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Abstract
This work reports the application of Posidonia oceanica for the elimination of heavy metals M(II) (M = Zn, Cd, Ni, Cu and 
Pb) by biosorption in batch system. The effect of the contact time, initial M concentration, pH and temperature was consid-
ered. The kinetic and equilibrium models for the M-biosorption were tested namely the pseudo-first-order, pseudo-second-
order and Elovich kinetic models. Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms models have also 
been used to fit equilibrium adsorption data. The adsorption kinetics follow a pseudo-second-order model for all studied 
systems, and the equilibrium data are suitably fitted by the above models. The amount of adsorbed metals by biosorption 
is 48.33, 43.9, 41.02, 37.90 and 30.22 mg/g for Pb(II), Cu(II), Ni(II), Zn(II) and Cd(II), respectively. The thermodynamic 
parameters suggested that the metal biosorption is spontaneous with an endothermic nature.
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Introduction

The environmental pollution by heavy metals is a serious 
threat and a complex problem that has been and is still a 
focus of attention throughout the world since they are non-
biodegradable and exist in all the food chain. Many organic, 
inorganic and biological substances have been reported as 
water contaminants (Gupta et al. 2002; Saravanan et al. 
2013), whose toxicity has been observed to exceed the 
permissible limit (Gupta and Saleh 2013). The metals are 
among the major pollutants in surface and underground 
waters, and both industrial and municipal wastewaters con-
tain metal ions which are hazardous to the human health 
(Krishnani et al. 2008; Gupta et al. 2013). Waste streams 
containing toxic metals are often encountered in the industry 
and can be the source of metals in the aquatic environment. 
Copper is widely used in various fields such as plating, min-
ing and electroplating, refining of oil, etc.… (Demirbas et al. 
2009). Cadmium is employed in batteries, paints and plastics 

(Low et al. 2000), whereas zinc is used in acid galvanizing 
plants (Tunali and Akar 2006). The industry also uses nickel 
in various products (detergents, metal-based jewelry, steel 
and many other metal products) (Venkateswarlu et al. 2015). 
All these metals are not biodegradable and have negative 
effects on the flora and fauna (Rozaini et al. 2010). They 
cause chronic bronchitis and reduced lung function (cancer 
of the lungs) (Ahmaruzzaman and Gupta 2011).

The Environmental Protection Agency (EPA) has 
included these metals on the list of priority pollutants 
(Volesky 2001). However, their removal from water is a very 
difficult task due to the high cost of treatment methods. Con-
ventional techniques of removing metals from wastewater 
are high cost with some limitations. They include chemical 
precipitation, mainly hydroxides and sulfides, membrane fil-
tration (reverse osmosis, nano-filtration), electrolytic reduc-
tion, solvent extraction, electrocoagulation, ions exchange 
and adsorption (Huang and Wu 1977; Calugaru et al. 2016; 
Juang and Shiau 2000; Gupta and Ali 2004; Heidmann and 
Calmano 2008; Qiu and Zheng 2009; Bessbousse et al. 
2008).

The elimination of metals by biosorption remains 
an attractive alternative and is promising because of its 
potential application in the environmental protection. The 
biosorption uses biological materials such as raw rice husk 
(Mohan and Sreelakshmi 2008), olive pomace (Pagnanelli 
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et al. 2005), wood bark (Palma et al. 2003), peat (Ma and 
Tobin 2003), lignin (Wu et al. 2008) and agro-industrial 
wastes (Johnson et al. 2002; Nguyen et al. 2013). The main 
advantage of the biosorption is the low cost, high yield, 
decrease in both chemical and biological sludge, lack of 
nutrient requirements, biosorbent regeneration and uptake 
of metal recovery.

