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Abstract
Groundwater under Basement Complex areas of southern Kebbi has been characterized in order to determine its suitability 
for drinking and irrigation use. Water samples were drawn from shallow groundwater (hand-dug shallow wells < 5 m) and 
deep groundwater (boreholes > 40 m). Physical parameters (i.e., temperature, TDS, pH, and EC), were determined in situ, 
using handheld meters. Discrete water samples were obtained for determination of chemical parameters. Results from several-
sample ANOVA (Kruskal–Wallis test) suggested that heterogeneity in water table appeared to exert significant influence 
on groundwater chemistry which is characterized by a significant difference in pH, EC TH,  Na+,  Zn2+,  Mg2+,  PO4

3−,  Cl−, 
 HCO3

−,  SO4
2−, and  NO3

− concentrations. Also, ions including  Fe3+,  Zn2+,  Mg2+,  Na+,  PO4
3−, and  SO4

2− are above World 
Health Organization (2011) and National Standard for Drinking Water Quality (2007) reference guidelines. Most of the 
groundwater sources are moderately hard. Groundwater classification based on chloride, EC, and TDS revealed water of 
excellent quality for all types of uses. However, groundwater classification based on nitrate pollution revealed water of poor 
quality. Rock mineral is the major mechanism controlling water chemistry, as revealed by the Gibbs model. Most of the water 
sources have positive Scholler index, indicative of overall base exchange reactions in the underlying aquifers. Such condi-
tion was well explained by Piper trilinear diagram, which revealed two types of faces: Ca–Mg–HCO3 and Ca–Mg–SO4–Cl. 
The HCA categorized wells into three groups according to their hydrogeochemical physiognomies. Despite the significant 
difference in ions concentration and chemical indices, groundwater composition is more influenced by rock weathering than 
anthropogenic inputs. Groundwater evaluation for irrigation use indicates a significant difference in SAR level which is 
related to poor permeability index in shallow groundwater. Higher values of Kelly’s index and magnesium adsorption ratio 
threatened groundwater suitability for irrigation use in the study area.
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Introduction

Groundwater is one of the most important environmental 
reserves exploited for industrial, agricultural, and domestic 
uses (Wagh et al. 2016). The composition of groundwater 
tends to be good in most natural aquifers, and as a result, 
groundwater is increasingly been exploited as it meets 
the basic requirements for most uses. Groundwater qual-
ity is primarily influenced by the aquifer rock mineral and 
recharge pathways (Kohlhepp et al. 2017; Liu et al. 2017; Gu 
et al. 2017; Kumar et al. 2019). As water passes through its 
recharge pathways from recharge to discharge points, several 
other types of hydrogeochemical processes alter its physical 
and chemical properties and in some aquifers, water may be 
unsuitable for drinking and agriculture (Abd El-Aziz 2017; 
Dehnavi et al. 2011; Farid et al. 2017). At least, one-third 
of the global population rely on groundwater for drinking 
(Panaskar et al. 2016). While groundwater is increasingly 
exploited in response to population pressure (Bertrand et al. 
2016; Shang et al. 2016; Parisi et al. 2018; Cavalcante Júnior 
et al. 2019), increased urbanization (Minnig et al. 2018; Tam 
and Nga 2018; Hughes 2019), industrialization (Zheng et al. 
2019) and irrigation farming (Panaskar et al. 2016; Fab-
bri et al. 2016; Pulido-Bosch et al. 2018), only about 22% 
of the Earth’s 37 km3 (freshwater) is found in aquifers as 
groundwater (Panaskar et al. 2016). Remarkably, about 97% 
of this quantity is accessible for human use (Panaskar et al. 
2016). Overexploitation of groundwater in key sedimentary 
aquifers is a global phenomenon (Joshi et al. 2018). The 
rate of annual global groundwater withdrawal, even though 
may vary with climate and geography, is about 1500 km3, 
which is above the normal rates of annual global groundwa-
ter recharge or replenishment (Joshi et al. 2018).

Growing demand for water driven by economic growth 
(Hertel and Liu 2016; Kummu et al. 2016; Shahzad et al. 
2017; Flörke et al. 2018), urbanization (Kulabako et al. 
2007; Sperling and Sarni 2019), generation of electricity 
(Powell et al. 2019), irrigation (Erban and Gorelick 2016; 
Wu et al. 2016), and domestic uses has inflamed global 
groundwater withdrawal (Shahid et al. 2015; Wada et al. 
2016; Veldkamp et  al. 2017; Agarwal and Garg 2015; 
Thomas et al. 2019), causing water table declines in aquifers 
(Joshi et al. 2018). Shallow groundwater is often the most 
affected by small-scale irrigation farming (Li et al. 2018), 
particularly in developing countries. In alluvial basins (e.g., 
Sokoto Basin), groundwater pollution is primarily derived 
from reinfiltering groundwater from irrigation fields (Selck 
et al. 2018) and municipal and industrial sewage (Wali et al. 
2018a, b). Geophysical investigations showed alluvial aqui-
fers (e.g., Sokoto Basin) are often in hydraulic conductivity 
with surface water (Emujakporue et al. 2018; Kudamnya 

and Andongma 2017; Nwankwo 2015; Nwankwo and Shehu 
2015; Onuigbo et al. 2017), with shallow aquifers serving 
as conduits through which pollutants from surface water are 
transported to deep groundwater reservoirs.

There are immeasurable number of studies comparing 
groundwater quality between shallow and deep aquifers 
around the world: Basharat (2012), assessed the groundwa-
ter quality by demarcating the zones where brackish water 
exists in the form of depths and zones; Brancelj et al. (2016), 
showed variations in physical and chemical composition 
between shallow boreholes in distinct aquifers situated a 
few kilometers away from each other; Das and Mukherjee’s 
(2019), depth-dependent groundwater response to coastal 
hydrodynamics, showed variability in salinity between 1 and 
4 ppt at > 100 mbgl depths, indicating a mixing between 
chemically discrete groundwater aquifers; Hubalek et al. 
(2016) showed that deepest aquifers had the least taxon rich-
ness and unexpectedly held Cyanobacteria; Pandith et al. 
(2017) revealed differences in fluoride absorption in shallow 
(basalt − 10 to 167 m) and deeper (granite less than 167 m) 
aquifers; Rajmohan et al. (2017) also discovered variability 
of water quality of deep and shallow wells; Holbrook et al.’s 
(2019) analysis of the relationship between physical and 
chemical showed that weathering occurs from a 65-m-deep 
well over earth’s critical zone; and Long et al. (2019) out-
lined a cavernous rotation and regularity of groundwater 
movement between aquifers. Evaluations of this kind are 
imperative since they help to describe the connections 
between groundwater tables, and this affects both the quality 
of shallow and groundwater aquifers (Hubalek et al. 2016; 
Park et al. 2018; Holbrook et al. 2019).

However, groundwater has been studied using differ-
ent techniques: geothermal techniques (Nwankwo 2015; 
Nwankwo and Shehu 2015; Olatunji and Musa 2013; Toyin 
et al. 2016), isotope techniques (Adelana et al. 2003; Geyh 
and Wirth 1980; Fillion et al. 2014, 2018; Selck et al. 2018; 
Kattan 2018; Alemayehu et al. 2019; Besser et al. 2019), 
multivariate statistics (Mondal et al. 2010; Azhar et al. 
2015; Yidana et al. 2018), univariate statistics (Marghade 
et al. 2010; Selvakumar et al. 2017; Wali et al. 2018a, b), 
modeling (Ebrahim et al. 2019; Locatelli et al. 2019), and 
chemical indices (Marghade et al. 2010; Panaskar et al. 
2016; Wagh et al. 2016). Results obtained from these studies 
showed groundwater quality is influenced by both the natural 
geogenic processes and anthropogenic activities. In some 
environments, the groundwater quality is largely dependent 
on the water table depths (Dhar et al. 2008; Han et al. 2013; 
Deng et al. 2014).

Nigeria is the fastest growing country in sub-Saharan 
Africa (SSA) in terms of the human population (Akombi 
et al. 2019; Young 2019). Improved water supply which is 



Applied Water Science (2019) 9:169 

1 3

Page 3 of 36 169

one of the essentials for a healthy living has been constrained 
by uncontrolled anthropogenic activities (Vijay et al. 2011; 
Qin et al. 2013; Chen et al. 2016; Chitsazan et al. 2019) and 
by lesser extent natural conditions (Izah et al. 2016; Makinde 
et al. 2017; Zadawa and Omran 2018). Characterization of 
groundwater in Nigeria, is further constrained by lack of data, 
especially from Basement Complex areas of northern Nigeria 
(Akinluyi et al. 2018; Olubusola et al. 2018; Oyedele and 
Olayinka 2019; Tajudeen et al. 2019), owing to difficulties 
associated with groundwater exploration and accessibility 
(Betzler et al. 2017; Muhammad and Saad 2018; Oyeyemi 
and Aizebeokhai 2018; Ahmed and Mansor 2018).

The Basement Complex areas of southeastern Sokoto 
Basin are in southern Kebbi State (Fig. 1) and are under-
lain by Pre-Cambrian Basement Formation (Akujieze et al. 
2002; Joseph and Bamidele 2018; Oseji and Egbai 2019). 
Groundwater in the study area is generally available in 
small quantity derived from fractures and tabular partings 

and from the regolith, just below the earth surface (Ander-
son and Ogilbee 1973; Edet 1990; Paul and Bayode 2012; 
Odukoya 2015). The fissures are usually most open above a 
depth of 91 m but even so, yields to boreholes are relatively 
low and cause high drawdown (Anderson and Ogilbee 1973; 
Offodile 2002). While boreholes are widely used in the study 
area as sources for improved water supply, shallow ground-
water remained the most reliable source of drinking water 
especially in rural areas (Mohammed et al. 2007; Adelana 
et al. 2003; Aleke and Nwachukwu 2018; Olorunfemi and 
Oni 2019). However, the geological settings in addition to 
changes in land use combined with rock mineral influence 
groundwater composition (Dehnavi et al. 2011; Khatri and 
Tyagi 2014; Redwan and Abdel Moneim 2016; Venkatra-
manan et al. 2017; Jebreen et al. 2018; Mukate et al. 2019). 
Effluents from municipal, industrial, and crop fields are 
transported to groundwater by surface flows via infiltra-
tion (recharge) zones. These impurities are first collected 

Fig. 1  Map of the study area a Sokoto Basin; b Kebbi State; and c Study area



 Applied Water Science (2019) 9:169

1 3

169 Page 4 of 36

into shallow aquifers (Kong et al. 2018; Narr et al. 2019), 
before their eventual downward movement to deep ground-
water reservoirs, where they may stay for decades or even 
centuries.

