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Abstract
In the present investigation, the usefulness and capabilities of four artificial intelligence (AI) models, namely feedforward 
neural networks (FFNNs), gene expression programming (GEP), adaptive neuro-fuzzy inference system with grid partition 
(ANFIS-GP) and adaptive neuro-fuzzy inference system with subtractive clustering (ANFIS-SC), were investigated in an 
attempt to evaluate their predictive ability of the phycocyanin pigment concentration (PC) using data from two stations 
operated by the United States Geological Survey (USGS). Four water quality parameters, namely temperature, pH, specific 
conductance and dissolved oxygen, were utilized for PC concentration estimation. The four models were evaluated using 
root mean square errors (RMSEs), mean absolute errors (MAEs) and correlation coefficient (R). The results showed that the 
ANFIS-SC provided more accurate predictions in comparison with ANFIS-GP, GEP and FFNN for both stations. For USGS 
06892350 station, the R, RMSE and MAE values in the test phase for ANFIS-SC were 0.955, 0.205 μg/L and 0.148 μg/L, 
respectively. Similarly, for USGS 14211720 station, the R, RMSE and MAE values in the test phase for ANFIS-SC, respec-
tively, were 0.950, 0.050 μg/L and 0.031 μg/L. Also, using several combinations of the input variables, the results showed 
that the ANFIS-SC having only temperature and pH as inputs provided good accuracy, with R, RMSE and MAE values in 
the test phase, respectively, equal to 0.917, 0.275 μg/L and 0.200 μg/L for USGS 06892350 station. This study proved that 
artificial intelligence models are good and powerful tools for predicting PC concentration using only water quality variables 
as predictors.

Keywords  Modeling · Phycocyanin concentration · Feedforward neural networks · Gene expression programming · 
Adaptive neuro-fuzzy inference system · Grid partition · Subtractive clustering

Introduction

Nowadays, cyanobacterial harmful algal bloom (HAB) 
has become a serious problem, contributes seriously to 
the degradation of the drinking water quality and affects 
human health and the aquatic life with long-lasting effects 
(Sivapragasam et al. 2010), including bad odors and tastes, 
reduction in water clarity and oxygen depletion (hypoxia or 
anoxia) during bloom decay (Sharaf et al. 2019). Monitor-
ing cyanobacteria also known as blue–green algae (CBG) 
is of great importance for freshwater ecosystems; however, 
it has been very difficult over the years to ensure effective 
and adequate monitoring of cyanobacteria in freshwater 
(Backer 2002). Traditional methods used for monitoring 
cyanobacteria are mainly based on: (i) standard methods 
of chlorophyll-a determination, (ii) cell counting and (iii) 
direct in situ measurement of cyanotoxin (Kong et al. 2014). 
However, it is reported that fluorescence is a fast, real-time 

 *	 Salim Heddam 
	 heddamsalim@yahoo.fr

	 Hadi Sanikhani 
	 hsanikhani12@gmail.com

	 Ozgur Kisi 
	 ozgur.kisi@iliauni.edu.ge

1	 Laboratory of Research in Biodiversity Interaction 
Ecosystem and Biotechnology, Hydraulics Division, 
Agronomy Department, Faculty of Science, University 20 
Août 1955, Route El Hadaik, BP 26, Skikda, Algeria

2	 Water Sciences and Engineering Department, Agriculture 
Faculty, University of Kurdistan, Sanandaj, Iran

3	 School of Technology, Ilia State University, 0162 Tbilisi, 
Georgia

http://orcid.org/0000-0002-8055-8463
http://crossmark.crossref.org/dialog/?doi=10.1007/s13201-019-1044-3&domain=pdf


	 Applied Water Science (2019) 9:164

1 3

164  Page 2 of 16

monitoring method to measure the concentration of phyto-
plankton in natural water bodies (Xiaoling et al. 2019). One 
of the most accessory pigment characteristics of cyanobac-
teria is certainly phycocyanin pigment concentration (PC), 
and it is considered as the main light-harvesting pigment 
in cyanobacteria (Simis et al. 2012). PC is more suitable 
for monitoring cyanobacterial blooms and toxic cyanobac-
teria and is a functional protein found in cyanobacteria with 
high intracellular variability (Yan et al. 2018). PC plays an 
imperative role in the energy transfer cascade by funneling 
the light energy toward reaction center of the photosystems 
(Patel et al. 2018). According to Kuo et al. (2018), cyano-
bacterial blooms are strongly associated with phycocyanin 
concentrations.

According to Gregor et al. (2007), when PC is excited 
by light around 590–630 nm with a maximum of 620 nm 
(Mishra et al. 2009), it emits red light with a maximum at 
650 nm. Two methodologies were employed for assessing 
PC: (i) models prediction of PC utilizing satellite remotely 
detected data and (ii) laboratory analysis and directly in situ 
measurement utilizing sensors. In addition, McQuaid et al. 
(2011) have demonstrated that PC has the property of being 
soluble in water and strongly fluorescent and consequently 
the quantitatively detection of PC based on portable instru-
ments is possible. However, measuring PC cannot be eas-
ily accomplished and there is no standard measurement 
technique (Tebbs et al. 2013). Assuming that the traditional 
method used for quantifying the PC is based upon laboratory 
analysis that is costly and time-consuming (Le et al. 2011; 
Kong et al. 2014; Song et al. 2013a, b), a wide variety of 
alternative approaches based on remote sensing have been 
proposed and tested to estimate PC as function of reflec-
tance measurement at different wavelengths. In this con-
text, depending on the magnitude of the reflectance trough 
around 620 nm, three different algorithms are available (Le 
et al. 2011): (i) semi-baseline (Dekker 1993), (ii) a single 
reflectance band ratio (Schalles and Yacobi 2000) and (iii) 
a nested band ratio semi-analytical algorithms (Simis et al. 
2005). PC estimation utilizing remotely detected data has 
been extensively examined by the researchers (Simis et al. 
2005; Li et al. 2010; Le et al. 2011).

Simis et al. (2005) introduced a basic optical model-based 
reflectance band ratio algorithm, for modeling PC of highly 
eutrophic Loosdrecht and Ijsselmeer lakes, Netherlands. 
They have used band settings of the MEdium Resolution 
Imaging Spectrometer (MERIS), and they have found a very 
high coefficient of determination (R2) equal to 0.94 between 
measured PC and predicted PC by the proposed algorithm, 
with measured specific absorption coefficients at 620 nm 
called apc*(620). Using hyperspectral airborne imaging 
spectrometer for applications (AISA) imagery from central 
Indiana, USA, Li et al. (2010) built up a model that linked 
spectral indices, called (x) to the measured PC, called (y). 

