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Abstract
The adsorption of penicillin G (PC-G) from aqueous solution by magnesium oxide (MgO) nanoparticles has been inves-
tigated. This experimental study was conducted in a laboratory scale. The effects of various operating parameters such 
as pH (3–11), the dosage of MgO nanoparticles (0.3–1.5 g/L), contact time (20–150 min), and concentration of PC-G 
(50–200 mg/L) were studied. The results showed that under optimal conditions of concentration of 50 mg/L, pH 3, MgO 
nanoparticles dosage of 1.5 g/L and contact time of 60 min, the maximum adsorption capacity (qm) of PC-G adsorption on 
MgO nanoparticles obtained was 25.66 mg/g. The process of penicillin G adsorption on MgO nanoparticles was found to 
depend on Langmuir (II) and Langmuir (III) adsorption isotherm models. It could be concluded that the MgO nanoparticles 
can be used for PC-G removal from its aqueous solution.
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Introduction

Recently, the presence of pharmaceuticals and related prod-
ucts in the environment is proposed as a noteworthy environ-
mental problem in the world (Richardson et al. 2005; Kord 
Mostafapour et al. 2017; Ahmadi and kord mostafapour 
2017a). Pharmaceuticals have been used as human medicine 
to treat or prevent microbial infections and eliminate micro-
organisms, such as bacteria, virus, fungi, and parasites, for 
about 70 years (Gao et al. 2012; Guler and Sarioglu 2014). 
The annual application rate of antibiotics has been calculated 
to be around 100,000–200,000 tons in the world (Gulkowska 
et al. 2008; Kümmerer 2009).

In addition to the creation of chemical pollution, the anti-
biotics residue in the environment may cause the production 
of resistant microorganisms and dispersion of the antibiotic 
resistance (Aristilde et al. 2010; Zhang et al. 2016). The 

antibiotics along with the sewage, pharmaceutical indus-
tries wastewater, veterinary clinics and hospital sewages, 
and the agricultural products noticeably enter into the water 
resources and the environment (Carabineiro et al. 2012; 
Ahmadi et al. 2017a). If the antibiotics are not degraded 
or eliminated properly during the sewage treatment, in soil 
or in other environmental compartments, they will reach 
the surface water, groundwater, and, potentially, drinking 
water (Carabineiro et al. 2012). The presence of these con-
taminants in the environment is of great threat to human 
health (Zhang et al. 2016). Different findings have reported 
the presence of various kinds of antibiotics in many envi-
ronmental samples (Batt et al. 2006; Ahmadi et al. 2017b).

Its density in sewage and surface water is 1 μg/L and in 
hospital sewage more than 150 μg/L (Ahmadi et al. 2017c; 
Liu et al. 2016). Penicillin G (PC-G) is composed of a core 
of 6-amino penicillanic acid with a side chain of benzyl. 
This antibiotic encompasses β-lactam loop which is very 
sensitive to pH, heat, and β-lactamase enzymes (Ahmadi 
and Kord Mostafapour 2017b; Peterson et al. 2012). Also, 
it has a biological half-life of 30–60 min (Ahmadi et al. 
2017a; Peterson et al. 2012). It is soluble in aqueous solu-
tions, and the mechanism of destruction of bacteria’s cell 
wall is by stop production peptidoglycan layer (Gad-Allah 
et al. 2011). Recently, arbitrary and incorrect consump-
tion of antibiotics has become essentially difficult in the 
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field of human health in Iran. Iran has been mentioned as 
one of the first twenty countries in the consumption of 
antibiotics and PC-G is the most widely used antibiotics 
in the country (Brown et al. 2006). Presently, the meth-
ods mostly applied to the treatment of antibiotic waste-
water are coagulant sedimentation, membrane separation, 
activated sludge, biological contact oxidation, anaerobic 
sludge bed, advanced oxidation processes, ozone oxida-
tion, electro-catalytic oxidation, dissolved air flotation and 
adsorption (Ahmadi et al. 2017c; Sun et al. 2014; Guo 
and Chen 2015). Many of these methods, such as electro-
chemical techniques and membrane processes, cannot be 
used on a large scale due to high costs of operation, repair 
and maintenance, high electricity consumption, produc-
tion of toxic by-products, and complex operation. In con-
trast, adsorption process that is controlled by main phys-
icochemical interactions, such as van der Waals forces, 
hydrogen bonds, polarity, and dipole–dipole interaction, 
is one of the most cost-effective methods for water treat-
ment (Ren et al. 2011; Rahdar et al. 2019a, b). Particularly, 
the development of various nano-adsorbents, which offer 
unique advantages including large specific surface area, 
selective and abundant adsorption sites, short intraparticle 
diffusion distance, tunable pore size, and easy regenera-
tion and reusability, has attracted a great deal of atten-
tions (Tajbakhsh et al. 2014; Al-Nour 2009). Among the 
nanoparticles, magnesium oxide (MgO) is a basic oxide 
group and it has provided a large range of applications in 
the process of adsorption (Ghahramani et al. 2016). The 
most important characteristics of MgO nanoparticles are 
availability, cheapness, nonvolatility, non-toxicity, stabil-
ity, reusability, and high absorption capability (Kermani 
et al. 2013). The main purpose of the research is to study 
the adsorption of PC-G from aqueous solution using MgO 
nanoparticles.

