
2000–2005 2.88 0.00 0.90 − 0.19 − 3.58
2005–2010 − 2.13 − 0.10 − 1.75 − 1.59 5.56
2010–2014 3.36 0.47 − 1.1 − 0.68 − 2.05

Fig. 5  Variation of temperature 
and precipitation in the study 
area
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Discussion

Method of water change detection

To verify reliability of the MNDWI-based adaptive 
dynamic threshold method used in detecting spatiotem-
poral change of surface water, surface water extraction 
results were compared with those using other four meth-
ods, including single-band threshold, multi-band spectral 
relationship, ISODATA and MNDWI. The test area was 
a part of study area and chosen from TM image in 2005, 
where waters have a clear border (Fig. 7a). Binaryzation 
was applied by assigning 1 (white) to water and 0 (black) 
to background as shown in Fig. 7.

The extraction results were compared using the five 
methods (Fig.  7b–f). The classification result using 

single-band threshold incorrectly divided some non-water 
areas into waters (Fig. 7b). The classification result using 
multi-band spectral relationship divided an integral water 
area into waters with lots of non-water patches (Fig. 7c). 
The classification result using ISODATA omitted a large 
number of water patches (Fig. 7d). The classification result 
using MNDWI was not able to differentiate background 
from waters (Fig.  7e). The classification result using 
MNDWI-based adaptive dynamic threshold method was 
better in extracting river, lake and salt evaporation pond 
(Fig. 7f).

On the basis of extraction results, accuracy analysis 
was conducted to compare efficiency of the five meth-
ods (Table 5). For the proposed MNDWI-based adaptive 
dynamic threshold method, its overall accuracy and the 
kappa coefficient were higher than those for the other four 
methods (Table 5). Thus, the comparison ensured the high 

Table 4  Evaluation grading of surface water quality based on GA-BP neural network

Point 1 2 3 4 5 6 7

Output value 4.6378 4.1827 3.4454 3.6151 2.3603 3.8639 3.7214
Grade V IV III IV II IV IV

Point 8 9 10 11 12 13 14

Output value 4.0941 1.9610 3.0909 3.2193 2.0123 1.8511 3.1896
Grade IV II III III II II III

Point 15 16 17 18 19 20 21

Output value 3.3197 2.7096 2.7329 1.7462 1.5278 3.7719 3.1434
Grade III III III II II IV III

Fig. 6  Partial enlargement map of Kriging interpolation results for the water quality sampling points
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Fig. 7  Image and water change extraction results of the test area: a TM image; b single-band threshold; c multi-band spectral relationship; d 
ISODATA; e MNDWI; f MNDWI-based adaptive dynamic threshold

Table 5  Overall accuracy and 
kappa coefficient of the five 
methods

Extraction method Single-band 
threshold

Multi-band spec-
tral relationship

ISODATA MNDWI MNDWI-based 
adaptive dynamic 
threshold

Overall accuracy 90.00% 92.00% 88.00% 94.00% 98%
Kappa coefficient 0.7543 0.8245 0.6921 0.8444 0.9516
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effectiveness of MNDWI-based adaptive dynamic threshold 
in surface water change detection.

Method of water quality evaluation

In this study, a new GA-BP neural network was developed 
in which GA was introduced to optimize initial weight and 
threshold of BP neural network. It overcame the imperfec-
tions of traditional BP neural network, like local extremum 
and randomness of initial weights and thresholds (Yu and Xu 
2014). Tests on the developed GA-BP neural network from 
some aspects were conducted (Fig. 8).

According to the regression function of neural network 
training, almost no difference existed between the training 
output and test output (Fig. 8a). Since the training output 
data met the national evaluation standard of surface water 
environment, the test output result was supposed to be 
accurate. The mean square error and the accuracy were 
also recorded based on the accuracy performance func-
tion (Fig. 8b). Accuracy performance function was used to 
specifically determine which accuracy the data reach when 
the network was trained. The whole network reached the 
optimal accuracy of 9.3898E − 06 after three times train-
ing. The fitness function curves of BP neural network and 

Fig. 8  Results about GA-BP network: a regression function: X axis 
of the regression function is the target accuracy, and Y axis is the 
accuracy of network training; b the accuracy performance function: 

X axis is the training epoch, and Y axis is the mean squared error; c 
fitness function curves: red line for BP neural network algorithm and 
blue line for GA-BP neural network algorithm
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GA-BP neural network showed that weight and threshold 
selection of BP neural network optimized by GA was advan-
tageous over that of single BP neural network. The greater 
the fitness function value, the faster the algorithm converges 
and the faster the computing speed. The computing speed 
of GA-BP network was greatly improved under the same 
condition (Fig. 8c).