The authors have tested four different univariate regressions: 
(i) linear, (ii) exponential, (iii) power and (iv) polynomial. 
As a result of the study, they have demonstrated that PC con-
centration correlated best with the reflectance trough 628 nm 
(R628), via an exponential relation, with an R2 equal to 0.80 
and root mean square error (RMSE) equal to 25.52 (µg L−1). 
Le et al. (2011) compared two semi-analytical algorithms 
for modeling PC of Lake Taihu, China, including highly 
turbid water. The two algorithms are: the semi-analytical 
four-band algorithm already suggested by Le et al. (2009) 
and the nested band ratio algorithm; the two models are 
based upon hyperspectral reflectance measurements. The 
authors have obtained the following results: (i) the nested 
band ratio algorithm for PC modeling has provided an R2 
equal to 0.68 and a very high RMSE equal to 10.43 mg/
m−3 and (ii) the semi-analytical four-band algorithm pro-
duced good predictions as compared to the first algorithm 
with an R2 equal to 0.86 and a very low RMSE value equal 
to 4.83 mg/m−3. Song et al. (2012) proposed a new model 
called genetic algorithm partial least squares (GA-PLS) for 
PC retrieval. The model was compared to three-band algo-
rithm (TBM), and the two were applied together in the three 
reservoirs, Eagle Creek, Morse and Geist reservoirs, in the 
Indianapolis, Indiana, USA. The authors used hyperspectral 
data obtained from in situ and airborne image. As a result of 
the study, both GA-PLS and TBA provided good accuracy, 
and the GA-PLS model is more accurate than the TBA. Song 
et al. (2013a) used data from five drinking water sources in 
South Australia and central Indiana, USA, for developing 
models using in situ hyperspectral data. The authors com-
pared four types of algorithms, namely (i) TBM three-band, 
(ii) OBR optimal band ratio, (iii) SM05 Simis et al. (2005) 
band ratio and (iv) SY00 Schalles and Yacobi (2000) mod-
els. As a result, the four models yielded an R2 in the vali-
dation phase equal to 0.95, 0.94, 0.94 and 0.12 for TBM, 
OBR, SM05 and SY00, respectively, and the TBM model 
was the best among the all others. In another study, Song 
et al. (2013b) compared three different models for estimat-
ing PC in the Eagle Creek reservoir, Indianapolis, Indiana, 
USA. The three models were: (i) three-band, (ii) two-band 
and (iii) optimal band models. Utilizing simulated MEdium 
Resolution Imaging Spectrometer (MERIS) and Hyperion 
spectra pooled datasets, the three models yielded an R2 equal 
to 0.68, 0.64 and 0.74 for three-band, two-band and opti-
mal band models, respectively. Li et al. (2012) introduced a 
semi-analytical method called TBBA to estimate PC using 
as input the absorption coefficients at 624 nm (APC (624)). 
The algorithm combines both three-band indices and the 
baseline algorithm. The investigation was conducted using 
data from in three reservoirs: Eagle Creek Reservoir (ECR), 
Geist Reservoir (GR) and Morse Reservoir (MR), at central 
Indiana, USA. Compared with the baseline and three-band 



Applied Water Science (2019) 9:164	

1 3

Page 3 of 16  164

algorithms, the TBBA provided better PC estimates with R2 
equal to 0.86.

Obviously, predicting PC concentration using remote 
sensing is broadly discussed in the literature and much effort 
has been devoted in this subject. Although the aforemen-
tioned models are robust enough, the proposition of a new 
kind of models is most welcome. Artificial intelligence (AI) 
techniques have been successfully applied in many areas 
of scientific researches; however, few studies have reported 
an application of the AI for predicting PC concentration. 
Sun et al. (2012) modeled PC by support vector machines 
(SVMs) and linear regression model utilizing band ratios 
as inputs. The authors have used three different reflectance 
forms, namely single-band, band ratio and three-band com-
bination, and they have chosen three lakes in China as cases 
studies: Lake Taihu, Lake Chaohu and Lake Dianchi. To 
demonstrate the ability of the proposed SVM model, the 
authors have compared the results obtained with previous 
proposed algorithms, which are: (i) the baseline algorithm, 
(ii) the linear algorithm using band ratio, (iii) the quadratic 
algorithm using band ratio, (iv) the three-band combination 
algorithm and (v) the semi-analytical algorithm. As a result 
of the study, the low RMSE was found to be 38.4 (mg m−3), 
obtained from SVM model. Song et al. (2014) developed and 
compared three different models: (i) a partial least squares-
artificial neural network (PLS-ANN) model, (ii) artificial 
neural network (ANN) and (iii) three-band model (TBM). 
The three models used the remote sensing reflectance spectra 
(Rrs) as input to predict the PC concentration as output. The 
three models were applied using data from central Indiana, 
USA, and South Australia. The results obtained showed that 
the PLS-ANN was the best, followed by TBM and the ANN 
ranked in the last place. Although the two studies applied AI 
techniques for predicting PC, they are based on the integra-
tion of the remote sensing reflectance band ratio as inputs. 
Recently, Heddam (2016a) proposed a new kind of models 
based on ANN paradigm for predicting PC utilizing water 
quality data as input to the model. Four water quality param-
eters were measured at 15-min interval of time, namely 
water temperature (TE), pH, specific conductance (SC) and 
dissolved oxygen (DO), measured at the lower Charles River 
Buoy, USA. The author has demonstrated that the multilayer 
perceptron neural network (MLPNN) satisfactorily predicted 
the PC with high accuracy and a coefficient of correlation 
equal to 0.975 in the test phase.

Therefore, the main contributions of this study are 
the proposition of a new kind of models based on AI for 
predicting PC concentration. We develop and apply four 
models, namely (i) feedforward neural networks (FFNNs), 
(ii) gene expression programming (GEP), (iii) adaptive 
neuro-fuzzy inference system with grid partition (ANFIS-
GP) and (vi) adaptive neuro-fuzzy inference system with 
subtractive clustering (ANFIS-SC), for predicting PC 

using data from two stations operated by the United States 
Geological Survey (USGS).