Marine biomass including chitosan, chitin, crab shell and 
algae represents an important resource for the biosorption; 
the biomass considered in this study is Posidonia oceanica. 
The endemic herbarium P. oceanica occupies a central posi-
tion in the ecology of the Mediterranean Sea, its importance 
lies in its extension, high productivity and stability, and its 
grasslands are functional as a spawning area, hunting area or 
permanent habitat for different plants and animals. In addi-
tion, it possesses chelating properties toward heavy metals 
which makes it promising in biosorption. This ability to 
uptake toxic metals is attributed to the existence of alginate 
and to the porosity of the cell wall which allows small ionic 
species (Boudouresque et al. 2012).

The aim of this research is the evaluation of the perfor-
mance and efficiency of P. oceanica as a new biosorbent 
for the M(II) elimination (M = Ni, Cd, Cu, Pb and Zn). The 
influence of physical parameters affecting the biosorption 
such as pH, contact time, M(II) concentration, temperature 
and biosorbent dose was studied. The adsorption is studied 
in terms of pseudo-first- and pseudo-second-order kinetics, 
and different isotherm models are applied to experimen-
tal data to obtain information on the interaction metal/P. 
oceanica.

Materials and methods

Adsorbent preparation and characterization

Posidonia oceanic was collected along the shoreline of the 
western region of Algiers (Tipaza). This harvest site was 
chosen because of the high abundance of submarine her-
bariums of this phanerogam which is therefore conducive 
to the formation of balls resulting from the fraying of dead 
leaves. The balls were washed and dried at 40 °C for 48 h. 
This temperature allows desiccation of the material without 
affecting its structural and functional characteristics. Dried 
waste was reduced to a fine powder in a centrifugal ball mill 
for 45 min (400 rpm) and sieved to get a size fraction less 
than 160 μm.

The BET specific surface area was determined by adsorp-
tion–desorption isotherms of N2 at 77 K using a Micromerit-
ics ASAP 2010 apparatus. The FTIR spectroscopy was used 
to give a qualitative analysis of the main chemical groups 
present on the biomass and responsible of the adsorption. 
The translucent samples disks were prepared by mixing 

0.1 g of biomass/g of KBr; the spectra were recorded with a 
PerkinElmer Spectrum Tow. The point of zero charge (pzc) 
was determined by simple electrolyte addition method; 0.1 g 
of P. oceanica fibers was immersed into 50 mL of KNO3 
(0.05 M) at different pH solutions and shaken at constant 
speed for 24 h. After decantation, the difference between 
the initial and final pHs was plotted against the initial pH 
(Mahmood et al. 2011). The same suspension was used to 
determine the zeta potential, measured with Mastesizer 
3600, Malvern. Scanning electron microscopy (SEM, Jeol-
JSM-6360 LV) provides a view of the morphological struc-
ture of the biosorbent.

Adsorbate

Stock M(II) solutions (1000 mg/L) with which the experi-
ments were conducted were prepared by dissolving 
nitrate salts: Ni(NO3)2, Zn(NO3)2, Pb(NO3)2, Cd(NO3)2 
and Cu(NO3)2 in distilled water; other concentrations 
(30–250 mg/L) were prepared by dilution. HCl and NaOH 
solutions (0.1 M) were used for the pH adjustment.

Biosorption experiment

The experimental tests were conducted in batch mode by 
varying pH from 2 to 8, temperatures (20, 30 and 40 °C), 
P. oceanica dose (0.05–0.5 mg) and M(II) concentrations 
(30–250 mg/L). For each experiment, an accurate quantity 
of P. oceanica was added to 50 mL of M(II) solutions in 
conical flasks (100 mL), shaken in a thermostatic shaker 
(300 rpm). The suspensions were filtered with Whatman 
41 filter paper. The M(II) quantities before and after equi-
librium were analyzed by atomic adsorption spectrometry 
(PerkinElmer 3030), and the adsorbed amount (qe) was cal-
culated from the formula.

where C0 and Ce are the initial and equilibrium concentra-
tions (mg/L), m the amount of adsorbent (g), and V the vol-
ume of solution (L). The removal efficiency percentage of 
metal (E%) was calculated as follows:

Biosorption kinetics and equilibrium

Kinetics

The kinetics were studied in conical flasks; 0.1  mg of 
biosorbent was contacted with 50 mL of M(II) solution 
(100 mg/L); the concentration was determined at regular 
time intervals. The adsorption kinetic data were fitted by 

(1)qe =
V

m
⋅

(

C0 − Ce

)

(2)E(%) = 100 ⋅
(

C0 − Ce

)

∕C0.
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the pseudo-first-order, pseudo-second-order and Elovich 
models.