On the basis of test input data and test output data for 
the GA-BP neural network, a correlation analysis was con-
ducted. The analysis result showed that optimized fitting 
coefficient of both data was 0.928, which indicated a good 
correlation existed between test data of GA-BP neural net-
work. The tests ensured high effectiveness and reliability of 
GA-BP neural network in surface water evaluation.

In a word, these two methods—the MNDWI-based adap-
tive dynamic threshold method and the GA-BP neural net-
work method—have high precision in monitoring surface 
water change and evaluating water quality; therefore, they 
can be extended to study on water environment assessment 
in other study areas.

Impact analysis of surface water dynamic change

In this study, only four factors affecting water change were 
analyzed including temperature, precipitation, population 
and GDP. Some other factors like the total real estate invest-
ment may also have influence on water quality. Therefore, 
more factors should be considered for comprehensive caus-
ing analysis of spatiotemporal water change in future.

Implication to practical management

Although local government has made great efforts to pro-
tect freshwater resources, the current shortage of freshwa-
ter resources is still severe. There are some suggestions 
on practical management. For citizens, it should promote 
publicity education on water conservation awareness and 
practices. For companies, it should encourage application 
of new energy desalination such as wave energy. For local 
government, it should strengthen investment in both funding 
and professional personnel to execute management.

Conclusions

This study focused on surface water change and evaluation 
of water quality in the Tianjin Binhai New Area, using 
seven scenes of Landsat remote sensing images during 
1985–2014. In this study, the MNDWI-based adaptive 
dynamic threshold method was proposed to detect water 
change. Compared with other four water extraction meth-
ods—single-band threshold, multi-band spectral relation-
ship, ISODATA and MNDWI method, the MNDWI-based 

adaptive dynamic threshold method was proved to perform 
better. And a new GA-BP neural network was developed 
to do environment evaluation of water quality. The test 
proved that BP neural network had improvement in varying 
degree on both convergence speed and accuracy of train-
ing. It reduced occurrence frequency of local extremum 
greatly during the network training. Both proposed meth-
ods were proved to be reliable and worth promoting to 
similar study in other study areas.

The types of land use in the Tianjin Binhai New Area 
included land, river, lake, salt evaporation pond and sea-
water. Change of water area in seven periods was derived 
using the MNDWI with adaptive dynamic threshold. 
According to analysis of water area change in the Tianjin 
Binhai New Area, the water area in the Tianjin Binhai 
New Area have experienced up and down process in recent 
almost 30 years. The area of lake and river was fluctuat-
ing from 1985 to 2014 and eventually increased. Seawater 
area had decreased since 1990. Temperature and precipi-
tation brought positive impact on water change. Besides, 
population and economic development also played a posi-
tive role in the expansion of freshwater area and shrinking 
of salty water area. The impact of climatic factors and 
human activity contributed to the present water environ-
ment situation.

According to distribution of water quality grade for the 
Haihe River section in study area, water quality of the Haihe 
River was poor in Tianjin Binhai New Area as a whole, and 
water quality grade was mostly clustered above Grade III. 
Particularly, water quality was mainly for Grades IV and V 
from Jiajiatai to Liuzhuang River section and situation of 
water quality was very bad. Residential and industrial lands 
were densely distributed along the river. If the management 
measures were not timely or improper, the normal produc-
tion and living of local residents may be affected. Moreover, 
it may cause a vicious circle of interactional effect between 
human living environment and river water quality situation. 
Based on water quality analysis, some suggestions were pro-
posed for practical management to encounter shortage of 
freshwater resource in the study area.
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