Materials and methods

Feedforward neural network

Artificial neural network (ANN) is a nonlinear model 
inspired from the behavior of the biological neuron. ANN 
is arranged in different layers, and their functioning is 
mainly based on the adaptation of the parameters through a 
learning process, generally the backpropagation algorithm 
(Haykin 1999). The most common architecture of ANN 
is the feedforward neural network (FFNN), selected in 
the present study. FFNN is composed of three layers: one 
input layer with four inputs, one hidden layer of neurons 
with sigmoid activation function and one output layer con-
sisting of only one neuron corresponding to the PC. FFNN 
is a universal approximator (Hornik 1991; Hornik et al. 
1989). The structure of the FFNN developed is shown in 
Fig. 1. The general equations of the FFNN from the input 
layer to the output layer can be presented as:

where xi is the input variable, wij weight between the input 
i and the hidden neuron j and δj is the bias of the hidden 
neuron j. wjk indicates the connection weight between the 
neuron j in hidden layer and the neuron k in the output layer, 
and δ0 denotes the bias of the neuron k in the output layer. f2 

(1)Y = f2

[
n∑
j=1

wjk

(
f1

(
n∑
j=1

xiwij + �j

))
+ �0

]

Input Layer      Hidden Layer     Output Layer        

PC

TE

DO

SC

pH

Fig. 1   Architecture of FFNN with four input variables used for mod-
eling PC concentration
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is the linear activation function, and f1 the sigmoid activation 
function, expressed by Eq. (2).

Adaptive neuro‑fuzzy inference system

Fuzzy inference system (FIS) is used to create nonlin-
ear models, linking a set of inputs to an output, generally 
achieved in three important processes: (i) selection of 
membership function, (ii) applying fuzzy set operation and 
(iii) elaboration of the rules base (Kotti et al. 2016). These 
types of models use the fuzzy numbers, while the models 
based on statistical regression are based on the error term 
(Kitsikoudis et al. 2016). Adaptive neuro-fuzzy inference 
system (ANFIS) was first suggested by Jang (1993). ANFIS 
combines the learning abilities of ANN and the fuzzy logic 
concept (Jang 1993). ANFIS is a MLPNN based on fuzzy 
inference system (FIS), where each node applies a particu-
lar function on incoming signals (Jang 1993). As illustrated 
in Fig. 2, the ANFIS is composed of exactly six layers: (i) 
input layer, (ii) fuzzification layer, (iii) rules layer, (iv) nor-
malization layer, (v) defuzzification layer and (vi) summa-
tion (output or decision) layer. In the ANFIS structure, there 
are only two adaptive layers, namely the fuzzification layer 
and the defuzzification layer. In the fuzzification layer, two 
modifiable parameters ({σi, ci}), which are identified with 
the input membership functions, exist, while in the defuzzi-
fication layer there are three adjustable parameters ({pi, qi, 
ri}) (Jang 1993). ANFIS utilizes a hybrid learning algorithm 
composed of the gradient descent for the premise parameters 
(nonlinear) parameters and the least square estimate (LSE) 

(2)f1(x) =
1

1 + e−x

for the linear (consequent) parameters. The learning process 
is achieved into two phases: forward and backward passes. 
Simply assume that we have a FIS having two inputs, x and 
y, and one output z.

Assume that the rule base includes two fuzzy if–then 
rules (Takagi and Sugeno type):

where x and y denote the inputs, Ai and Bi indicate the fuzzy 
sets, fi are the outputs within the fuzzy region indicated by 
the fuzzy rule and pi, qi and ri show the design parameters 
that are identified in the training phase. The ANFIS structure 
to actualize these two rules is shown in Fig. 2, in which a 
circle demonstrates a fixed node, whereas a square shows 
an adaptive node.

Layer 1: the input layer that only fixes the input variable 
of the system.
Layer 2: the fuzzification layer. Every node i in this layer 
is a square node with a node function:

where x (or y) is the input to node i, Ai (or Bi−2) is the 
linguistic label (small, large, etc.) associated with this 
node function and �Ai

(x) and �Bi−2
(y) can adopt any fuzzy 

(3)
Rule 1 = If

(
x is A1

)
and

(
y is B1

)
Then

(
f1 = p1x + q1y + r1

)

(4)
Rule 2 = If

(
x is A2

)
and

(
y is B2

)
Then

(
f2 = p2x + q2y + r2

)

(5)O1
i
= �Ai

(x), i = 1, 2,

(6)O1
i
= �Bi−2

(y), i = 3, 4

Fig. 2   Architecture of ANFIS 
with four input variables used 
for modeling PC concentration

Layer4
Consequents parameters 

(pi, qi, ri)

Fuzzification
Layer

Rules
Layer

Normalization
Layer

Defuzzification
Layer

Summation
Layer

pH TE           DO SC

∑

MF1-1

MF1-2pH
MF1-3

MF2-1

MF2-2TE
MF2-3

MF3-1

MF3-2DO
MF3-3

MF4-1

MF4-2SC
MF4-3

Layer1 
Premise parameters 

(σi, ci)

Fuzzy Rule bases 

Input 
Layer



Applied Water Science (2019) 9:164	

1 3

Page 5 of 16  164

membership function. Assuming a Gaussian function as a 
membership function, Ai can be computed as

where (σi, ci) denote parameter sets. Parameters in this 
layer are called as premise parameters.
Layer 3: the rules layer. Each node i in this layer is a 
fixed node. These nodes multiply the incoming signals 
and outputs the product.

The output signal wi indicates the firing strength of a 
rule. The node numbers in this layer are equal to the 
number of fuzzy rules in the FIS.
Layer 4: the defuzzification layer. In this layer, the 
nodes are adaptive. Each node’s output of this layer 
is the product of the normalized firing strength and a 
first-order polynomial. Thus, this layer’s outputs are 
expressed as

Outputs of this layer are named as normalized firing 
strengths.
Layer 5: the defuzzification layer. In this layer, the 
nodes are adaptive nodes. The output of each node in 
this layer is simply the product of the normalized fir-
ing strength and a first-order polynomial (for a first-
order Sugeno model). Thus, this layer’s outputs are 
expressed as

where w̄i is the output of Layer 3 and ({pi, qi, ri}) denotes 
the parameter set of this node. This layer’s parameters 
will be called as consequent parameters.
Layer 6: the summation (output or decision) layer. This 
layer’s node is a fixed node labeled Σ, which calculates 
the overall output as the sum of all incoming signals, 
i.e.,

Explicitly, this layer sums the node’s output of the pre-
vious layer to calculate the whole network’s output.