To highlight this problem, we look at the Basement 
Complex areas of southeastern Sokoto Basin. The study 
area is underlain by intrusive granite of igneous origin 
and deformed metamorphic rocks, chiefly gneiss, schist, 
hyalite, and quartzite (Toyin et al. 2016; Toyin and Adek-
eye 2019; Omolabi and Fagbohun 2019). Groundwater in 
this type of aquifer (often one-aquifer system), tend to be 
highly mineralized. Further, the topography of the study 
area presents another obstacle to groundwater develop-
ment (Kogbe 1986). Therefore, groundwater is cheaply 
found along with low-lying areas and is largely hauled 
out using handlines from shallow wells particularly in 
rural areas (Anderson and Ogilbee 1973; Offodile 2002). 
Groundwater quality studies in Sokoto Basin (du Preez and 
Berber 1965; Anderson and Ogilbee 1973; Adelana et al. 
2003; Amadi et al. 2015; Ekpoh and Ekpenyong 2011; 
Ette et al. 2017; Toyin et al. 2016; Wali et al. 2016, Wali 
et al. 2018a, b) revealed water of excellent quality and of 
Holocene age (100–10,000 years BP). These studies were 
carried out in Cretaceous and Cenozoic Sediment sections 
of north-western and central Sokoto Basin. Groundwater 
quality in the Basement Complex section of southeastern 
Sokoto Basin remained poorly reported in the literature 
(Anderson and Ogilbee 1973; Offodile 2002; Nwankwoala 
2015), even though hydrochemical evaluation of ground-
water over space and time proved to be an important tech-
nique for solving different hydrogeochemical problems 
(Edmunds 2009; Li et al. 2018; Yin et al. 2019). Under-
standing the aquifer hydrochemistry is important for effec-
tive utilization of, and development of this finite resource 
(Kashiwagi et al. 2006). Thus, the objective of this study 

is to assess the variability of groundwater quality between 
shallow and deep aquifers and evaluate its suitability for 
drinking and irrigation uses.

The study area

Location and climate

The Basement Complex areas of southeastern Sokoto 
Basin are in southern Kebbi State. The study area is situ-
ated between Latitudes 11°20″ and 11°40″N and Lon-
gitudes 4°30″E and 5°30″E (Fig.  1) and covers about 
2411.69 km2. This area overlays Fakai and Zuru local 
government areas (LGAs). From the conglomeration point 
along Koko-Mahuta road, just about 40 km before Mahuta, 
surface elevation increases steadily passing through Fakai 
and reaching over 400 m above sea level in Dabai. The 
rock outcrops formed a triangle of basement rock outcrop, 
which extends from Fakai to Zuru and Yauri.

The climate of the study area is hot, semiarid tropical 
(AW) in Koppen’s classification. It is dominated by two 
opposing wind systems: Tropical Maritime and Tropical 
Continental air masses (Gada 2014). These give the study 
area two contrasting seasons—wet and dry. The dry season 
results from continental air mass blowing from the Sahara 
Desert. The dry season lasts from October to April, whereas 
wet season lasts from May to October. From March onward, 
the temperature rises to over 35 °C (Fig. 2a). Temperature is 
generally high and showed marked seasonal variation. Mean 
maximum temperature is highest in April. Mean minimum 
temperature is the lowest in December < 20 °C. Monthly 
rainfall ranges from < 50 mm to over 250 mm. Most of the 
precipitation falls in July, August, and September (Fig. 2b).

Fig. 2  A chart showing the variability of a temperature; and b rainfall in the study area. Source of Data: Climate-Data Org. Retrieved from https 
://en.clima te-data.org/afric a/niger ia/kebbi /zuru-38058 0/on 10/06/2019

https://en.climate-data.org/africa/nigeria/kebbi/zuru-380580/on
https://en.climate-data.org/africa/nigeria/kebbi/zuru-380580/on
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Geological setting

Figure 3 shows the geological cross section of Sokoto 
Basin. In terms of geology, the Sokoto Basin is exten-
sively studied (Emujakporue et al. 2018; Ette et al. 2017; 
Kogbe 1981; Moody and Sutcliffe 1991; Nwankwo 2015; 
Nwankwo and Shehu 2015; Onuigbo et al. 2017). The sed-
iments of Sokoto Basin were accrued during three main 
stages of deposition, i.e., the first and last phases were the 
continental Mesozoic and Tertiary, with a second phase 
which is the marine Maastrichtian to Paleocene. Superim-
posing the Pre-Cambrian Basement unconformably are the 
grits and clays of the Illo and Gundumi Formations, form-
ing part of the “Continental Intercalaire” of West Africa 
(Emujakporue et al. 2018; Kamba et al. 2018; Kogbe 1981; 
Moody and Sutcliffe 1991). These formations are superim-
posed unconformably by the Rima Group (Maastrichtian), 
consisting of mudstones and friable sandstones (Taloka 
and Wurno Formations), separated by the fossiliferous, 
shelly Dukamaje Formation (Emujakporue et al. 2018; 
Kamba et al. 2018; Kogbe 1981; Moody and Sutcliffe 
1991). The Dange and Gamba Formations (mainly shales) 
of Paleocene are separated by the Kalambaina Formation 
(Calcareous). The Gwandu Formation (Continental Ter-
minal) which covers these formations is of Tertiary age. 
These sediments dip gently and thicken gradually toward 
the northwest, with a maximum thickness of over 1200 m 
near the border with the Niger Republic (Emujakporue 
et al. 2018; Kamba et al. 2018; Kogbe 1981; Moody and 
Sutcliffe 1991).

Hydrogeological setting

Lying below the sedimentary rocks of the Sokoto Basin and 
rising to the land surface in the highlands to the south and 

east of the basin are crystalline rocks of pre-Cretaceous age. 
These comprise of plutonic granite of igneous derivation 
and warped metamorphic rocks, mainly gneiss, schist, phyl-
lite, and quartzite (Kogbe 1986). Groundwater in the high 
ground zones of crystalline rocks is usually obtainable in 
small amounts from fissures or other flat separations and 
from the regolith (worn rock) just underneath the ground 
surface (Anderson and Ogilbee 1973). The fissures are typi-
cally found above a depth of 91.44 m but, even so, yields to 
boreholes are rather low and cause high drawdowns (Ander-
son and Ogilbee 1973). The formation is Pre-Cambrian in 
age and is made up of schists, granite gneisses, phyllites, 
and quartzite. Of hydrogeological importance is the slight, 
north–south elongate belt of metasediments intersecting 
the basement rocks. The formation is splintered in places 
and occasionally deeply battered below ground surface. 
Likewise, the western peripheries of the basement rocks 
are marked by penetrating fracture systems (Anderson and 
Ogilbee 1973).

Hydrogeological studies of the pre-Cretaceous Base-
ment Complex Formations of Nigeria (Akinluyi et  al. 
2018; Anderson and Ogilbee 1973; Olorunfemi and Oni 
2019), revealed an average borehole yield of 14.67 gallons 
per sec (gps) from a mean depths of 37.49 m. Though, 
few boreholes in the unweathered rock, typically granite 
or gneiss produced more than a meager amount of water; 
in many wells, no water was found (Anderson and Ogil-
bee 1973). In contrast, wells tapping weathered granite 
and gneiss, where fully saturated, are found to yield the 
highest quantity of water (51.67 gps); the average yield 
for boreholes tapping battered rock was estimated to be 
around 23.33 gps per borehole (Anderson and Ogilbee 
1973). Also, drawdowns during pumping were very high 
(62.48 m) from some wells. The normal depth of wells 
tapping the weathered materials is estimated to be 38 m 

Fig. 3  The geological cross section of Sokoto Basin



 Applied Water Science (2019) 9:169

1 3

169 Page 6 of 36

and the normal depth to water stand at about 6 m (Ander-
son and Ogilbee 1973). Generally, groundwater condition 
in the basement section of Sokoto Basin is typical of the 
Nigerian Basement Complex described by (Akinluyi et al. 
2018; Olorunfemi and Oni 2019).

Many wells were developed in the crystalline rocks par-
ticularly in the eastern parts of the basin (Gusau-Mafara 
axis). The borehole yield was found to be higher in the 
metasediments with splintered quartzites (Anderson and 
Ogilbee 1973). Yet borehole in most parts of the Base-
ment Complex section of the basin is low. This kind of 
poor yields is also characteristic of Basement Complex 
Formation of Nigeria. Such low yield zone results from 
aquifers of weathered or fractured materials, with limited 
areal scope, such that during pumping or well development 
the spreading cone of depression hits the highly indurated 
frontier rocks in a short time (Akinluyi et al. 2018; Ander-
son and Ogilbee 1973; Olorunfemi and Oni 2019). The 
water level, or the drawdown, drops sharply and steadily 
decrease the yield per individual boreholes. Numerous 
boreholes and hand-dug wells have been drilled in the area 
and are still been drilled or dug in the Basement Com-
plex zones of the basin for both the rural and urban water 
supply. High yields can be attained in some areas in the 
Basement Complex, contingent on the tectonics in those 
areas. Despite the poor yields, boreholes and hand-dug 
wells in Basement Complex zones are sufficient to sustain 
hand pumps, in rural water supply programs (Akinluyi 
et al. 2018; Anderson and Ogilbee 1973; Olorunfemi and 
Oni 2019). Figure 4 illustrates a typical lithologic section 
of the study area.