The pseudo-first order is given by Belhamdi et al. (2016):

where qe and qt (mg g−1) are the amounts of M(II) adsorbed 
at equilibrium and time t(min), respectively and k1 the equi-
librium rate constant (min−1). qe and k1 are calculated from 
the slope and intercept of the plot ln

(

qe − qt
)

 versus t.
The linear form of pseudo-second-order equation is 

expressed by the relation (Belhamdi et al. 2016; Ghaedi 
et al. 2015):

where k2 (g mg−1 min−1) is the equilibrium rate constant. qe 
and k2 are calculated from the plot t

qt
 versus t.

The Elovich model was applied satisfactorily to chem-
isorption processes (Hannachi 2012):

where a  (mg  g−1  min−1) is the initial biosorption rate 
and b (g mg−1) the desorption constant related to the extent 
of surface coverage and activation energy; they are obtained 
from the linear plot of qt versus ln t.

Equilibrium

Equilibrium studies were carried out at 20, 30 and 40 °C. 
The biomass (0.1 mg) was contacted with M(II) solutions in 
the concentrations range (30–250 mg/L) at pH 6, for 80 min.

The Freundlich, Langmuir, Temkin and Dubinin–Radush-
kevich (D–R) models were used for describing the solid–liq-
uid adsorption system.

The Freundlich model assumes a heterogeneous surface 
with adsorption sites of different energies (Freundlich 1907; 
Mittal et al. 2010):

where KF is a constant related to the bonding energy, 1/n the 
heterogeneity factor and n (g L−1) measures the deviation 
from linearity of adsorption. The equilibrium constants are 
determined from the plot log qe versus log Ce. The regres-
sion coefficient (R2) measures the fit goodness of the experi-
mental data to the isotherm models.

The Langmuir adsorption model considers specific 
homogeneous sites on the surface, when a site is occupied 
by a molecule; no further adsorption can take place and is 
expressed by Ahmad et al. (2018) and Mohammadi et al. 
(2011):

(3)ln
(

qe − qt
)

= ln qe − tk1

(4)
t

qt
=

1

q2
e
k2

+
1

qe
t

(5)qt =
(

1

b

)

ln (ab) +
1

b
ln t

(6)log qe = log KF +
1

n
logCe

where KL is a constant related to the energy of adsorption 
and qmax the maximum adsorption capacity (mg g−1). They 
are calculated from the linear plot of Ce/qe versus Ce.

The Temkin model assumes that the adsorption energy 
decreases linearly with the surface coverage due to adsor-
bent–adsorbate interactions (Dada et al. 2012); its linear 
form is given by:

where br is a constant related to heat of sorption (J mol−1) 
and KT the isotherm constant (L g−1); these constants were 
obtained from the plot of qe versus ln Ce.

The D–R model is semiempirical, and the adsorption fol-
lows a pore-filling mechanism. It assumes that the adsorp-
tion has a multilayer character and involves Van Der Waals 
forces; it is applicable for physical adsorption, and the linear 
form is expressed by Ahmad et al. (2018):

where qm is the D–R constant (mg g−1), β the constant 
related to free energy and � the Polanyi potential which is 
defined as:

Results and discussion

Characterization of biosorbent

The FTIR spectra of P. oceanica (data not shown) show a 
peak at 3333 cm−1 due to (–OH) or amine groups (–NH), 
while the band at 2903 cm−1 represents the stretching of 
–CH groups. The bands 1407 and 772 cm−1 are attributed to 
–CH bending, and those observed at 1720 and 1672 cm−1 are 
assigned to C=O stretching groups. The peak at 1600 cm−1 
could be attributed to N–H bending, while those at 1407 and 
1027 cm−1 are assigned to –CN stretching. Similar results 
are reported on the copper removal by P. oceanica (Han-
nachi et al. 2014).