ANFIS uses two different identification approaches: 
the grid partition (GP) and the subtractive clustering (SC) 
(Sylaios et al. 2008). A detail of the methods is reported 
in the following.

(7)�Ai
(x) = exp

⌊
−0.5 ×

{(
x − ci

)
∕�i

}2
⌋
,

(8)O2
i
= wi= �Ai

�Bi
, i = 1, 2,

(9)O3
i
= w̄i =

(
wi∕

(
w1 + w2

))
, i = 1, 2,

(10)O4
i
= w̄i fi = w̄i

(
pi x + qi y + ri

)
, i = 1, 2

(11)O5
i
=
∑
i=1

w̄ifi =

(∑
i=1

wifi∕(w1 + w2)

)
.

Grid partitioning

The grid partition method (GP) separates the data into 
rectangular subspaces depending on the pre-defined mem-
bership functions’ number and types (Sylaios et al. 2008). 
Using GP method, network partitioning is uniformly utilized 
and with initialization (Rad et al. 2015). The major drawback 
of the ANFIS-GP is the so-called the curse of dimensions, 
which implies that the number of fuzzy rules exponentially 
increases when there is an increment in the number of input 
variables (Wei et al. 2007; Noori et al. 2009). According to 
the study of Jang (2016) and Jang et al. (1997), the number 
of input variables must be small and < 6 to apply GP. For 
example, in the case of building a model with high number 
of inputs (e.g., 10) and if it is necessary to select much mem-
bership functions (MFs) for each input, for example, three 
MFs for each input, the number of rules will be: (310 = 2187) 
rules, and the calculation and optimization of this model are 
a difficult task, rather impossible with the actual computer 
machines. In the current study, modeling PC concentration 
was achieved using four input variables and therefore apply-
ing an ANFIS-GP model is feasible. Using ANFIS-GP, the 
total number of model parameters that need to be optimized 
is computed as follows (Heddam 2014):

Using GP method in ANFIS, the total number of modifi-
able parameters (Ѱ) is computed as:

where β is the premise parameters’ number and δ consequent 
parameters’ number, and β and δ are computed as:

where NI is the input variable number, NMFs MF number of 
each input and NMP the number of modifiable parameters for 
each MF, for example, for Gaussian membership function 
(NMP = 2), NFR numbers of fuzzy rules that will be produced 
by all inputs and NO system output which is equal to one (in 
his study, PC concentration).

Subtractive clustering

Subtractive clustering (SC) is utilized to avoid the problem 
of curse of dimensionality encountered when using the GP 
method. SC leads to a reduction in the high number of fuzzy 
rules and generates significantly smaller rule base depending 
only on one parameter: the so-called cluster radius (Vasi-
leva-Stojanovska et al. 2015). The influential radius is very 
essential for calculating the number of clusters. By choosing 
a smaller radius, too many smaller clusters are obtained in 
the data space and more rules are required and vice versa 

(12)� = � + �

(13)� = NI × NMFs × NMP

(14)� = NFR ×
(
NI + NO

)

(15)NFR = (NMFs)
NI
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(Kisi and Zounemat-Kermani 2014). SC is a modified ver-
sion of the original mountain clustering approach (Yager and 
Filev 1994) suggested by Chiu (1994). The SC approach is 
utilized to decide the number of antecedent MFs and rules 
by taking into consideration every cluster center (Di) as a 
fuzzy rule. In this method, each data point of a set of N data 
points {x1… xN} in a p-dimensional space is considered as 
the cluster centers’ candidate (Wei et al. 2007). Then, the 
density measure at data point xi can be expressed as (Aqil 
et al. 2007):

where ra = a positive constant named cluster radius. A data 
point is marked as a cluster center when more data points 
are closer to it. Accordingly, the data point (x1

*) with highest 
density measure (D1

*) is considered as the first cluster center 
(Wei et al. 2007). Now removing the impact of the first clus-
ter center, the density measure of all other data points is 
recalculated as:

where rb (rb > ra) = a positive constant that yields a measur-
able reduction in density measures of neighborhood data 
points to avoid closely spaced cluster centers (Chiu 1994). 
Using ANFIS-SC, the total number of model parameters 
that need to be optimized is computed as follows (Heddam 
2014):

With SC partition approach for the ANFIS model, the 
number of modifiable parameters (Φ) can be computed as:

where α is the premise parameters’ number and λ the con-
sequent parameters’ number, and α and λ are computed as:

From the above equations, it can be seen that, when fuzzy 
systems are designed utilizing SC approach, every cluster 
corresponds to a fuzzy rule. At that point, the total num-
ber of modifiable parameters is equivalent to the quantity of 
premise parameters in addition to the number of consequent 
parameters.

(16)Di =

N�
j=1

exp

⎛
⎜⎜⎜⎝
−

���xi − xj
���
2

�
ra∕2

�2
⎞
⎟⎟⎟⎠

(17)Di = Di − D∗
i
⋅ �

(
x∗
i

)

(18)�
�
x∗
i

�
= exp

⎛⎜⎜⎜⎝
−

���xi − xj
���
2

�
rb
�
2
�2

⎞⎟⎟⎟⎠

(19)� = � + �

(20)� = NI × NMFs × NMP

(21)� = NFR ×
(
NI + NO

)

(22)NFR = NC = NMFs

Gene expression programming

Gene expression programming (GEP) was introduced by 
Ferreira in 1999 (Ferreira 2001). This paradigm has some 
similarity with genetic algorithm (GA) and genetic program-
ming (GP). In GEP similar to GA, linear and chromosomes 
with fixed length are used. Furthermore, in GEP similar to 
pars tree of GP, ramified structure is applied. GEP can be 
used successfully in the following situations: (i) identifying 
the internal relation of dependent variables is very complex, 
(ii) finding the size and shape of final variable is complex, 
(iii) common methods cannot represent the analytical solu-
tion for a given problem, (iv) an approximate solution is 
appropriate, (v) every small improvement in performance is 
measured routinely and highly valuable and (vi) the amount 
of data that should be evaluated and classified by comput-
ers are huge (Banzhaf et al. 1998). Some preliminary steps 
before implement of GEP should be considered as follows: 
(1) select the terminals set (i.e., problem variables and fixed 
stochastic numbers), (2) select the function set that required 
for mathematical formula creation, (3) choose the appropri-
ate fitness function for evaluating the fitness of formulas, 
(4) determine the parameters that control the model evolve 
(i.e., population size, probability of genetic operators) and 
(5) determine a criterion for end of program and represent 
the results of model. In this study for modeling the phy-
cocyanin pigment concentration (PC) using GEP method, 
various steps were considered. In the first step, the suitable 
fitness function was selected. In this research, root relative 
squared error (RRSE) was chosen as fitness function. In the 
second step, the input variables (i.e., pH, TE, SC and DO) 
and functions set were selected. In the third step, chromo-
somal architecture (i.e., in this study the head length and 
number of genes were 8 and 3, respectively) was determined. 
In the fourth step, linkage function for creating link between 
sub-expression trees was selected. Finally in the fifth step, 
genetic operators and theirs rates were determined. The 
genetic operators and theirs values are presented in Table 1. 
In this study for implementation of GEP, GeneXpro Tools 