Materials and methods

Materials

Penicillin G (PC-G) with a molar mass of 372.48  g/
mol, molecular formula C16H17KN2O4S, and wave-
length of maximum absorption (λmax) 248 nm (Ahmadi 
et al. 2017a) and magnesium oxide (MgO) nanoparticles 
were purchased from Sigma-Aldrich Chemical Company 
(USA). The chemical structure of PC-G is provided in 
Fig. 1. The physicochemical properties of MgO nano-
particles are given in Table  1. The structural features 
of the MgO nanoparticles were determined using scan-
ning electron microscopy (SEM) and Fourier transform 
infrared spectroscopy (FTIR). Fourier transform infrared 

spectroscopy (FTIR, JASCO 640) was done on a plus 
machine (4000–400 cm−1). SEM images were taken with 
a HITACHI Model S-3000H MgO nanoparticles.

Batch adsorption technique

The effect of MgO nanoparticles (0.3–1.5 g/L), contact 
time (20–150 min), pH (3–11), and PC-G concentrations 
(50–200 mg/L) on PC-G removal was investigated. The 
PC-G solutions with concentrations in the range of 50 to 
200 mg/L were prepared by successive dilution of the stock 
solution with distilled water. To work in a discontinuous 
system, Erlenmeyer flask was used. At each adsorption test 
time, the specified volume of PC-G solution with 100 mL 
of PC-G concentration was added into the Erlenmeyer. 
The desired conditions were set up, and the 0.5 g/L dose 
of adsorbent was added to the flask and then mixed in the 
magnetic stirrer at 180 rpm for 2 h. The pH of the solution 
was adjusted using 0.1 N HCl or 0.1 N NaOH solutions. 
The residual concentrations were measured using UV–vis-
ible spectrophotometer (Shimadzu Model: CE-1021). The 
amount of PC-G adsorbed on MgO nanoparticles, qe, was 
obtained as follows (Ahmadi et al. 2017b):

(1)qe =
(C0 − Ce)V

M
.

Fig. 1   Chemical structure of PC-G

Table 1   Physicochemical specifications of MgO nanoparticles

Parameter Unit Amount

Appearance – White
Average particle size nm 20
Morphology – Multi-dimensional
Purity % 99
Specific surface area m2/g 60
Density g/cm3 3.58
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Also, the removal efficiency, R (%), was calculated based 
on the following formula (Ahmadi et al. 2017c; Ahmadi and 
Kord Mostafapour 2017d):

where C0 and Ce are the initial and equilibrium liquid-phase 
concentration of PC-G (mg/L), respectively, Cf is the final 
concentration, V is the volume of the solution (L), and M is 
the amount of adsorbent.

Adsorption isotherms study

The equilibrium adsorption isotherm is important in the design 
of adsorption systems. Although several isotherm equations 
are available, four important isotherms including Langmuir 
and Freundlich isotherms were selected (Rahdar et al. 2016; 
Ahmadi et al. 2017c). The isotherm equations are presented 
in Table 2.

In order to validate the adsorption isotherm models used 
in the study, in addition to R2, the parameters of Marquardt’s 
percent standard deviation (MPSD)and hybrid error function 
(HYBRID) were also evaluated, which can be described as 
Eqs. (3) and (4):

(2)R (%) =
(C0 − Cf)

C0

100,

(3)MPSD = 100

√√√√ 1

n − p

n∑
i=1

(
qe,exp − qe,calc

qe,exp

)2

i

(4)HYBRID =
100

n − p

n�
i=1

⎡⎢⎢⎣

�
qe,exp − qe,calc

�
qe,exp

2⎤⎥⎥⎦i
.

The isotherm parameters with the various error functions 
used in the present study are given in Table 3. In order to 
determine the goodness of fit of the isotherm models for the 
adsorption system, it is necessary to analyze the data set 
using Δq (%) combined with the values of the determined 
coefficient R2 (Ahmadabadi et al. 2016; Igwegbe et al. 2018; 
Ahmadi et al. 2018):

where qexp and qcal (mg/g) are the experimental and calcu-
lated amount of PC-G adsorbed, respectively, and N is the 
number of measurements made, respectively.