Groundwater quality

Geological work in Sokoto Basin dates to 1800 s. Report-
ing of fossil fuel localities was the main objective. A 

Comprehensive study of groundwater was carried out by du 
Preez and Berber (1965). Groundwater recharge (Adelana 
et al. 2002) is highly variable across the basin. Ground-
water quality (Anderson and Ogilbee 1979; Uma 1993; 
Alagbe 2006; Graham et al. 2006; Wali et al. 2016; Wali 
and Bakari 2016; Wali et al. 2018a, b) is highly variable 
with TDS concentration ranging from 130 to 2340 mg/l. 
Sodium and nitrate concentrations exceed WHO reference 
guidelines in some locations. The hydrogeochemical faces 
(Alagbe 2006; Wali et al. 2018a, b) are predominantly of two 
types: calcium–magnesium–bicarbonate and calcium–mag-
nesium–sulfate–chloride in nature. These faces perhaps 
are derived from dissolution of calcium and magnesium 
carbonates.

Materials and methods

Groundwater sampling and laboratory analysis

Forty groundwater samples were collected, 20 each from 
deep and shallow aquifers. Groundwater samples were col-
lected mainly from shallow wells and boreholes which are 
currently in use. Samples were drawn from water sources 
constructed by Kebbi State Government. Because these 
sources are expected to meet all the necessary requirements 
for water supply, physical parameters—temperature, pH, 
EC, and TDS—were determined in situ using water quality 
probes (Table 1). Probes were first calibrated by deionized 
water and then by water from shallow wells and boreholes. 
Discrete water samples were collected in 1-l polyethylene 
bottles for determination of cations  (K+,  Na+,  Ca2+,  Cu2+, 
 Fe3+,  Zn2+ and  Mg2+) and anions  (Cl−,  HCO3

−,  CO3
2−, 

 PO4
3−,  NO3

−, and  SO4
2−).

Fig. 4  Lithologic section of 
boreholes in the study area a 
Zuru and b Fakai
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Samples were stored in insulated containers less than 
5 °C. Prior to the collection of water samples, polyethylene 
bottles were washed twice; initially by using deionized water 
and then with the water from sampled boreholes and hand-
dug shallow wells. Water samples were analyzed within 
24 h, and as a result, no acid treatment for samples was 
made. All analyses were carried out in triplicates, and results 
were found reproducible within ± 5 error limit. Table 1 sum-
marizes field and laboratory methodologies employed in this 
study.

Ions, including potassium, sodium, calcium, copper, iron, 
magnesium, and zinc, were analyzed using atomic absorp-
tion spectrometry. It is a method in which free gaseous atoms 
engross electromagnetic radiation at a specific wavelength 
to produce a calculable signal. The absorption of those free 
absorbing atoms in the optical path is proportional to the 
absorption signal (Fernández-Cirelli et al. 2009). Conse-
quently, for AAS measurements, the analyte was first con-
verted into gaseous atoms, typically by applying heat to a 
cell (i.e., atomizer). The nature of atomizer outlines the two 
main AAS-based analytical techniques: flame atomic absorp-
tion spectrometry (FAAS) that consistently offers analytical 
signals and electrothermal atomic absorption spectrometry 
(ETAAS) sending analytical signals in an intermittent mode 
(2–4/sample). In both approaches, liquid (or dissolved) sam-
ples are presented into the analyzer, as an aerosol as in the 

case of FAAS which is used in this study or as a fully marked 
low microliter volume in ETAAS (Fernández-Cirelli et al. 
2009).

Monochromators, based on Czerny-Turner, Ebert, and 
Littrow designs are the most conventional wavelength 
selectors used in AAS. More recently, echelle optics is 
being fused to commercial AAS devices. The introduction 
of an echelle configuration in association with a power-
ful continuous lamp creates significant capabilities, for 
instance, analysis of the spectral background near the 
line and concurrent multi-elemental scrutiny (Fernández-
Cirelli et al. 2009). The said ions were analyzed using 
Atomic Absorption Spectrophotometer (Model: Rs 12.5 
Lakh/Piece). Nitrate and phosphate were analyzed using 
automated colorimetry (BluVisionTM discrete analyzer). 
In addition, sulfate concentration was analyzed using 
iron chromatography (Agilent 6890 Plus GC with FPD 
and 7683 Autosampler). Lastly, chloride, carbonate, 
and bicarbonate were determined by titration (Table 1). 
Table 2 presents the results of physicochemical composi-
tion of shallow and deep groundwater in the study area. 
Groundwater suitability for drinking was evaluated by 
comparing the results with World Health Organization 

Table 1  Summary of field and laboratory methods

AAS atomic absorption spectrometry, AC automated colorimetry, IC ion chromatography

Parameters Methods Description Source

Physical
Temperature Field Temp/salinity meter (DKMsG01) Makoto et al. (2003)
Conductivity Field Conductivity/TDS meter Wali and Bakari (2016) and Wali et al. (2018a, b)
pH Field pH meter (pHep) Mondal et al. (2010) and Wali et al. (2018a, b)
TDS Field Temp/salinity meter Mondal et al. (2010) and Wali et al. (2018a, b)
Cations
Potassium (mg/l) Laboratory AAS EPA (2001) and Wali et al. (2018a, b)
Sodium (mg/l) Laboratory AAS EPA (2001) and Wali et al. (2018a, b)
Calcium (mg/l) Laboratory AAS EPA (2001) and Wali et al. (2018a, b)
Copper (mg/l) Laboratory AAS EPA (2001) and Wali et al. (2018a, b)
Iron (mg/l) Laboratory AAS EPA (2001) and Wali et al. (2018a, b)
Zinc (mg/l) Laboratory AAS EPA (2001) and Wali et al. (2018a, b)
Magnesium (mg/l) Laboratory AAS EPA (2001) and Wali et al. (2018a, b)
Anions
Phosphate (mg/l) Laboratory AC EPA (2001) and Wali et al. (2018a, b)
Chloride (mg/l) Laboratory Titration EPA (2001) and Wali et al. (2018a, b)
Bicarbonate (mg/l) Laboratory Titration EPA (2001) and Wali et al. (2018a, b)
Nitrate (mg/l) Laboratory AC EPA (2001) and Wali et al. (2018a, b)
Chloride (mg/l) Laboratory AC EPA (2001) and Wali et al. (2018a, b)
Sulfate Laboratory IC EPA (2001) and Wali et al. (2018a, b)
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(World Health Organization 2011) and Nigerian Standard 
for Drinking Water Quality (National Standard for Drink-
ing Water Quality 2007) reference guidelines for drinking 
water quality (Table 2).

Calculation of chemical indices

Chemical indices, including Ki, Mg, MR, PI, RSC, Si, 
SAR, Na% and Vi (Table 3), were also calculated to eval-
uate ion exchange, silicate weathering reactions. Also 
contained in the table is a formula for calculating total 
hardness.

Statistical analysis

Groundwater data were standardized and summarized using 
basic descriptive statistics: mean, minimum, maximum, and 
standard error (Table 4). Pearson’s correlation (r) was used 
to test the relationship between physical and chemical ele-
ments of groundwater following Margahde et al. (2011). 
Prior to this, a nonparametric test (Kruskal–Wallis) was used 
to test whether there is a significant difference in ground-
water composition between shallow and deep groundwater 
sources, using several samples ANOVA (Table 4). This 
method allows for comparing several independent random 
samples and can be used as a nonparametric substitute to 
the one-way ANOVA (Cruz et al. 2019; Montcoudiol et al. 
2019; Morris et al. 2019). The Kruskal–Wallis test statistic 
for k samples, each of size ni is defined viz:

where N is the total number (all in) and Ri is the sum of the 
ranks (from all samples drawn) for the ith sample and:
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Table 3  Summary of chemical indices and analytical methods

Parameter Formula for calcula-
tion

Source

Molar ratio (MR) Na/Cl Meybeck (1987)
Scholler index (Si) Cl (Na + K)/Cl Scholler (1965)
Total hardness 

 (CaCO3)
2.5 (Ca) + 4.1 (Mg) Todd and Mays (2005)

Versluys index (Vi) Na/(Na + Ca + Mg) Versluys (1916)
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The null hypothesis of the test is that all k distribution 
functions are equal. The alternative hypothesis is that at least 
one of the observations tends to yield larger values than at 
least one of the other observations (Cruz et al. 2019; Mont-
coudiol et al. 2019; Morris et al. 2019). Results obtained 
show that there was no significant difference in TDS,  K+, 
 Ca2+, and  Cu2+ concentrations between shallow and deep 
groundwater.

Principal component analysis

One of the major multivariate statistical method used in the 
interpretation of water chemistry is principal component 
analysis (Ayoko et al. 2007; Miguntanna et al. 2010). The 
PCA which is multivariate statistical method is applied to 
reduce the size of hydrochemical data (Alias et al. 2014; 
Hildebrandt et al. 2008; Machiwal and Jha 2015; Yidana 
2010; Yidana et al. 2018). Reduction of the analytical data 
of individual sampling location is the primary purpose of 
applying PCA. The PCA tends to be intercorrelated with a 
less important set of ‘principal components’ (PCs) which 
can be interpreted (Machiwal and Jha 2015). The PC group 
inter-related absorptions together and can be related to some 

geogenic processes or pollution from the anthropogenic 
sources.

Generally, PCA comprises of two steps: standardization 
of data and extraction of PCs (Machiwal and Jha 2015). 
While some related data on the variability may be lost via 
transformation, the explanation of the system is significantly 
abridged, and it can be envisaged to derive suitable evidence 
on the relationship between parameters and observations 
(Hildebrandt et al. 2008). The PCA bilinear model can be 
rearranged following the matrix decomposition equation 
(Hildebrandt et al. 2008), and thus,

where X represents a matrix of data which is compressed 
into T (scores of matrices) and PT (matrix of loadings), plus 
E (matrix residual) (Hildebrandt et al. 2008). The extracted 
PCs in this study showed that groundwater in both shallow 
and deep aquifers are more influenced by the natural geo-
genic process as compared to human activities.