Table 1   Genetic operators and their values utilized in this study for 
GEP model

Genetic operator Rate Genetic operator Rate

Number of chromosomes 30 One-point recombination 
rate

0.3

Head size 8 Two-point recombination 
rate

0.3

Number of genes 3 Gene recombination rate 0.1
Mutation rate 0.044 Gene transposition rate 0.1
Inversion rate 0.1 IS transposition rate 0.1
RIS transposition 0.1
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was utilized. More details about GEP model can be found 
in Ferreira (2006).

Case studies

In the present study, historical PC concentration and four water 
quality data from January 1, 2015, to December 31, 2015, were 
utilized for developing the AI models; data can be obtained 
from the United States Geological Survey (USGS) Web site: 
http://or.water​.usgs.gov. The data from two water quality sta-
tions, namely USGS 06892350 (latitude 38°59′00″, longitude 
94°57′52″ NAD27) and USGS 14211720 (latitude 45°31′03″, 
longitude 122°40′09″ NAD83), were used in this study. The 
water quality data consisted of measured water temperature 
(TE, °C), dissolved oxygen (DO mg/L), pH (Std. unit), specific 
conductance (SC, μS/cm) and PC (μg/L). For USGS 06892350 
station, data were measured at 15-min interval of time, while 
for USGS 14211720 station the data were measured at 30-min 
interval of time. The dataset selected had a total of 18,139 
patterns for USGS 06892350 station and 17,195 for USGS 
14211720. Table 2 represents the statistic parameters of water 
quality variables for the two stations. In the table, the terms 
Xmean, Xmax, Xmin, Sx, Cv and R indicate the mean, maximum, 
minimum, standard deviation, variation coefficient and the 
coefficient of correlation between the variable and the PC, 
respectively. The correlations between the water quality vari-
ables and PC are generally higher in station 06892350 than in 
station 14211720, except DO having the lowest correlation 
with PC in station 06892350. Coefficients of correlation are 
given in Table 3. The dataset is separated into three subsets 
(Table 4): (i) a training subset, (ii) a validation subset and (iii) a 
test subset, with a ratio of 60%, 20% and 20%, respectively. We 
have tested different train–test–validation splitting strategies, 
by changing the training ration from 20, 30, 40 and 60%. The 
best accuracy was obtained using 60% of the data for training.

In the present study, before applying the three models, all 
the four input variables and the PC were normalized to contain 
the same scale with mean equal to 0 and standard deviation 
equal to 1, utilizing the Z-score by Eq. (23). Using the Z-score 
method, the performance of the developed models has been 
substantially improved (Olden et al. 2004; Heddam 2016b, c).

where xni, k denotes the normalized value of the k variable 
(input or output) for every sample i. xi, k is the original value 
of the k variable. mk and Sdk are the mean value and standard 
deviation of the variable k, respectively.

(23)xni,k =
xi,k − mk

Sdk

Table 2   Statistical parameters 
of dataset

Xmean, mean; Xmax, maximum; Xmin, minimum; Sx, standard deviation; Cv, coefficient of variation; CC, 
the correlation coefficient with PC; PC, phycocyanin; SC, specific conductance; DO, dissolved oxygen; 
μg/L,  microgram per liter; μS/cm, microsiemens per centimeter; mg/L, milligram per liter

Station Dataset Unit Xmean Xmax Xmin Sx Cv CC

USGS ID 06892350 TE  °C 17.466 32.400 1.200 7.190 0.412 0.428
SC μS/cm 681.926 990.00 213.00 189.01 0.277 0.569
pH – 8.518 9.300 7.400 0.375 0.044 0.710
DO mg/L 10.222 17.100 5.700 2.117 0.207 − 0.025
PC μg/L 1.141 3.460 0.010 0.677 0.593 1.000

USGS ID 14211720 TE  °C 14.874 26.900 4.800 6.142 0.413 − 0.234
SC μS/cm 86.303 134.00 57.000 10.882 0.126 − 0.391
pH – 7.312 8.600 6.900 0.221 0.030 0.231
DO mg/L 10.631 14.600 5.700 1.857 0.175 0.273
PC μg/L 0.167 1.000 0.000 0.157 0.944 1.000

Table 3   Pearson’s correlation coefficients between and among physi-
cal water quality parameters and PC concentration

TE (°C) SC (μS/
cm)

pH (–) DO (mg/L) PC (μg/L)

USGS ID 06892350
 TE (°C) 1.000
 SC (μS/

cm)
− 0.057 1.000

 pH (–) 0.192 0.764 1.000
 DO 

(mg/L)
− 0.584 0.266 0.351 1.000

 PC (μg/L) 0.428 0.569 0.710 − 0.025 1.000
USGS ID 14211720
 TE (°C) 1.000
 SC (μS/

cm)
0.728 1.000

 pH (–) 0.595 0.512 1.000
 DO 

(mg/L)
− 0.938 − 0.826 − 0.545 1.000

 PC (μg/L) − 0.234 − 0.391 0.231 0.273 1.000

http://or.water.usgs.gov
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Application and results

In the current study, an attempt is made to estimate PC concen-
tration using water quality variables as inputs. Several com-
binations of the water quality variables were selected, and in 
total, six scenarios were compared (Table 5), and those are: 
(i) TE, pH, SC and DO; (ii) TE, pH and SC; (iii) DO, pH and 
SC; (iv) pH and SC; (v) TE and pH; and (vi) TE and SC. The 
selection of the six combinations is mainly based on the cor-
relation coefficient. In this study, three performance indices 
were utilized to evaluate the developed models. These three 
indices are: the coefficient of correlation (R), the root mean 
squared error (RMSE) and the mean absolute error (MAE), 
calculated as follows:

(24)R =

⎡⎢⎢⎢⎣

1

N

∑�
Oi − Om

��
Pi − Pm

�
�

1

N

∑n

i=1

�
Oi − Om

�2� 1

N

∑n

i=1
(Pi − Pm)

2

⎤⎥⎥⎥⎦

(25)RMSE =

√√√√ 1

N

N∑
i=1

(
Oi − Pi

)2

where N denotes the number of data points, Oi is the meas-
ured value and Pi is the corresponding model output (predic-
tion). Om and Pm indicate the average values of Oi and Pi, 
respectively.