Results and discussion

FTIR and SEM analysis on MgO nanoparticles

Figure 2a shows the FTIR spectrum (% transmittance vs. 
wave number) for MgO nanoparticles. The functional groups 
present in the MgO nanoparticles were identified. Peaks 
3419.46 cm−1 (O–H stretch, H-bonded) assigned to alco-
hols and phenols are very strong. SEM was used to show 
the surface morphology, size, and location of the individual 
MgO nanoparticles. The SEM image of MgO nanoparticles 
is shown in Fig. 2b. The MgO nanoparticles were also found 
to consist of lamellar- or platelike structures.

Determination of point of zero charge (pHpzc)

To determine the pHzpc, 50 mL nitrite potassium (0.01 M) 
was added to glass plates and the pH was adjusted in 2–14 
using HCl and NaOH. Then, 0.2 g of magnesium oxide nan-
oparticles (MgO nanoparticles) was added and mixed in a 
shaker with a velocity of 180 rpm. After 24 h, the final pH 
was measured. The graph of pHi(initial) against pHf(final) was 
drawn, and the intersection point was isoelectric pH. The 
pHzpc for MgO nanoparticles was 12.4 (Rahdar et al. 2018).

(5)
Δq (%) = 100

����∑���
�
qexp − qcal

�
∕qexp

���
2

N − 1
,

Table 2   Equations of isotherms

Isotherm type Main equation Linear form

Freundlich
qe = KfC

1

n

e
log (x∕m) = log

(
Kf

)
+

1

n
log

(
Ce

)

Langmuir (I) ce

qe
=

1

qm
+

1

qmKl

Langmuir (II) qe =
qmK1Ce

1+K1Ce

1

qe
=

1

qm
+
(

1

qmKl

)
1

Ce

Langmuir (III) qe = qm −
(

1

KL

)
−

qe

Ce

Langmuir (IV) qe

Ce

= kLqm − kLqe

Table 3   Isotherm model 
constants for the adsorption 
of PC-G (C0 = 50 mg/L and 
Tem = 298 K)

Isotherm qe exp KL qm ∆q (%) HYBRID MPSD R2

Freundlich 23 6.56 0.47 10.3 9.6 20.1 0.962
Langmuir (I) 23 0.5 4.4 92.4 4.2 19.49 0.973
Langmuir (II) 23 0.094 0.086 16.73 2.97 17.02 0.995
Langmuir (III) 23 0.59 25.66 6.32 0.4259 6.48 0.976
Langmuir (IV) 23 0.038 1.56 33.9 12 34.6 0.976
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The effect of pH

The pH is an important parameter that influences the surface 
charge of adsorbent, ionization degree of different pollut-
ants, and separation of functional groups on absorbent active 
sites (Ahmadi and Kord Mostafapour 2017c). To obtain the 
optimal pH value, experiments were carried out by varying 
initial solution pH from 3 to 11, and under the condition 
of 50 mg/L of initial penicillin G (PC-G) concentration, 
0.5 g/L of MgO nanoparticles dose, and 60 min of contact 
time. It can be seen from Fig. 3 that the adsorption of PC-G 
was highly dependent on the pH of the solution, and the 
maximum amount of removal of the PC-G (qm = 14.75 mg/g, 

R = 95%) was observed at pH 3. The increase and decrease in 
PC-G deletion efficiency, in acidic and alkaline pH, depend 
on pHzpc and pKa parameters. The pKa for PC-G was 2.75, 
and the pHzpc of MgO nanoparticles of magnesium oxide 
was 12.4 (Ahmadi and Kord Mostafapour 2017c; Bazrafshan 
et al. 2015). At pH less than pHzpc, the catalyst had a positive 
charge. In acidic pH, PC-G took carboxyl agent (–COOH), 
and in pKa less than 2.75, carboxyl group changed to carbox-
ylate charge (Ahmadi and Igwegbe 2018). The increase in 
yield in acidic pH was resulted from active sites and the load 
density of protonated adsorbent (carboxyl) that decreased 
when pH increased. In basic pH, the yield of adsorption 
decreases because of the high competitivity of OH (Rahdar 
et al. 2019a).