Hierarchical cluster analysis

The vital role of HCA is to discrete the parameters in a raw 
data matrix or PC scores into separate classes designated by 

(3)X = TPT + E

Table 4  Summary of physical and chemical properties of groundwater

***Do not follow WHO and/or NSDWQ reference guidelines
*Significant difference between shallow and deep groundwater < 0001; **significant difference between shallow and deep groundwater ≤ 0.005

Param-
eter

Borehole (deep aquifer) Dug well (shallow aquifer) Reference guidelines Kruskal–Wallis
Nonparametric test

Physical Mean Min Max SE Mean Min Max SE National Stand-
ard for Drinking 
Water Quality 
(2007)

World Health 
Organization 
(2011)

H  (chi2) Hc (tie cor-
rected)

p (same)

T (°C) 32.4 30 34 5.4 26.8 21.4 31 4.9 Ambient Ambient 27.1 27.4 < 0.001*
pH 7.9 7.3 8.4 1.3 7.4 6.8 8.1 1.3 6.5–8.5 6.5–8.5 9.8 9.9 0.002**
TDS 180.8 65 394 62.3 142 40 320 50.6 500 1000 0.9 0.9 0.330
EC 363.3 136 796 125.9 95.5 10 260 41.1 1000 1400 21.2 21.2 < 0.001*
TH 76.2 19.4 184.9*** 29.2 134.4 63.4 402.8 63.7 150 200 9.015 9.016 0.002**
Cations
K+ 37.7 32.3 40.7 6.4 42.9 39 78 12.3 – – 4.0 4.4 0.036
Na+ 3.9 0 9.8 1.5 449.9*** 2 598*** 94.6 12 200 25.3 25.4 < 0.001
Ca2+ 21.9 2.7 129.3 20.4 19.7 1.2 51 8.1 500 75 1.3 1.3 0.256
Cu2+ 0.3 0.1 0.6 0.1 0.6 0.1 1.6*** 0.3 1 1 1.4 1.4 0.238
Fe3+ 0.9 0.1 3.1 0.5 1.6 0.5 2.7*** 0.4 2 2 8.7 8.7 0.003**
Zn2+ 0.5 0.2 1 0.2 5.3*** 2 8.4*** 1.3 3 3 29.3 29.4 < 0.001*
Mg2+ 19.4*** 8.2*** 26.8*** 4.2 6.6*** 1 20*** 3.2 0.20 125 22.7 22.7 < 0.001*
Anions
PO4

3− 0.4*** 0.1 0.6*** 0.1 18.4*** 11*** 23*** 3.6 0.2 0.2 29.3 29.5 < 0.001*
Cl− 2.5 0.6 3.5 0.6 188.8 4 888*** 140.4 200 250 29.3 29.4 < 0.001*
HCO3

− 14 0.3 33.3 5.3 176.9*** 61 549**** 86.8 250 125–130 29.3 29.7 < 0.001*
SO4

2− 131.1 45.1 245.9*** 38.9 206.3 67.5 327.1*** 51.7 200 250 8.0 8.0 0.005*
NO3

− 36 12.5 46.8 7.4 42.7 12.6 45.2 7.1 50 50 5.2 5.2 0.022
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the user without any prior hypotheses. The HCA is an unveri-
fied outline identification technique that reveals inherent 
assembly or recognizing the pattern of a dataset without a 
prior hypothesis with regard to the data so that the objects of 
the system can be classified into clusters based on their resem-
blances (Lin et al. 2012; Machiwal and Jha 2015). The HCA is 
a widely used method which can form clusters consecutively, 
beginning with the most identical pair of parameters and form-
ing complex clusters after each step which is repeated until a 
single cluster comprising all the observations is attained (Lin 
et al. 2012; Machiwal and Jha 2015). In this study, the Ward’s 
algorithmic gathering technique subsequent to the squared 
Euclidean distance was employed. This is measured as the 
most influential means of clustering (Lin et al. 2012; Machiwal 
and Jha 2015).

Before the clustering analysis, the detected hydrochemical 
data, xji, was standardized by z-scale transformation as given 
below (Machiwal and Jha 2015):

where xji = value of the jth hydrochemical parameter meas-
ured at the ith location, ẋj = mean (spatial) value of the jth 
parameter and Sj = standard deviation (spatial) of the jth 

Z =
Xji−ẋj

Sj

parameter (Machiwal and Jha 2015). The clustering achieved 
with standardized data is anticipated to be influenced less 
by the large and/or small variance of the hydrochemical data 
matrix. Also, the influence of diverse measurement units 
of the data can be removed by making the data dimension-
less (Machiwal and Jha 2015). In this study, HCA was per-
formed on a subset of 17 selected variables (pH, EC, Temp., 
TDS, TH,  Ca2+,  Mg2+,  Na+,  K+,  Fe3+,  Cu2+,  Zn2+,  CO3

2−, 
 HCO3

2−,  Cl−,  NO3
−,  PO4

3−, and  SO4
2−), which represented 

the overall water chemistry outline. The HCA results are 
presented as a dendrogram (Fig. 10), which offers a graphic 
summary illustrating an image of the clusters and their 
closeness with an observed decrease in the dimensionality of 
original observations. This is measured as a good technique 
for presenting results of HCA (Lin et al. 2012; Machiwal and 
Jha 2015). This evidence allowed the construction of a den-
drogram as a function of the water quality parameters and 
sampling locations. Therefore, applying raw data matrix into 
HCA is an excellent technique which helps classify hydro-
chemical data based on similarities of sampled parameters 
across the sampling sites.

Fig. 5  Variability in physical parameters between deep and shallow groundwater a temperature; b pH; c EC, d TDS; and e hardness. DGW deep 
groundwater, SGW shallow groundwater
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Table 5  Groundwater classification based on TDS, hardness, and conductivity

DGW deep groundwater, SGW shallow groundwater

Range Classification No. of 
Sam-
ples

% of samples Sample numbers

SGW DGW

(A) TDS (mg/l)
After David and De West (1966)
 < 500 Required for drinking 40 100 1–20 1–20
 500–1000 Acceptable for drinking – – – –
 1000–3000 Suitable for drinking – – – –
 > 3000 Unsuitable for drinking 

and irrigation
– – – –

 Total 40 100 –
(B) Total hardness  (CaCO3)
After Sawyer and McCarty (1967)
 < 75 Soft 15 37.5 F1, F5, F8, F9, F10; Z2–6, Z9, Z10 F5, F6, F8; Z9
 75–150 Moderately hard 21 52.5 F2, F3, F4, F6, F7, Z1, Z5, Z7, Z8 F1, F4, F7, F9, F10; Z1, Z2, Z3, Z4, 

Z5, Z6, Z7, Z8, Z10
 150–300 Hard 3 7.5 – F2, F3, Z8
 >300 Very hard 1 2.5 – Z4

(C) EC (µS/cm)
After Richards (1954)
 <250 Excellent 38 95 F1, F2, F3, F4, F5, F6, F7, F8, F9, 

F10
F1, F2, F5, F6, F7, F8, F9, F19; Z1, Z2, 

Z3, Z4, Z5, Z6, Z7, Z8, Z9, Z10
 250–250 Good 2 5 – F3, F4
 750–2000 Permissible – – – –
 2000–3000 Doubtful – – – –
 > 3000 Unsuitable – – – –

Table 6  Groundwater classification based on chloride and nitrate

DGW deep groundwater, SGW shallow groundwater

Class Range Number 
of sam-
ples

% of samples Sample number

DGW SGW

(A) Chloride (mg/l)
After Stuyfzand (1989)
 Extremely fresh < 0.14 0 0 0 0
 Very fresh 0.14–0.85 0 0 0 0
 Fresh 0.85–4.23 30 75 F1, F2, F3, F4, F5, F6, F7, F8, F9, F10; 

Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, 
Z10

F1, F2, F3, F4, F5, F6, F7, F8, F9, 
F10

 Fresh brackish 4.23–8.46 1 2.5 0 Z4
 Brackish 8.46–28.21 0 0 0 0
 Brackish salt 28.21–546.13 9 22.5 0 Z1, Z2, Z3, Z5, Z6, Z7, Z8, Z9, Z10
 Hypersaline > 564.13 0 0 0 0

(B) Nitrate (mg/l)
 Acceptable < 5 0 0 0 0
 Moderate 5–30 9 22.5 F1, F3, F7, F9 F6, F7; Z3, Z5, Z9
 Severe > 30 31 77.5 F2, F4, F5, F6,  F8, F10; Z1, Z2, Z3, Z4, 

Z5, Z6, Z7, Z8, Z9, Z10
F1, F2, F3, F4, F5, F8, F9, F10; Z1, 

Z2, Z3, Z4, Z6, Z7, Z8



Applied Water Science (2019) 9:169 

1 3

Page 13 of 36 169

Results and discussion

Suitability for drinking

Table 4 summarizes the physicochemical composition of 
groundwater obtained from boreholes and hand-dug shal-
low wells. Groundwater composition between the two 
sources showed a marked variability between the shallow 
and deep groundwater sources. Groundwater temperature 
varies significantly (H = 27.36, p = < 0.001) between shal-
low and deep aquifers. Temperature variability can be very 
critical especially where biochemical reactions are con-
cerned. Because an increase in temperature by 10 °C in 

groundwater aquifer leads to doubling of chemical reac-
tions (EPA 2001), the solubility of gasses, ion exchange 
capacity, redox reaction, sorption processes, complexation, 
speciation, EC and pH level are all affected by variations 
in temperature (Ngabirano et al. 2016).

Similarly, pH differs significantly (H = 9.86, p = 0.002) 
between the two sources of groundwater. Groundwater is 
slightly acidic to alkaline in the study area. While pH has 
less effect on consumers, it is fundamental to understand-
ing the chemical composition of groundwater. Moderate 
pH level is required depending on the composition of 
groundwater and aquifer properties (EPA 2001). No signif-
icant difference in TDS concentration (H = 0.94, p = 0.33), 
but EC levels differ significantly (H = 21.15, p = < 0.001) 

Fig. 6  Variability of cations a potassium; b sodium; c calcium; d copper; e iron; f zinc; and g magnesium
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between deep and shallow groundwater. Overall, the physi-
cal composition of groundwater in the study area indicates 
water of excellent quality for drinking. Mean pH, TDS, 
and EC are within World Health Organization (2011) and 
National Standard for Drinking Water Quality (2007) ref-
erence guidelines. Figure 5 illustrates the variability of 
physical parameters of groundwater in the study area.