A relationship exists between the zeta potential and 
biosorption capacity; the latter varies with pH and helps to 
understand the behavior of suspended biomaterials in solu-
tion (Feng et al. 2009).

The zeta potential was determined under different pHs 
(Fig. 1), and the potential of the biomass decreases from 
− 5.9 to − 18.9 mV with increasing pH (6–11). The nega-
tive charges on the biosorbent surface could be explained 
by the alkalization of the solution. Indeed, according to 

(7)
Ce

qe
=

1

KLqmax
+

1

qmax
Ce

(8)qe = RT lnKT +
RT

br
lnCe

(9)ln qe = ln qm − ��2

(10)� = RT ln (1 + (1∕Ce)).



	 Applied Water Science (2019) 9:173

1 3

173  Page 4 of 11

Kam and Gregory (2001), basic pH induces the hydrolysis 
and loss of cationic groups and reduces the protonation 
of surface groups of the algae. The (–OH) groups depro-
tonate at high pH, it convert to O−, and such transforma-
tion generates negative charges on the surface (Park and 
Regalbuto 1995).

The P. oceanica fibers, characterized by SEM analysis 
(Fig. 2), have lignocellulosic fibrous structure with cylin-
drical fibers shape. Furrows are observed on the outer sur-
face of the biomass, due to the dehydration of the cell wall. 
This morphology plays an important role in the adsorption 
and precipitation of M(II) on the external surface; other 
physicochemical are gathered in Table 1.

Effect of pH

The pH has a great influence on the M(II) removal by 
adsorption, because it directly affects the surface charge 
and the nature of ionic species of the adsorbates. In this 
context, the pH effect was studied in the range (2–8). The 
removal capacity of M(II) increases with increasing pH 
(Fig. 3); the minimal adsorption at pH 2 is due to the 
high concentration of H+ ions which compete with the 
M(II) adsorption and are preferentially fixed by carboxyl, 
hydroxyl and amine groups present on the P. oceanica 
surface (Pérez-Marín et al. 2007). When the pH increases, 
the biomass surface becomes negatively charged, leading 
to increased M(II) uptake and reaches equilibrium at pH 
6. The retention capacity of M(II) decreases above pH 6 
because of the apparition of insoluble M(OH)2, and all 
hydroxides have a solubility product smaller than 10−15. 
Adsorption and precipitation are the two mechanisms 
responsible for the M(II) elimination (Wang and Qin 
2005).

Effect of biosorbent dose

The effect of biosorbent dose was carried out over the 
range (50–500 mg); these quantities were added to 50 mL 
of M(II) solution (100 mg/L), and the M(II) concentra-
tion was determined at equilibrium. The M(II) uptakes 
were found to increase linearly with increasing the dose 
(Fig. 4); they reach 97, 98, 88, 85 and 70% for Pb(II), 
Cu(II), Ni(II), Cd(II) and Zn(II), respectively, for a bio-
mass dose of 250 mg. The availability of biosorption sites 
depends upon the biosorbent dose. The stability of M(II) 
uptake with increases in the biosorbent dose is due to the 
split in the flux between the M(II) concentration in the 
solution and the sorbent surface (Wang and Qin 2005).
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Fig. 1   Zeta potential of Posidonia oceanica at various pH values

Fig. 2   SEM images of Posidonia oceanica fibers

Table 1   The physicochemical characteristics of the Posidonia oce-
anica 

Parameter Value

Specific surface area (m2 g−1) 4.35
Average pore diameter (µm) 160
pHpzc 7.9
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Fig. 3   Effect of pH on the heavy metal biosorption onto Posidonia 
oceanica fibers
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Effect of the contact time