The effect of adsorbent dosage

The adsorbent dosage is an important parameter to study 
the removal of PC-G from water by adsorption process, 
because this parameter determines the adsorption capacity 
of the adsorbent. To evaluate the effect of adsorbent dose on 
the adsorption of PC-G, 0.3 to 1.5 g/L of MgO nanoparticles 
was used for adsorption experiments at the fixed conditions 
of pH 3, 50 mg/L of initial PC-G concentration, and 60 min 
of contact time. As it can be seen from Fig. 4, the removal 
efficiency of PC-G increased rapidly with an increase in the 
adsorbent dosage from 0.3 to 1.5 g/L. A maximum removal 
of PC-G (qm = 2 mg/g, R = 70%) was achieved at an adsor-
bent concentration of 1.5 g/L. This is because an increase 
in the number of available adsorption sites will result in an 
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Fig. 2   a FTIR pattern and b SEM image of the MgO nanoparticles
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Fig. 3   Effect of pH on PC-G removal efficiency on MgO nanoparti-
cles (C0 = 50 mg/L, dosage of 0.5 g/L, and time = 60 min)
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increase in adsorption capacity (Ahmadi and Kord Mosta-
fapour 2017c; Ahmadi et al. 2017b).

The effect of the initial concentration

Figure 5 shows that the effect of PC-G initial concentration 
(50–200 mg/L) on PC-G removal on MgO nanoparticles at 
optimum pH of 3 and adsorbent dosage of 1.5 g/L and con-
tact time of 60 min at 298 ± 2 K. As the initial concentration 
of PC-G was increased from 50 to 200 mg/L, the removal 
efficiency decreased from 58 to 74.97% (Fig. 5). The effect 
of PC-G concentration showed that the adsorbent possesses 
finite adsorption sites, and in less concentrations of PC-G, 
more adsorbent sites are present. This is the cause for the 
increase in adsorption of PC-G (Samadi et al. 2013; Rahdar 

et al. 2017). The reason for the decreasing removal efficiency 
by enhancement of antibiotic density is the saturation of 
active places of adsorption (Ahmadi and Kord Mostafapour 
2017d; Rahdar et al. 2019b).

The effect of contact time

The effect of contact time on the PC-G adsorption capacity 
of MgO nanoparticles was investigated at different contact 
time (20, 40, 60, 80, 120 and 150 min) at PC-G initial con-
centration of 50 mg/L, pH of 3, and adsorbent dosage of 
1.5 g/L at different temperatures (298 and 313 K). Figure 6 
shows the effect of contact time on PC-G removal. The effi-
ciency of antibiotic removal was increased by increasing 
the contact time. The reason for an increase in the removal 
efficiency at the early hours is that, as time passes, the made 
cavity and corrosion on the MgO nanoparticles level will be 
expanded and so increase in the cross section of adsorption 
(Bazrafshan et al. 2015). The amount of PC-G desorbed is 
proportional to the amount of PC-G on the adsorbent, which 
infers dynamic equilibrium (Bazrafshan and Ahmadi 2017; 
Ahmadi et al. 2017c). The time required to attain this state 
of equilibrium is referred to as equilibrium time (Bazrafshan 
and Ahmadi 2017; Rahdar et al. 2017).

Adsorption isotherms

The estimated isotherm parameters, fixed correlation coeffi-
cient, R2, and error analysis functions (MPSD, HYBRID, and 
Δq ) for the studied isotherms are presented in Table 3. PC-G 
adsorption on MgO nanoparticles conformed more to the 
Langmuir isotherms compared to the Freundlich isotherm 
with regards to their correlation coefficient, R2 (Table 3). 
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Fig. 4   Effect of adsorbent dosage on removal efficiency of PC-G 
on MgO nanoparticles. (C0 = 50  mg/L, pH = 3, and contact 
time = 60 min)
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From the equilibrium data of the four Langmuir models, the 
results showed that the highest adsorptive capacity of PC-G 
on MgO nanoparticles was 25.66 mg/g based on Langmuir 
isotherm (III). Considering the error range for each model, it 
was deduced that Langmuir model (II) and Langmuir model 
(III) were the most proper models for describing the adsorp-
tion process. In fact, the highest amount of R2 and the lowest 
amounts of MPSD and HYBRID Δq showed better consist-
ency with Langmuir model (II) and Langmuir model (III) 
(Rahdar and Ahmadi 2017; Watkinson et al. 2007).

Conclusions

The general results of the study showed that MgO nanoparti-
cles could lead to surface adsorption of PC-G from aqueous 
solutions with a maximum adsorption capacity and removal 
efficiency of 25.66 mg/g and 80%, respectively, under the 
optimal adsorption conditions of pH 3, initial concentration 
of 50 mg/L, and adsorbent dosage of 1.5 g/L. As a result, 
PC-G adsorption by MgO nanoparticles followed the Lang-
muir linear models. Among the four linear models, Lang-
muir (II) model showed the highest correlation coefficient. 
It was also documented that the Langmuir (II) and Langmuir 
(III) isotherm models had the best fit with the experimental 
data.
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