Predicting PC at USGS 06892350 station

In this section, GEP, FFNN, ANFIS_SC and ANFIS_GP 
were developed and compared to estimate PC concentra-
tion using four water quality variables. Results obtained in 
the training, validation and test stages are given in Table 6. 
According to Table 6, the four models achieved good accu-
racy with high R and low RMSE and MAE values. Table 6 
clearly shows that the four models yield different accura-
cies for different input combinations. In the training stage as 
given in Table 6, the R values, respectively, range from 0.869 
to 0.946, 0.872 to 0.946, 0.893 to 0.955 and 0.870 to 0.940 
for the FFNN, ANFIS_GP, ANFIS_SC and GEP, highlight-
ing high level of accuracy. In addition, the RMSE values, 
respectively, range 0.219–0.335, 0.222–0.334, 0.203–0.307 
and 0.231–0.334 μg/L for the FFNN, ANFIS_GP, ANFIS_
SC and GEP.

Finally, as given in Table  6, MAE values range 
0 .164–0 .256 ,  0 .167–0 .258 ,  0 .145–0 .229  and 
0.176–0.257 μg/L for the FFNN, ANFIS_GP, ANFIS_SC 
and GEP, respectively. According to Table 6, the M1 com-
bination with TE, pH, SC and DO yielded the highest effi-
ciency than all the others for the all four developed models, 
while the M4 combination with TE and SC yielded the low-
est accuracy in comparison with the all other four developed 
models. In the training stage, the ANFIS_SC M1 model is 
the best among the four developed models, with an R equal 
to 0.955, RMSE equal to 0.203 μg/L and MAE equal to 
0.145 μg/L, followed by FFNN and ANFIS_GP that lead 
almost the same accuracy regarding the three performances 
indices, and the GEP took in the third place with an R equal 
to 0.940, RMSE equal to 0.231 μg/L and MAE equal to 
0.176 μg/L. From the six input combinations proposed, 
when the four AI models have included only two inputs, 
M5 combination with pH and TE is always the best, and 
ANFIS_SC M5 model performed the best with an R equal 
to 0.916, RMSE equal to 0.275 μg/L and MAE equal to 
0.197 μg/L.

In the validation phase, as given in Table 6, the M1 com-
bination is always the best for the four developed models. 
The FFNN, ANFIS_GP, ANFIS_SC and GEP M1 models 

(26)MAE =
1

N

N∑
i=1

||Oi − Pi
||

Table 4   Summary description of dataset

*17,520: data measured at 30-min interval of time, thus: 
365 days × 24 × 2 = 17,520 patterns; 35,040: data measured at 15-min 
interval of time, thus: 365 days × 24 × 4 = 35,040 patterns

Description USGS 06892350 USGS 14211720

Year 2015 2015
Begin date 01/01/2015 01/01/2015
End date 31/12/2015 31/12/2015
Total pattern 35,040** 17,520*
Incomplete pattern 16,901 00325
Finale pattern 18,139 17,195
Training 10,885 10,317
Validation 3627 03439
Test 3627 03439

Table 5   Structure of the 
developed models

Models Input combination

M1 pH, TE, SC and DO
M2 pH, TE and SC
M3 pH, SC and DO
M4 pH and SC
M5 pH and TE
M6 TE and SC
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used for predicting PC concentration yielded R values of 
0.945, 0.946, 0.955 and 0.936, respectively, and RMSE 
values of 0.221, 0.220, 0.202 and 0.237 μg/L, respectively. 
Finally, the four models yielded MAE values of 0.165, 
0.166, 0.146 and 0.179 μg/L, respectively. Similar to the 
results obtained in the training stage, in the validation stage 
ANFIS_SC M1 is always the best, followed by FFNN, and 
ANFIS_GP took in the third place. ANFIS_SC M1 yielded 
an R equal to 0.945, RMSE equal to 0.221 μg/L and MAE 
equal to 0.165 μg/L. Using only two input variables (pH 
and TE), ANFIS_SC M5 model is the best among all the 
others. According to Table 6, in the test stage ANFIS_SC 
M1 is the best model and performs superior to the FFNN, 
ANFIS_GP and GEP in all combinations. In the test phase 
as given in Table 6, the ANFIS_SC M1 improved the FFNN, 
ANFIS_GP and GEP M1 models of about 7.57%, 7.23% 
and 13.86% and 10.84%, 10.84% and 18.23% decrement in 
RMSE and MAE, respectively. Additionally, results were 
improved with respect to R statistics in the test stage by 
approximately 1.0%, 0.8% and 1.9%, respectively.

The cluster radius was calculated as 0.10 by trial and 
error. The optimal cluster number was found to be 40, 
and consequently, the ANFIS_SC M1 model having four 
input variables has a total of 40 fuzzy rules. The detailed 

description of the two ANFIS model parameters is reported 
in Table 7. As can be clearly seen from the table that the 
ANFIS_SC has much more parameters than the ANFIS_GP 
model. In Table 8, we report the testing results, different 
functions set and linkage function for developing GEP mod-
els. GEP model provided the best accuracy with F5 operators 
and addition linking function. The equation of the GEP M1 
model for PC concentration using TE, pH, SC and DO as 
inputs is given by:

(27)

PC =

(
exp

(
sin

(
arctan

(
3.9(SC − TE)

TE2

))))
+

cos (0.8pH)

log
(
exp

(
pH

DO

))

+ cos (pH + arctan (1.4 + TE − DO))

Table 6   Performances of the 
FFNN, ANFIS_SC, ANFIS_GP 
and GEP models in different 
phases for USGS 06892350 
station