Groundwater classification base on TDS, EC, and TH

Table 5 presents the groundwater classification based on 
TDS, TH, and EC. All the groundwater samples obtained 
from deep and shallow groundwater sources have TDS 
concentrations < 500 mg/l. This is especially required for 
drinking (David and DeWest 1966). Low TDS concentra-
tions have been reported elsewhere in Sokoto Basin (along 
the Sokoto-Gusau road). Groundwater sources in this area 
have low TDS—28–79 mg/l (Anderson and Ogilbee 1973; 
Uma 1993; Alagbe 2006). Groundwater hardness also dif-
fers significantly between deep and shallow groundwater 
(H = 9.015, p = < 0.005). Further, classification base on 
hardness showed that most of the groundwater sources are 
moderately hard (Table 5). Current result concurs with pre-
vious reports on hardness in Sokoto Basin. Groundwater 
obtained from the Rima Group is moderately hard to hard 
in nature (Anderson and Ogilbee 1973; Uma 1993; Alagbe 

2006). Groundwater classification based on EC showed that 
95% of water sources fall in excellent class and 5% fall in a 
good class. The relatively low EC levels in the study area are 
consequent of low TDS, which is generally low in Sokoto 
Basin.

Groundwater classification base on chloride and nitrate

Table  6 presents the groundwater classification based 
on chloride and nitrate pollution in the study area. Based 
on chloride 75% of water samples fall in fresh class (i.e., 
0.85–4.23 mg Cl), 22.5% fall in brackish salt class (i.e., 
28.21–546.13 mg Cl) and 2.5% fall in fresh brackish salt 
(i.e., 4.23–8.46 mg Cl). However, based on nitrate pollu-
tion, 22.5% fall in moderate class (i.e., 5–30 mg  NO3) and 
77.5% fall in severe class (i.e. > 30 mg  NO3). Since  NO3

− is 
mainly derived from the oxidation of ammonia and agri-
cultural fertilizer, the observed high  NO3

− levels in both 
shallow and deep aquifer is perhaps consequent agriculture 
and/or other human activities (changes in land use, sewage), 
but new studies are required for further evaluation. Mean 
 NO3

− concentration is below 50 mg/l in both shallow and 
deep groundwater. This is an expected outcome since Base-
ment Complex areas are often characterized by one-aquifer 
system. Therefore, effluents collected in shallow ground-
water are transported to deeper groundwater reservoirs. 

Fig. 7  Variability of anions a phosphate; b chloride; c bicarbonate; d sulfate; e iron; and f nitrate
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Elevated  NO3
− levels in drinking water (> 50 mg/l) can be 

dangerous to infants—blue baby syndrome (EPA 2001; Wali 
et al. 2018a, b). 

The cation chemistry

Figure 6 shows the variability in  K+,  Na+,  Ca2+,  Cu2+,  Fe3+, 
 Zn2+, and  Mg2+ concentrations between shallow and deep 
groundwater in the study area. Potassium concentration 
differs significantly (H = 4.41, p = < 0.005) between deep 
and shallow groundwater (Table 4). Elevated  K+ level in 

groundwater is associated with toxicity.  K+ in most aquifers 
is found in low concentrations and excessive intake is not 
associated with any health hazard (EPA 2001). Sodium con-
centration differs significantly (H = 25.41, p = < 0.001).  Na+ 
is regulated in drinking water because of the joint effects it 
exercises with sulfate. High consumption is associated with 
hypertension (EPA 2001).  Na+ absorption in an aquifer is 
dependent on the temperature of the solution and the associ-
ated anion. No significant difference in calcium concentra-
tion (H = 1.29, p = 0.25). Elevated  Ca2+ level is often associ-
ated with hardness.

Table 7  Correlation matrix of physicochemical parameters of deep groundwater

Values in bold are significant at ≥ 0.50

Para. T (°C) pH TDS EC K+ Na+ Ca2+ Cu2+ Fe3+ Zn2+ Mg2+ PO4
3− Cl− HCO3

− SO4
2− NO3

−

T (°C) 1
pH 0.13 1
TDS 0.17 0.39 1
EC 0.24 0.46 0.85 1
K+ 0.14 0.43 0.27 0.35 1
Na+ 0.28 0.07 − 0.15 − 0.22 0.22 1
Ca2+ 0.08 0.48 0.75 0.86 0.40 − 0.26 1
Cu2+ 0.14 0.11 − 0.09 0.00 − 0.22 0.40 − 0.02 1
Fe3+ 0.25 − 0.20 − 0.22 − 0.31 − 0.40 0.25 − 0.21 0.63 1
Zn2+ − 0.40 − 0.21 − 0.21 − 0.15 0.01 0.16 − 0.18 − 0.16 − 0.28 1
Mg2+ 0.05 0.46 0.14 0.04 0.65 0.13 0.11 − 0.37 − 0.44 0.01 1
PO4

3− 0.03 0.42 − 0.10 − 0.02 0.34 0.04 0.17 0.09 − 0.12 − 0.43 0.15 1
Cl− 0.13 0.37 0.57 0.63 0.59 0.40 0.65 0.06 − 0.25 0.09 0.32 0.077 1
HCO3

− − 0.19 0.10 0.21 0.31 − 0.19 − 0.89 0.32 − 0.15 − 0.22 − 0.22 − 0.18 0.121 − 0.40 1
SO4

2− 0.01 0.33 0.26 0.20 0.21 − 0.19 0.03 − 0.04 − 0.25 − 0.10 0.42 − 0.03 0.14 0.08 1
NO3

− − 0.01 0.04 − 0.12 − 0.18 − 0.33 0.36 − 0.23 − 0.03 0.00 − 0.06 − 0.06 0.079 0.07 − 0.44 − 0.29 1

Table 8  Correlation matrix of physicochemical parameters of shallow groundwater

Values in bold are significant at ≥ 0.50

Para. T (°C) pH TDS EC K+ Na+ Ca2+ Cu2+ Fe3+ Zn2+ Mg2+ PO4
3− Cl− HCO3

− SO4
2− NO3

−

T (°C) 1
pH 0.12 1
TDS − 0.56 − 0.23 1
EC − 0.56 − 0.23 1.00 1
K+ − 0.10 − 0.26 − 0.13 − 0.13 1
Na+ 0.01 0.29 − 0.27 − 0.27 0.21 1
Ca2+ − 0.24 − 0.26 0.09 0.09 0.12 − 0.13 1
Cu2+ − 0.16 0.05 0.06 0.06 0.46 0.23 − 0.24 1
Fe3+ 0.23 − 0.39 − 0.16 − 0.16 − 0.48 − 0.10 − 0.06 − 0.27 1
Zn2+ − 0.14 − 0.64 0.60 0.60 0.30 − 0.23 0.20 0.14 − 0.05 1
Mg2+ − 0.28 − 0.02 0.80 0.80 − 0.31 − 0.09 0.13 − 0.35 − 0.20 0.42 1
PO4

3− − 0.02 − 0.15 − 0.30 − 0.29 − 0.14 − 0.24 0.26 − 0.11 0.19 − 0.14 − 0.32 1
Cl− 0.04 0.03 − 0.09 − 0.09 0.10 0.20 − 0.15 0.04 0.01 − 0.17 − 0.17 − 0.38 1
HCO3

− − 0.04 0.34 − 0.24 − 0.24 − 0.25 0.16 − 0.27 0.42 − 0.09 − 0.48 − 0.33 0.03 − 0.01 1
SO4

2− 0.38 0.30 − 0.56 − 0.56 0.01 0.11 − 0.47 0.08 − 0.03 − 0.36 − 0.39 − 0.19 − 0.02 0.34 1
NO3

− − 0.61 − 0.03 0.13 0.13 − 0.02 0.27 − 0.04 0.27 0.10 − 0.14 − 0.15 − 0.16 0.41 0.19 − 0.06 1
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There is no significant difference in  Cu2+ concentration 
(H = 1.39, p = 0.23). Unpleasant tastes can occur at levels 
above 1 mg/l (EPA 2001). High Cu2+ ingestion in drink-
ing water is not harmful to humans, and therapeutic doses 
of ~ 20 mg/l are occasionally permitted (EPA 2001). There 
is a significant difference in  Fe+ concentration (H = 8.7, 
p = 0.003). Elevated  Fe3+ levels in water can be injurious 
to aquatic animals even though the degree of noxiousness 
can be reduced by the interactions between other elements. 
Zinc differs significantly (H = 29.37, p = < 0.001) between 
the two aquifers. At concentrations level of about 4 mg/l, the 
unfriendly taste can occur (EPA 2001). At levels between 3 
and 5 mg/l, water might look opalescent and can form an 
oily film when boiled. There was a significant difference in 
 Mg2+ concentration (H = 22.74, p = < 0.001). The signifi-
cance of Mg+ in drinking water is that magnesium is the sec-
ond major constituent of hardness  (CaCO3) (EPA 2001).