In order to control the effect of the contact time on the metal 
biosorption and to estimate the time sufficient to achieve 
equilibrium, the experiments were carried out at pH ~ 6, 
a biomass dose of 0.1 g, an initial M(II) concentration of 
100 mg/L and a temperature of 25 °C. The concentration of 
M(II) in solution was determined at regular time intervals 

(Fig. 5). The biosorption increases over time and reaches 
equilibrium after 80 min. The removal efficiency of the 
biosorbent increases rapidly in the initial stage (0–30 min) 
because of the abundant active binding sites on the bio-
mass (Madala et al. 2017) and becomes less efficient dur-
ing the second stage (30–80 min) to reach a saturation; 
this can be explained by the interaction with the functional 
groups located on the biosorbent surface and intercellular 
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Fig. 4   Effect of the sorbent dose on the % removal of Zn(II), Ni(II), 
Cu(II), Pb(II) and Cd(II) by Posidonia oceanica 

Fig. 5   a Effect of contact time on the % metal removal and b on the 
uptake of Zn (II), Ni (II), Cu (II), Pb(II) and Cd (II) by Posidonia 
oceanica 
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Fig. 6   Effect of the initial concentration of heavy metals on the 
uptake of Zn(II), Ni(II), Cu(II), Cd(II) and Pb(II) by Posidonia oce-
anica 

Fig. 7   a Plots of pseudo-second-order kinetics of Zn(II), Ni(II), 
Cu(II) and Pb(II) by Posidonia oceanica and b plots of Elovich kinet-
ics of the heavy metals adsorption
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accumulation (Liu et al. 2006). Based on these results, a 
shaking time of 80 min was suitable for further biosorption 
experiments.

Effect of the initial concentration of heavy metals

The effect of the M(II) initial concentration on the biosorp-
tion by P. oceanica is investigated by varying the initial 
M(II) concentration in solution from 30 to 250 mg/L, main-
taining the other parameters constant. The results show that 
the retention capacity of metal by the biomass increases with 
raising the M(II) concentration in solution (Fig. 6). This due 
to the interaction M(II)/biosorbent which provides the driv-
ing force to overcome the resistance to the mass transfer of 
M(II) ions between the solution and solid phase. In addi-
tion, the enhanced biosorption with the M(II) concentra-
tion is due to an increase in the electrostatic interactions 
(physical adsorption versus covalent interactions) (Arshadi 
et al. 2014). The M(II) absorption can be attributed to vari-
ous mechanisms of ion exchange and adsorption processes 
(Bektaş and Kara 2004; Buasri et al. 2007).

Kinetics studies

The biosorption kinetics of M(II) on P. oceanica were under-
taken to establish the adsorption equilibrium time (Fig. 7) 
and kinetic parameters (Table 2). The validity of each model 
was verified by the fitness of the correlation coefficient (R2). 
The qe(cal) values calculated from the pseudo-first-order 
model differ from the experimental ones. By contrast, in the 
pseudo-second-order model, the calculated qe(cal) values are 
very close to qe(exp), and the R2 values converge to 1, indi-
cating the validity of the pseudo-second order (Ncibi et al. 
2009). For the Elovich model, the plots are not linear with 
bad coefficients R2, suggesting that the biosorption follows 
rather the pseudo-second-order kinetic model based on the 
assumption that the rate-determining step is a chemisorp-
tion, involving valence forces through sharing or exchange 
of electrons between adsorbent/adsorbate (Ghodbane and 
Hamdaoui 2008).