Models Model Training Validation Test

R RMSE MAE R RMSE MAE R RMSE MAE

FFNN M1 0.946 0.219 0.164 0.945 0.221 0.165 0.945 0.222 0.166
M2 0.933 0.243 0.180 0.933 0.243 0.181 0.930 0.249 0.186
M3 0.913 0.277 0.205 0.909 0.281 0.208 0.913 0.276 0.204
M4 0.869 0.335 0.256 0.865 0.338 0.259 0.864 0.341 0.258
M5 0.905 0.289 0.212 0.907 0.284 0.213 0.901 0.294 0.217
M6 0.878 0.324 0.238 0.877 0.324 0.239 0.871 0.333 0.243

ANFIS_GP M1 0.946 0.222 0.167 0.946 0.220 0.166 0.947 0.221 0.166
M2 0.940 0.233 0.170 0.941 0.233 0.168 0.940 0.235 0.170
M3 0.921 0.266 0.195 0.921 0.266 0.195 0.924 0.263 0.191
M4 0.872 0.334 0.258 0.873 0.334 0.258 0.875 0.333 0.255
M5 0.902 0.294 0.221 0.910 0.285 0.217 0.904 0.294 0.221
M6 0.882 0.322 0.240 0.884 0.320 0.238 0.879 0.327 0.242

ANFIS_SC M1 0.955 0.203 0.145 0.955 0.202 0.146 0.955 0.205 0.148
M2 0.955 0.203 0.143 0.949 0.217 0.151 0.953 0.209 0.149
M3 0.930 0.251 0.176 0.928 0.256 0.181 0.930 0.253 0.179
M4 0.893 0.307 0.229 0.878 0.326 0.243 0.888 0.316 0.234
M5 0.916 0.275 0.197 0.921 0.268 0.195 0.917 0.275 0.200
M6 0.906 0.290 0.205 0.899 0.301 0.217 0.899 0.302 0.214

GEP M1 0.940 0.231 0.176 0.936 0.237 0.179 0.936 0.238 0.181
M2 0.926 0.256 0.193 0.923 0.259 0.195 0.923 0.261 0.195
M3 0.903 0.291 0.219 0.898 0.296 0.223 0.904 0.290 0.218
M4 0.870 0.334 0.257 0.866 0.337 0.259 0.869 0.335 0.256
M5 0.905 0.288 0.209 0.909 0.281 0.208 0.903 0.291 0.213
M6 0.873 0.331 0.242 0.872 0.331 0.242 0.863 0.342 0.249

Table 7   Total number of parameters for the two ANFIS models 
developed for USGS 06892350 station

Station Designation Models

ANFIS_SC ANFIS_GP

Number of linear parameters 200 80
Number of nonlinear parameters 320 16
Total number of parameters 520 96
Number of fuzzy rules 40 16
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Figures 3, 4, 5 and 6 illustrate scatter plots of the com-
puted versus measured PC for FFNN, ANFIS_GP, ANFIS_
SC and GEP model M1, in the training, validation, test and 
all data. Comparison of the figures apparently indicates that 
the ANFIS_SC model M1 provides less scattered estimates 
with a fit line equation closer to the exact line and a higher 
R2 value than those of the other models.

Predicting PC at USGS 14211720 station

The main purpose of this section is the comparison of the 
accuracy of the four AI models developed for predicting 
PC concentration using data from USGS 14211720 station. 
The statistics indices of performance are listed in Table 9. 
Firstly, from the results given in Table 9, the superiority 
of the ANFIS_SC model can be clearly seen, in all train-
ing, validation and test phases. Secondly, in either case, 
when comparing the six developed combinations (M1 to 

Table 8   Testing results of different functions set and linkage function 
for developing GEP for USGS 06892350 station

Definition RMSE

F1 {+,−,×,÷} 0.245
F2 {+,−,×,÷, ln, ex} 0.241
F3

�
+,−,×,÷,

√
, 3
√
, x2, x3

�
0.241

F4
�
+,−,×,÷, ln, ex,

√
, 3
√
, x2, x3

�
0.239

F5
�
+,−,×,÷, ln, ex,

√
, 3
√
, x2, x3, sin x, cos x, arctgx

�
0.237

Linking functions
 Addition 0.237
 Multiplication 0.240
 Subtraction 0.242
 Division 0.245

Fig. 3   Scatterplots of estimated versus measured values of PC for FFNN (M1) model: a training, b validation and c test data—station ID: 
06892350

Fig. 4   Scatterplots of estimated versus measured values of PC for ANFIS_GP (M1) model: a training, b validation and c test data—Station ID: 
06892350
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M6), ANFIS_SC is always the best among all the others. 
Thirdly, contrary to the results obtained in USGS 06892350 
station, where the M5 combination was the best when only 
two input variables were included (TE and pH), herein for 
USGS 14211720 station, M5 combination is the worst with 
the lowest R and highest RMSE and MAE values. This is 
certainly due to the fact that the pH has a high coefficient of 
correlation with PC concentration in the USGS 06892350 
station (0.710) and low in the other station (0.231). For the 
other three models, FFNN, ANFIS_GP and GEP, as given 
in Table 9, the three models gave relatively the similar 
results, especially for the M1 combination. In the training 
phase, ANFIS_SC M1 is the best model with R, RMSE and 
MAE values equal to 0.949, 0.049 μg/L and 0.031 μg/L, 
respectively. Comparing the ANFIS_SC with the FFNN, 
ANFIS_GP and GEP, ANFIS_SC has reduced RMSE by 
12.50%, 14.03% and 12.50%, and MAE by 20.51%, 22.50% 

and 16.21% and improved the R by 1.5%, 1.8% and 1.5%, 
respectively.

In the validation stage as given in Table 9, ANFIS_SC 
M1 is always the best with R, RMSE and MAE values equal 
to 0.95, 0.049 μg/L and 0.032 μg/L, respectively. Compar-
ing the ANFIS_SC with the FFNN, ANFIS_GP and GEP, 
ANFIS_SC has reduced RMSE by 12.50%, 15.51% and 
12.50% and MAE by 17.94%, 21.95% and 15.78% and 
improved the R by 1.5%, 1.8% and 1.6%, respectively. In 
the test stage, the ANFIS_SC performed the best with the 
M1 combination in light of the results obtained in the train-
ing and validations phases. The corresponding R, RMSE 
and MAE values were 0.95, 0.050 μg/L and 0.031 μg/L. It is 
obvious from Table 9 that the ANFIS_SC M1 yields the best 
performances among the M1 to M6 input combinations. The 
detailed description of the two ANFIS models parameters 
is reported in Table 10. Similar to the previous application, 
here also the ANFIS_SC seems to be more complicated and 