Anion chemistry

Figure  7 shows variability in  PO4
3−,  Cl−,  HCO3

−, 
 SO4

2− and  NO3
− between deep and shallow ground-

water in the study area. There is a significant differ-
ence in  PO4

3− concentration (H = 29.48, p = < 0.001). 
The relevance of  PO4

3− is mainly related to the rate of 

eutrophication in surface water bodies (EPA 2001). 
Chloride differs significantly (H = 29.39, p = < 0.001). 
 Cl− vary widely in natural waters, reaching a maximum 
level of ~ 35,000 mg/l. Excessive intake does not constitute 
a health hazard to humans, but at levels above 250 mg/l 
water will taste salty (EPA 2001). Chloride concentra-
tions ~ 2000 mg/l in drinking water is consumed in arid 
and semiarid regions. However, elevated  Cl− levels in 
freshwater may render it unfit for irrigation use (EPA 
2001). What is important is understanding in a sequence 
of outcomes from aquifers is that  Cl− values are not abso-
lute, rather the relative levels from one sampling point to 
another. Elevated  Cl− levels of ~ 5 mg/l at one location 
in comparison with other sampling points might lead to 
the suspicion of groundwater contamination from sewage 
ejection, especially if ammonia levels are also elevated 
(EPA 2001). Bicarbonate differs significantly (H = 29.74, 
p = < 0.001).  HCO3

− in conjunction with  Ca2+ and  Mg2+ 
forms carbonate hardness. When groundwater designates 
high pH concentrations, it can be a sign of high content 
of carbonate and bicarbonate ions (EPA 2001). Sulfate 
concentrations differ significantly (H = 7.99, p = 0.004). 
High  SO4

2− in drinking water is associated with the emetic 
effect, particularly when joint together with  Mg+ or  Na+. 
Nitrate concentration differs significantly (H = 5.22, 

Table 9  Calculated chemical 
indices for evaluating rock 
weathering process

Si Scholler index, Vi Versluy’s index, MR molar ratio

Source type Deep groundwater Source type Shallow groundwater

Si Vi MR Si Vi MR

DGW1 12.8 0.1 12.8 SGW1 6.4 1.0 5.8
DGW2 13.4 0.1 13.4 SGW2 1.5 0.9 1.4
DGW3 15.6 0.0 15.6 SGW3 0.8 0.9 0.7
DGW4 18.5 0.0 18.5 SGW4 2.2 0.9 2.1
DGW5 13.8 0.0 13.8 SGW5 7.3 1.0 6.7
DGW6 18.9 0.2 18.9 SGW6 2.4 0.9 2.2
DGW7 30.8 0.1 30.8 SGW7 3.0 0.9 2.6
DGW8 13.4 0.1 13.4 SGW8 2.4 1.0 2.2
DGW9 24.8 0.0 24.8 SGW9 4.7 1.0 4.3
DGW10 20.9 0.3 20.9 SGW10 5.5 1.0 5.2
DGW11 16.4 0.2 16.4 SGW11 4.4 0.9 4.1
DGW12 15.2 0.0 15.2 SGW12 4.7 1.0 4.3
DGW13 19.9 0.2 19.9 SGW13 8.2 1.0 7.7
DGW14 20.1 0.0 20.1 SGW14 7.4 1.0 6.8
DGW15 13.4 0.1 13.4 SGW15 10.3 0.0 0.5
DGW16 11.2 0.0 11.2 SGW16 4.2 1.0 3.9
DGW17 15.2 0.2 15.2 SGW17 1.0 0.9 0.9
DGW18 61.9 0.0 61.9 SGW18 5.4 0.9 4.9
DGW19 12.2 0.2 12.2 SGW19 4.4 1.0 4.1
DGW20 19.3 0.2 19.3 SGW20 2.9 1.0 2.7
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p = 0.02). High  NO3
− in groundwater lead to suspicion of 

past anthropogenic pollution or high application of com-
posts slurries feast over the land and inorganic fertilizers 
(EPA 2001).

Mechanisms controlling water chemistry

Geochemical facies

The origin of groundwater and the process which control 
groundwater chemistry is understood by the relationships 
between dissolved elements (Tables 7, 8). It is assumed 
that a sizable portion of  HCO3

− in aquifers originate 
from the dissolution of carbonate rocks by means of the 

action of infiltrating rainwaters enriched in  CO2. A Ca-
HCO3

− water type is produced when  CO2 is released 
into solution by the dissolution of carbonate (Marghade 
et al. 2010).  HCO3

− and  Ca2+ were positively correlated 
in shallow groundwater (r = 0.32), suggesting that calcite 
rocks were a source of  Ca2+. The negative correlation 
between these ions in the deep aquifer (r = − 0.27) sug-
gests that  Ca2+ was not exclusively derived from calcite 
mineral. Other sources of  Ca2+ in groundwater aquifers 
are apatite, dolomite, fluorite, gypsum, limestone, and 
marble. A weak positive correlation between  Ca2+ and 
 SO4

2− (r = 0.03) perhaps indicates that some parts of 
 Ca2+ in shallow groundwater is perhaps derived from gyp-
sum. The negative correlation between these ions in deep 

Table 10  Geochemical characterization of groundwater samples

Geochemical 
facies

Characterization of groundwater quality Water samples No. of sam-
ples

% of samples

DGW SGW

1 Alkaline earth (Ca + Mg) > Alkalis (Na + K) F1, F2, F3, F4, F5, 
F6, F7, F8, F9, 
F10

Z1, Z2, Z3, Z4, Z5, 
Z6, Z7, Z8, Z9, 
Z10

20 50

2 Alkalis (Na + K) > Alkaline (Ca + Mg) earths Z1, Z2, Z3, Z4, Z5, 
Z6, Z7, Z8, Z9, 
Z10

F1, F2, F3, F4, F5, 
F6, F7, F8, F9, 
F10

20 50

Fig. 8  Piper diagram showing 
the chemical composition of 
shallow and deep groundwater
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aquifer suggests that  Ca2+ did not derive from gypsum. 
TDS correlates significantly with EC,  Ca2+, and  Cl− in 
shallow groundwater and was significantly correlated with 
 Zn2+ and  Mg2+ in deep groundwater. Significant correla-
tions between TDS and these ions suggest that large parts 
of the dissolved solids in the study area are derived from 
these ions. 

Weak correlation between  HCO3
− and  Ca2+ (r = 0.32) in 

shallow groundwater and negative correlation (r = − 0.27), 
between these ions in deep groundwater, suggest that disso-
lution of gypsum may not be the source of  Ca2+ and  SO4

2−. 
Chloride correlates positively but weakly with  Na+ in both 
shallow (r = 0.40) and deep groundwater (r = 0.20). Positive 
correlations between these two ions suggest that some parts 
of  Na+ in the study area are derived from halite (Marghade 
et al. 2010).

Poor correlations (r = 0.11, r = 0.13), between  Ca2+ and 
 Mg2+ in both shallow and deep groundwater, suggest that the 
two ions might not have the same source.  SO4

2− and  Mg2+ 
were positively correlated in shallow groundwater (r = 0.40), 
suggesting that the two ions might likely have the same ori-
gin. But deep groundwater the two ions were negatively cor-
related (r = − 0.36), indicative that  SO4

2− and  Mg2+ are not 
derived from the same source. A charge equilibrium occurs 
between cations and anions when  Ca2+,  Mg2+,  SO4

2−, and 
 HCO3

− + SO4
2− originate from the simple dissolution of 

gypsum, dolomite, and calcite (Marghade et al. 2010).

Silicate weathering and ion exchange process

Silicate weathering reaction in the study area was evaluated 
using the  Na+/Cl− molar ratio (Table 9). About 55% of the 

analyzed water samples from deep groundwater sources have 
a molar ratio greater than 1, whereas 85% of water samples 
from shallow aquifer have a molar ratio greater than 1. This 
suggests that some parts of  Na+ were derived from silicate 
weathering. However, the process of cation exchange  Ca2+, 
 Mg2+, and  Na+ may produce higher levels of  Na+. When 
groundwater samples have a molar ratio greater than 1, it 
indicates deficiency in  Mg2+ + Ca2+ which is equivalent to 
 Ca2+–Na+ cation exchange process, resulting in softening of 
water. More so, in aquifers having clay mineral,  Na+ derived 
from the exchangeable sites can exchange with  Ca2+ and 
 Mg2+, causing elevated  Na+ level (Marghade et al. 2010).

Conversely, Scholler index (Si) (Scholler 1965) can 
be used to evaluate the ion exchange process (Table 9). 
Water samples from both deep and shallow groundwater 
in the study area have positive Si, suggesting overall base 
exchange reactions in the underlying aquifer. In aquifers 
where alkaline rock minerals are exchanged with  Na+ ions, 
 (HCO3 > Ca + Mg) indicates base exchange soft water. 
Hardened water is formed when  Na+ ions are exchanged 
with alkaline rocks (Ca + Mg > HCO3). Similarly, Versluy’s 
index (Versluys 1916), was positive in both shallow and 
deep groundwater, suggesting overall base exchange reaction 
in both shallow and deep groundwater (Table 9). Table 10 
summarizes the geochemical aspects of groundwater sam-
ples (Panaskar et al. 2016). Two faces can be discerned. The 
alkaline earth (Ca + Mg) is greater than the alkalis in shallow 
groundwater, whereas the alkalis (Na + K) are greater than 
the alkaline earth in deep groundwater.

Fig. 9  Gibbs plot showing major natural mechanisms controlling groundwater chemistry
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Hydrogeochemical faces

The Piper trilinear diagram (Fig. 8) (Piper 1944), shows 
that samples derived from deep groundwater fall in the class 
of Ca–Mg–SO4–HCO3, and Mixed Mg–Na–K–SO4 water 
type, whereas in the shallow aquifer, groundwater falls in 
Ca–Na–K–Cl–HCO3 and mixed  HCO3–Cl–SO4 water type. 
The hydrogeochemical faces in Sokoto Basin are mainly of 
two types: Ca–Mg–HCO3 and Ca–Mg–SO4–Cl. These faces 
perhaps are derived from dissolution of  Ca2+ and  Mg2+ car-
bonates (Anderson and Ogilbee 1973; Uma 1993; Alagbe 
2006). The observed slightly variability in the faces can be 
related to geology, as most previous reporting of ground-
water, faces come from the Cretaceous and Tertiary section 
of the basin. But new studies comparing groundwater faces 
between the Basement Complex and Cretaceous and Ter-
tiary sections of the Sokoto Basin are required for further 
evaluation.

Gibbs model

The mechanism controlling water chemistry was fur-
ther evaluated using a plot of weight ratio of TDS versus 
[Na + K]/Na + K + Ca] and [Cl]/[Cl + HCO3] for cations 
and anions, respectively (Fig. 9). The model reveals that 
rock weathering is the dominant mechanism controlling 
groundwater chemistry in the study area (Gibbs 1970; Rako-
tondrabe et al. 2018). The observed mechanism is perhaps 
derived from the Geology and Geography of the study area, 

which is in the Sokoto Basin (semiarid). The lithology here 
is mainly comprised of sands and clays of different textural 
classes overlying a crystalline basement complex (CBC). 
The lithologic logs from CBC in southern parts of Kebbi 
State show the lithology is mainly comprised of gneisses, 
granites, quartzite, and schist (Anderson and Ogilbee 1973; 
Kogbe 1986; Offodile 2002).