Table 2   Kinetic parameters for the biosorption of heavy metals by 
Posidonia oceanica fibers

Heavy metal ions Pseudo-first-order model

R2 k1 (min−1) q1 (mg/g)

Cu(II) 0.659 0.026 6.49
Ni (II) 0.664 0.031 6.44
Pb(II) 0.592 0.027 5.78
Zn(II) 0.655 0.029 6.00
Cd(II) 0.659 0.023 5.42

Heavy metal ions Pseudo-second-order model

R2 k2 × 10−3 (mg/
(g.min))

q2 (mg/g)

Cu(II) 0.999 0.304 45.45
Ni (II) 0.999 0.201 43.47
Pb(II) 0.999 0.48 50
Zn(II) 0.999 0.496 34.48
Cd(II) 0.999 0.473 49.32

Heavy metal ions Elovich model

R2 a (mg/
(g.min))

b (mg/g)

Cu(II) 0.707 11.85 0.172
Ni (II) 0.717 11.42 0.179
Pb(II) 0.636 13.25 0.166
Zn(II) 0.707 11.85 0.172
Cd(II) 0.689 12.25 0.171

Table 3   Freundlich, Langmuir, Temkin and Dubinin–Radushkevich 
constants for Zn(II),Ni(II), Cu(II), Pb(II) and Cd(II) into Posidonia 
oceanica 

Freundlich Kf (mg/g) n R2

Pb(II) 7.69 2.51 0.970
Cd(II) 3.33 1.61 0.941
Cu(II) 5.89 1.39 0.933
Zn(II) 4.05 1.68 0.982
Ni(II) 5.13 1.86 0.988

Langmuir qmax (mg/g) KL (L/mg) R2

Pb(II) 100 11.8 0.995
Cd(II) 100 71.9 0.960
Cu(II) 111.11 28.66 0.991
Zn(II) 111.11 62.22 0.993
Ni(II) 100 38.88 0.991

Temkin bt (J//mol) KT (L/g)10−3 R2

Pb(II) 124.96 4.31 0.990
Cd(II) 113.99 46.2 0.979
Cu(II) 103.65 27.1 0.994
Zn(II) 107.14 46.2 0.992
Ni(II) 108.64 35.33 0.991

D–R qm (mg/g) B R2

Pb(II) 11.86 − 4.508 0.935
Cd(II) 11.45 − 24.42 0.960
Cu(II) 12.09 − 12.05 0.991
Zn(II) 11.57 − 18.85 0.954
Ni(II) 11.71 − 13.92 0.961
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Isotherm studies

The isotherms data provide information on the capacity 
of the adsorbent or the amount required to remove a unit 
mass of pollutant under the operating conditions. In this 
study, the equilibrium data of M(II) adsorbed onto P. oce-
anica were fitted by the Langmuir, Freundlich, Temkin and 
Dubinin–Radushkevich (D–R) isotherms, and the corre-
sponding parameters are given in Table 3. On the basis of 
correlation coefficients R2, it is concluded that the M(II) 
biosorption is better fitted to the Langmuir and Temkin 
models. This suggests that the biosorption of M(II) on the 
surface of P. oceanica occurs on homogeneous binding sites 
with equivalent adsorption energies and monolayer coverage 
(Ncibi et al. 2009).
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Fig. 8   Effect of temperature on the uptake of Zn(II), Ni(II), Cu(II), 
Cd(II) and Pb(II) by Posidonia oceanica 

Fig. 9   Effect of the temperature on the adsorption of five heavy metals by Posidonia oceanica 
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Thermodynamic studies

To study the effect of thermal on the M(II) biosorption by 
P. oceanica, the temperature was varied from 20 to 40 °C 
using constant parameters at equilibrium. The test was per-
formed below 40 °C to avoid evaporation of the solution. 
The M(II) biosorption at different temperatures (Figs. 8 and 
9) shows that the uptake capacity increases with augment-
ing temperature and confirms the endothermic nature of 
retention of M(II) by Posidonia oceanic (Ghodbane and 
Hamdaoui 2008). The metal uptake is favored at higher 
temperature, since it activates the meal ions for enhanc-
ing the biosorption at the coordinating sites of the mineral 
(Rajamohan et al. 2014). The amounts of M(II) adsorbed 
versus the final concentration for different temperatures 
show that the biosorption creases with raising temperatures, 
confirming the endothermic nature and could be explained 
by availability of more active sites (Gupta and Rastogi 
2008).