Fig. 5   Scatterplots of estimated versus measured values of PC for ANFIS_SC (M1) model: a training, b validation and c test data—Station ID: 
06892350

Fig. 6   Scatterplots of estimated versus measured values of PC for GEP (M1) model: a training, b validation and c test data—Station ID: 
06892350
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has much more parameters than the ANFIS_GP. In Table 11, 
we report the testing results, different functions set and link-
age function for developing GEP models. Similar to the pre-
vious application, the GEP model gave the best accuracy 
with F5 operators and addition linking function. The equa-
tion of the GEP M1 model for PC concentration using TE, 
pH, SC and DO as inputs is given by:

(28)

PC = arctan

⎛⎜⎜⎜⎝

cos
�

SC−6.2

TE

�

DO + sin (SC)

⎞⎟⎟⎟⎠
+

pH4

SC2 − TE2
+

pH

2DO + pH2 +
7.3+DO

5.5

Figures 7, 8, 9 and 10 illustrate scatterplots of the com-
puted versus measured PC for FFNN, ANFIS_GP, ANFIS_
SC and GEP model M1, in the training, validation, test 
and all data. Comparison of the fit line equations and R2 
values shows that the ANFIS-SC model has less scattered 

Table 9   Performances of the 
FFNN, ANFIS_SC, ANFIS_GP 
and GEP models in different 
phases for USGS 14211720 
station

Models Model Training Validation Test

R RMSE MAE R RMSE MAE R RMSE MAE

FFNN M1 0.934 0.056 0.039 0.935 0.056 0.039 0.931 0.058 0.039
M2 0.927 0.059 0.039 0.931 0.058 0.039 0.927 0.060 0.040
M3 0.913 0.064 0.046 0.917 0.063 0.046 0.914 0.064 0.046
M4 0.812 0.091 0.069 0.821 0.091 0.068 0.808 0.093 0.070
M5 0.709 0.110 0.071 0.716 0.111 0.073 0.715 0.111 0.072
M6 0.858 0.080 0.052 0.864 0.081 0.053 0.863 0.082 0.052

ANFIS_GP M1 0.931 0.057 0.040 0.932 0.058 0.041 0.926 0.060 0.042
M2 0.927 0.059 0.039 0.923 0.061 0.039 0.916 0.064 0.041
M3 0.908 0.066 0.048 0.900 0.069 0.049 0.903 0.068 0.049
M4 0.802 0.093 0.071 0.808 0.093 0.071 0.797 0.096 0.071
M5 0.658 0.118 0.081 0.646 0.121 0.083 0.661 0.119 0.082
M6 0.800 0.094 0.064 0.803 0.095 0.065 0.800 0.095 0.064

ANFIS_SC M1 0.949 0.049 0.031 0.950 0.049 0.032 0.950 0.050 0.031
M2 0.943 0.052 0.033 0.943 0.053 0.035 0.942 0.053 0.035
M3 0.934 0.056 0.038 0.934 0.057 0.039 0.930 0.058 0.039
M4 0.844 0.084 0.059 0.847 0.084 0.058 0.835 0.086 0.058
M5 0.751 0.103 0.065 0.751 0.105 0.068 0.746 0.105 0.067
M6 0.867 0.078 0.049 0.867 0.079 0.050 0.863 0.080 0.049

GEP M1 0.934 0.056 0.037 0.934 0.056 0.038 0.935 0.056 0.038
M2 0.915 0.063 0.043 0.917 0.063 0.043 0.914 0.064 0.043
M3 0.901 0.068 0.052 0.901 0.069 0.053 0.903 0.068 0.052
M4 0.834 0.086 0.064 0.836 0.087 0.065 0.825 0.087 0.065
M5 0.712 0.109 0.073 0.711 0.111 0.074 0.719 0.110 0.073
M6 0.824 0.088 0.059 0.827 0.089 0.060 0.829 0.089 0.060

Table 10   Total number of parameters for the two ANFIS models 
developed for USGS 14211720 station

Station Designation Models

ANFIS_SC ANFIS_GP

Number of linear parameters 155 80
Number of nonlinear parameters 248 16
Total number of parameters 403 96
Number of fuzzy rules 31 16

Table 11   Testing results of different function sets and linkage func-
tion for developing GEP for USGS 14211720 station

Definition RMSE

F1 {+,−,×,÷} 0.065
F2 {+,−,×,÷, ln, ex} 0.063
F3

�
+,−,×,÷,

√
, 3
√
, x2, x3

�
0.061

F4
�
+,−,×,÷, ln, ex,

√
, 3
√
, x2, x3

�
0.060

F5
�
+,−,×,÷, ln, ex,

√
, 3
√
, x2, x3, sin x, cos x, arctgx

�
0.056

Linking functions
 Addition 0.056
 Multiplication 0.057
 Subtraction 0.060
 Division 0.058
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Fig. 7   Scatterplots of estimated versus measured values of PC for FFNN (M1) model: a training, b validation and c test data—Station ID: 
14211720

Fig. 8   Scatterplots of estimated versus measured values of PC for ANFIS_GP (M1) model: a training, b validation and c test data—station ID: 
14211720

Fig. 9   Scatterplots of estimated versus measured values of PC for ANFIS_SC (M1) model: a training, b validation and c test data—station ID: 
14211720
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PC estimates than the other models. The expression tree 
of the best GEP M1 model is shown in Fig. 10.

Conclusions

In this study, four of the most powerful artificial intelli-
gence (AI) techniques, namely feedforward neural networks 
(FFNN), gene expression programming (GEP), adaptive 
neuro-fuzzy inference system with grid partition (ANFIS-
GP) and adaptive neuro-fuzzy inference system with sub-
tractive clustering (ANFIS-SC), have been proposed to pre-
dict the phycocyanin pigment concentration as a function of 
several water quality variables. Data used for developing the 
models were selected from two USGS water quality stations. 
Water temperature, pH, specific conductance and dissolved 
oxygen were used as predictors. From the results obtained, it 
can be concluded that all the AI models proposed herein are 
very promising and provided good results and ANFIS_SC 
has shown high accuracy in comparison with the all oth-
ers models. Among six different combinations of the input 
variables, we have also demonstrated that the proposed 
ANFIS_SC model can predict PC concentration with high 
accuracy using only few inputs. Hence, the proposed models 
can be successfully used for estimating PC concentration in 
the absence of direct measurement.
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