Anthropogenic inputs

Variations of TDS in groundwater are due to contamination 
from anthropogenic sources (Marghade et al. 2010). Ions 
including  Na+,  Cl−,  SO4

2−, and  NO3
− are mainly derived 

from anthropogenic sources—sewage ejections from munici-
pal and industrial sources as well as the application of chem-
ical fertilizer and manure. Correlations between  Na+,  Cl−, 
 SO4

2−, and  NO3
− with TDS indicates how anthropogenic 

activities accelerate changes in groundwater composition 
(Marghade et  al. 2010). TDS correlates positively with 
 Na+,  Cl−,  Ca2+,  SO42−, and  NO3

−. Negative correlations 
between TDS and  Na+ in shallow and deep groundwater 
informs silicate weathering reaction was not the source of 
 Na+ (Tables 7, 8). Municipal and industrial sewage and 
effluents from mining and engineering works can result in a 
positive correlation between  Na+ and TDS (Dragon 2008). 
Significant correlations between TDS and Cl and positive 
correlation between TDS and  SO4 in shallow groundwa-
ter suggest input from anthropogenic origins. Negative 
correlations between TDS and  NO3

− in both shallow and 

Table 11  Varimax rotated 
R-mode factor loadings matrix

Values in bold showed high positive loadings at ≥ 0.65

Parameters Shallow groundwater Deep groundwater

PC1 PC2 PC3 PC1 PC2 PC3

T (°C) 0.377 0.242 − 0.378 − 0.563 0.138 − 0.409
pH 0.688 0.044 0.134 − 0.042 0.773 0.07
TDS 0.784 − 0.283 0.026 0.951 − 0.228 0.069
EC 0.848 − 0.34 0.002 0.951 − 0.228 0.068
K+ 0.596 0.24 0.533 − 0.308 − 0.558 0.649
Na+ 0.091 0.955 − 0.12 − 0.175 0.291 0.479
Ca2+ 0.832 − 0.336 0.007 0.066 − 0.543 − 0.154
Cu2+ 0.122 0.267 − 0.719 − 0.113 − 0.043 0.765
Fe3+ − 0.176 0.214 − 0.815 − 0.161 − 0.011 − 0.482
Zn2+ − 0.34 0.179 0.560 0.418 − 0.73 0.069
Mg2+ 0.332 0.248 0.694 0.879 − 0.033 − 0.239
PO4

3− 0.28 0.057 − 0.023 − 0.362 − 0.269 − 0.394
Cl− 0.766 0.37 0.212 − 0.028 0.198 0.385
HCO3

− 0.036 − 0.948 − 0.04 − 0.185 0.588 0.253
SO4

2− 0.272 − 0.154 0.335 − 0.508 0.590 0.065
NO3

− − 0.133 0.520 − 0.108 0.197 0.193 0.556
Eigenvalues 4.351 2.773 2.256 4.327 2.512 1.957
% of variance 27.195 17.333 14.098 27.045 15.698 12.232
Cumulative% 27.195 44.529 58.627 27.045 42.742 54.975
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deep groundwater (Tables 7, 8) suggest that groundwater in 
the study area is less influenced by anthropogenic activities.

However, the topographical setting of the study area may 
reduce the anthropogenic impact, since effluents may be 
washed off by a single storm. So, impurities may be trans-
ported downhill to the nearby river floodplains and trans-
ported downstream. Since Basement Complex aquifers are 
primarily recharged along cracks and other openings, the 
chances of getting contaminants may be low if the recharge 
zones are located away from the source of pollutants. This 
perhaps explains the low anthropogenic inputs in the study 
area. Yet new studies are required for further evaluation. 
Positive correlations between TDS and  SO4

2− also indicates 
contamination from the anthropogenic origin in the absence 
of geological inputs and this cannot be totally ruled out in 
the study area, owing to its geology.  SO4

2− and  NO3
− cor-

relate negatively (r = − 0.29; r = − 0.06) in shallow and deep 
groundwater suggesting the different origin of the two ions, 
perhaps derived from both the rock mineral and anthropo-
genic activities (Dragon 2008). Weak correlations between 
 Cl− and  NO3

− (r = 0.07; r = 0.41) in both the shallow and 
deep groundwater suggest that the two ions might have 
originated from a different source. Negative correlations 
between  Ca2+ and  NO3

− (r = − 0.23; r = 0.04),  NO3
− and 

 SO4
2− (r = − 029; r = − 0.06) and weak positive correlation 

between  Cl− and  NO3
− (r = 0.07; r = 0.41) in both shallow 

and deep aquifers made it very difficult to relate these ions 
to anthropogenic inputs.

Principal component analysis

In this paper, PCA was carried out using two sets of ground-
water quality data, comprising of 20 groundwater samples 
each from shallow and deep groundwater sources, to identify 
and describe the factors that affect groundwater chemistry 
of the two groundwater environments. PCA was performed 
on a subset of 17 selected water quality variables, namely: 
Temperature, EC, pH, TDS, TH,  K+,  Na+,  Ca2+,  Cu2+,  Fe3+, 
 Zn2+,  Mg2+,  Cl−,  HCO3

−,  PO4
3−,  NO3

−, and  SO4
2−, which 

characterized the overall groundwater chemistry outline. 
The PCA results comprising the loadings, eigenvalues, and 
percentages of total variance are summarised in Table 11. 
The extraction of three factors each from shallow and 
deep groundwater was built on the proportion of variance 
accrued, which included a percentage greater than 80% (Lin 
et al. 2012; Selvakumar et al. 2017). The computed data 

indicate these three factors explained 58.63% and 54.98% 
of the total variance within the data matrix in shallow and 
deep groundwater, respectively. Based on ‘scree test,’ the 
three factors with typical factor loadings suggest three dif-
ferent noticeable contributions were involved in control-
ling the composition of shallow and deep groundwater in 
the study area. Factor 1 explained 27.195% and 27.045% 
of the variability of groundwater data in shallow and deep 
groundwater, respectively. In shallow groundwater, Factor 
1 has corresponded to high positive loadings on pH, TDS, 
EC,  K+,  Ca2+, and  Cl− as well as TDS, EC, and  Mg2+ in 
deep groundwater. Factor 1 can be related to rock weather-
ing since all the parameters having high positive loading on 
these factors have a geologic origin.

Potassium, for instance, is derived from many miner-
als through the weathering process. Such minerals include 
microcline and orthoclase feldspars, chlorine minerals, syl-
vite, carnalite, and clay minerals. Calcium in groundwater is 
primarily derived from rock minerals such as apatite, calcite, 
dolomite, fluorite, gypsum, limestone, and marble. In most 
natural aquifers,  Cl− occurs as a key ion, yet  Cl− is continu-
ously added in freshwaters by anthropogenic activities in 
many receiving glasses of water (Gregory et al. 2015). Factor 
2 explained 17.33% and 14.09% of the variability in shallow 
and deep groundwater, respectively. The factor corresponded 
to high positive loadings on  Na+ and  NO3

− in shallow 
groundwater, pH,  HCO3

− and  SO4
2− in deep groundwater. 

A large part of  Na+ comes from rocks and soil, whereas, 
 NO3

− is derived in aquifers from agriculture via runoff and 
oxidation of ammonia. Bicarbonate comes from carbonates 
dissolution and like nitrate, and  SO4

2− can be derived from 
both geogenic and anthropogenic sources. Therefore, Factor 
2 can be related to both geogenic and anthropogenic influ-
ence. High positive loadings on  HCO3

− in deep groundwater 
inferred that it is expected to control the character of other 
parameters (Lin et al. 2012). Factor 3 corresponded to high 
positive loadings on  K+ and  Zn2+ in shallow groundwater, 
 K+,  Na+, and  NO3

− in deep groundwater water. Factor 3 
can be related to rock weathering in shallow groundwater 
since both  Na+ and  Zn2+ are derive from rock weathering 
and soil. In deep groundwater, this factor can be related to 
both geologic and anthropogenic influence. However, nega-
tive loading on pH in PC1 in the deep aquifer was deemed 
reasonable since pH attained a converse relationship with 
rocks of carbonate origin (Lin et al. 2012).

Despite the variability in water table depths, groundwater 
composition in the study area is controlled by rock weath-
ering. Using scatter plot, water quality parameters cluster 
nicely along the spectrum of shallow and deep groundwater, 
respectively, in a biplot of PC1 and PC2 (Fig. 10a, b). The 
two components joint together explained 58.626% (shal-
low groundwater) and 54.975% (deep groundwater) of the 
variability within the data set. Interestingly the results are 

Fig. 10  a PCA biplots for examining relationships between ground-
water quality parameters from 40 groundwater sources. b Biplot of 
PC1 versus PC2 of hydrochemical data matrix (y-mean centered) for 
17 parameters analyzed from 40 groundwater samples. c Biplot of 
PC2 versus PC3 of hydrochemical data matrix for seventeen param-
eters analyzed from 40 groundwater samples

◂
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remarkable as the parameters form a comparatively tight 
cluster around the water sources. All the 17 originally ana-
lyzed variables (or parameters) are clearly visible on the 
biplot, even though these elements are selected on the basis 
of their absolute size (i.e., high elemental absorptions) 
which was established by reference to the raw data matrix. 
As a result, the significance or otherwise of these parameters 
is identified from this plot (Kokot et al. 1994, 1998; Kokot 
and Stewart 1995; Olsen et al. 2012; Zhang et al. 2015). 
Although a good clustering is observed in the biplot of PC1 
and PC2, the biplot of PC2 and PC3 (Fig. 10c) indicates 
wide dispersity of groundwater quality parameters, making it 
difficult to identify any pattern. It is not clear which of these 
later components is important.

Hierarchical cluster analysis

The vital role of HCA is to discrete the parameters in a raw 
data matrix into separate classes designated by the user with-
out any prior hypotheses. The HCA is an unverified clas-
sification technique that reveals inherent assembly or rec-
ognizing the pattern of a dataset without a prior hypothesis 
with regards to the data so that the objects of the system can 
be classified into clusters based on their resemblances (Lin 
et al. 2012; Machiwal and Jha 2015). In this study, Ward’s 
algorithmic clustering technique subsequent to the Euclidean 
distance was used. This is considered as the most power-
ful grouping tool (Dou et al. 2008; Shyu et al. 2011; Lin 
et al. 2012), because it is capable of minimizing the mis-
representing effect or sum of squared distances of centroids 
from two theoretical groups produced at each step (Lin et al. 