The thermodynamic parameters (ΔG°, ΔH° and ΔS°) 
were determined from the following equation:

where R is the universal gas constant. The thermodynamic 
equilibrium constant KC is determined by:

where CAe and Ce are the equilibrium concentrations of 
M(II) (mg/L) on adsorbent and in solution, respectively 
(Krika et al. 2016). The thermal effect on thermodynamic 
constant is determined by Eq. (13)

where ΔH° and ΔS° are calculated from the slope and inter-
cept of the linear plot, of ln K versus 1/T. The free energy is 
given by Eq. (14):

The free energy (ΔG°) is negative and increases with 
temperature (Table 4), indicating that the best biosorption 
is obtained at higher temperature while the positive enthalpy 
ΔH° suggests an endothermic adsorption. A similar behavior 
was reported by Ahmaruzzaman and Gupta (2011) for the 
adsorption of heavy metals by rice husk ash, and the posi-
tive entropy ΔS° confirms the increased randomness at the 
solid–liquid interface. The necessity of heat to remove the 
M(II) ions from the solution makes the biosorption process 
endothermic (Al-Sou’od 2012).

(11)ΔG◦ = −RT lnKC

(12)KC =
CAe

Ce

(13)ln(KC) =
ΔS◦

R
−

ΔH◦

RT

(14)ΔG◦ = ΔH◦ − S◦.

Comparison with literature

The maximum biosorption capacity of P. oceanica for the 
removal of Pb(II), Cu(II), Ni(II), Zn(II) and Cd(II) was 
compared with that of other biosorbents, and the maximum 
biosorption capacities (qmax) are gathered in Table 5. It can 
be noteworthy that the P. oceanica biomass has a consider-
able potential for the removal of metals compared to those 
of the literature. The reduction of the above metals on semi-
conducting oxides upon solar light is our next objective; 
preliminary results were satisfactory and will be reported 
very soon.

Conclusion

The present work showed that P. oceanica fibers, a low 
cost biosorbent available abundantly at Algerian coasts, has 
an important capacity to remove the metals Zn(II), Ni(II), 
Cd(II), Cu(II) and Pb(II) from the aqueous medium. Based 
on the experimental results, it was concluded that:

1.	 The retention rate increases with increasing the contact 
time until reaching equilibrium after 80 min;

2.	 The maximum adsorption was determined in the pH 
range (6–8), close to the natural medium. The amount 
of adsorbed metals follows the sequence: 48.33, 43.9, 
41.02, 37.90 and 30.22 mg/g, for Pb(II), Cu(II), Ni(II), 
Zn(II) and Cd(II), respectively;

Table 4   The thermodynamic parameters for the biosorption of heavy 
metals onto Posidonia oceanica 

Heavy metal 
ions

ΔH° (kJ/mol) ΔS° (kJ/
mol K)

T (K) ΔG° (kJ/mol)

Pb(II) 321.99 1.36 293 − 76.49
303 − 90.09
313 − 103.69

Cu(II) 436.65 1.68 293 − 55.59
303 − 72.39
313 − 88.83

Ni(II) 312.98 1.20 293 − 38.62
303 − 50.62
313 − 62.62

Zn(II) 142.18 0.58 293 − 27.76
303 − 33.56
313 − 39.36

Cd(II) 219.95 0.82 293 − 20.31
303 − 28.51
313 − 36.71
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3.	 The elimination capacity of M(II) is influenced by the 
biosorbent dose which peaks at 2 g/L, allowing the 
elimination of 97, 98, 88, 85 and 70% of Pb(II), Cu(II), 
Ni(II), Cd(II) and Zn(II), respectively;

4.	 The equilibrium data fit well with the Langmuir, Freun-
dlich, Temkin and Dubinin–Radushkevich models;

5.	 From thermodynamic studies, the free energy (ΔG°) is 
negative and increases with temperature. This indicated 
that better biosorption is obtained at higher temperature, 
thus reflecting the feasibility and spontaneous nature of 
the process. The positive enthalpy ΔH° suggested an 
endothermic biosorption.
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