Fig. 11  Dendrogram produced from cluster analysis based on sam-
pling boreholes to understand the most important hydrochemical 
physiognomies in Basement Complex areas of southern Kebbi State. 
Three groups were distinguished viz. Group 1 (BH1, BH7, BH11, 
BH12, BH5, BH6, BH8, BH10, BH19, BH20, BH9 and HD15), 

Group 2 (BH2, BH14, BH3, BH18, BH4, BH16, BH15, BH17and 
HD1) and Group 3 (HD5, HD7, HD16, HD11, HD19, HD12, HD4, 
HD66, HD8, HD20, HD9, HD10, HD13, HD14, HD18, HD2, HD3 
and HD17)

Table 12  Summary of chemical 
indices used in determining 
groundwater suitability for 
irrigation

Parameter Formula for Calculation Source

Kelly index (Ki) Na/(Ca + Mg) Kelly (1940)
Magnesium hazard (MH) Mg × 100/(Ca + Mg) Szablocs and Darab (1964)
Permeability index (Pi) Na + 

√

HCO
3
 /(Ca + Mg + Na × 100) Doneen (1962)

Sodium adsorption ratio (SAR) Na+/ 
√

Ca +Mg∕2 Ayers and Westcot (1976)

Sodium percent (SP) Na+ × 100/(Ca + Mg + Na + K) Wilcox (1955)
Versluys index (Vi) Na/(Na + Ca + Mg) Versluys (1916)
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2012). Using HCA, groundwater sources with comparable 
hydrochemical physiognomies can be grouped into the same 
cluster. The graphics collection of the clustering processes 
in this study is offered as a dendrogram. Base on the den-
drogram (Fig. 11), three groups of groundwater sources can 
be distinguished.

Group 1 (BH1, BH7, BH11, BH12, BH5, BH6, BH8, 
BH10, BH19, BH20, BH9 and HD15), Group 2 (BH2, 
BH14, BH3, BH18, BH4, BH16, BH15, BH17and HD1) 
and Group 3 (HD5, HD7, HD16, HD11, HD19, HD12, HD4, 
HD66, HD8, HD20, HD9, HD10, HD13, HD14, HD18, 
HD2, HD3 and HD17).Generally, the lithology of these 
boreholes is comprised of clay, ironstone, schists, and sands 
of different textural groups. Group 1 is characterized by a 
higher temperature, magnesium, pH, TDS, EC, and calcium. 
Group 2 corresponded to groundwater sources having higher 
potassium, chloride, sodium, sulfate, phosphate, zinc and 
bicarbonate. Group 3 is comprised of water sources having 
higher concentrations of copper, iron, and nitrate. Group 1 
can be related to natural geogenic processes as it is com-
prised of ions derived primarily from rock minerals (notably 
 Ca2+). Similarly, Group 2 can be related to natural geogenic 
processes. Lastly, Group 3 can be related to both anthropo-
genic (notably  NO3

− pollution) and rock weathering.

Suitability for irrigation use

The suitability of groundwater for irrigation can be evalu-
ated using a total concentration of soluble salts (SAR) which 
is express in terms of specific conductance (Sadashivaiah 
et al. 2008; Rakotondrabe et al. 2018). Sodium percent was 
calculated following Kumar et al. (2014) and Rakotondrabe 
et al. (2018). Soil often reacts with sodium to decrease soil 
permeability, which results in high sodium concentration. 
This causes cation exchange between  Mg2+ and  Ca2+ in soil 
under wet conditions. Water and air circulations are reduced 
as a consequent to this process. In the same vein, Kelly’s 

Table 13  Summary of chemical 
indices of shallow and deep 
groundwater in the study area

Ki Kelly’s index, SAR sodium adsorption ratio, MH magnesium hazard

Source type Shallow groundwater Source type Deep groundwater

Ki SAR SP MH PI Ki SAR SP MH PI

DGW1 0.1 0.5 4.1 60.8 14.6 SGW1 23.0 97.6 87.9 27.8 2024.4
DGW2 0.1 0.8 5.6 23.6 30.6 SGW2 11.8 71.8 85.2 13.5 2148.6
DGW3 0.0 0.0 0.1 33.2 2.6 SGW3 9.2 74.2 80.7 21.5 2575.7
DGW4 0.0 0.0 0.1 90.8 3.1 SGW4 16.3 84.5 86.9 29.6 2144.2
DGW5 0.0 0.2 1.6 48.0 5.1 SGW5 21.0 100.7 88.6 13.0 87.9
DGW6 0.3 1.4 9.6 36.0 30.5 SGW6 16.7 96.1 88.5 9.1 1963.6
DGW7 0.1 0.6 4.4 85.3 14.8 SGW7 11.5 72.7 79.6 50.0 1909.4
DGW8 0.2 0.7 4.7 79.7 15.0 SGW8 32.5 133.9 90.8 29.4 2064.4
DGW9 0.0 0.2 1.3 58.1 6.2 SGW9 21.9 100.4 88.5 4.8 2033.2
DGW10 0.4 1.9 12.9 72.7 67.9 SGW10 55.2 174.6 91.8 30.0 2848.6
DGW11 0.2 1.3 9.4 59.6 31.3 SGW11 13.2 76.1 85.9 54.5 1809.6
DGW12 0.0 0.2 1.3 55.1 5.6 SGW12 24.2 105.5 88.8 73.7 1901.8
DGW13 0.3 1.4 10.0 74.9 71.5 SGW13 61.3 184.0 92.0 22.2 2602.9
DGW14 0.0 0.2 1.5 13.0 14.4 SGW14 23.0 105.4 89.0 28.6 1911.9
DGW15 0.1 0.6 4.7 60.3 31.0 SGW15 0.0 0.3 2.4 7.0 2163.5
DGW16 0.0 0.0 0.0 60.4 19.7 SGW16 34.5 119.5 89.0 33.3 2630.8
DGW17 0.3 1.8 12.2 85.6 46.6 SGW17 8.9 62.4 83.2 14.3 2249.2
DGW18 0.0 0.4 2.7 35.2 17.3 SGW18 11.1 62.0 83.1 9.7 2415.2
DGW19 0.2 0.8 5.8 85.0 86.2 SGW19 36.4 126.2 89.5 33.3 2031.9
DGW20 0.2 1.3 9.8 62.5 52.5 SGW20 92.9 211.8 91.6 76.9 2528.7

Fig. 12  USSL classification of groundwater samples from shallow 
and deep aquifers
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index and magnesium adsorption ratio (MAR) were also 
calculated. Kelly’s index value greater than 1 designates 
water of excellent quality for irrigation use. However, index 
value less than 1 designates water which is unsuitable for 
irrigation, because of alkali hazard to crops (Kelly 1940). 
In calculating Kelley’s index,  Ca2+ and  Mg2+ are measured 
against  Na+. Elevated levels of  Mg2+ in groundwater disturb 
the soil quality by changing it to alkali, which subsequently 
decreases crop yield (Kumar et al. 2014). Also, values of 
MAR less than 50 in irrigation water are considered appro-
priate for irrigation use. Often in groundwater,  Ca2+ and 
 Mg2+ are found in a state of equilibrium. Elevated  Mg2+ 
in groundwater at levels greater than  Ca2+ fast-tracks the 
degree of  Mg2+ saturation, which destroys soil structure, 

and consequently, reduces its productivity (Goswamee et al. 
2015).

The chemical composition of groundwater for irrigation 
farming affects the soil quality and crop yield (Table 12). 
The suitability of groundwater for irrigation use hinges 
on the composition and concentration levels of ions in 
groundwater (Panaskar et al. 2016). To assess this, the 
properties of groundwater play an important role includ-
ing (1) comparative amount of sodium to other cations, 
(2) total absorption of soluble salts, (3) the bicarbonate 
absorption in relation to the absorption of Ca + Mg (USSL 
1954; Panaskar et al. 2016). Using this, an assessment 
of groundwater appropriateness for irrigation uses has 
been carried out in the study area using numerous salinity 
indices viz. sodium adsorption ratio (SAR), sodium per-
centage (Na%), Kelly’s ratio, magnesium ratio, residual 
sodium carbonate (RSC), and USSL diagram among oth-
ers (Panaskar et al. 2016). Table 13 presents the calcu-
lated indices from the shallow and deep groundwater in 
the study area.

Sodium adsorption ratio (SAR)

The foremost index applied for evaluation of groundwa-
ter suitability for agricultural purposes in relation to  Na+ 
absorption which affect soil structure and permeability is 
SAR (Marghade et al. 2010; Panaskar et al. 2016). SAR 
is used to measure sodium and/or alkali hazards to crops 
(Table 13). It provides a clue relating to the magnitude of 
sodium adsorption by soil. Calcium and  Mg2+ in the soil can 
be displaced as a result of the prolonged application of high 
Na-rich water. This causes damage to the soil structure and 
reduced crop yields (Marghade et al. 2010; Panaskar et al. 
2016). SAR in deep groundwater ranged from < 0.001 to 1.9 
with a mean value of 0.7, whereas, in shallow groundwa-
ter, it varies between 0.3 and 211.8 with an average value 
of 103.26. Figure 12 shows the variability in SAR levels 
between shallow and deep groundwater in the study area.

Groundwater samples having SAR value within the range 
of 10 and 18 are classified as a good category; however, most 
of the groundwater samples derived from deep aquifer have 
SAR value > 18, with one groundwater sample (SAR < 18), 
classified as good.

Sodium percent (Na%)

Another index employed to identify the concentration of 
soluble sodium level in irrigation water is sodium per-
cent (Na%). It is applied to reveal sodium hazard to crops 
(Panaskar et al. 2016). Calcium is replaced by sodium by 

Fig. 13  Wilcox diagram showing groundwater classification for irri-
gation use

Fig. 14  Doneen’s chart showing groundwater classification of irriga-
tion water based on PI
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process of base exchange which destroys soil structure and 
consequently reduces soil permeability (Table 12). Using 
Wilcox plot (Fig. 13), groundwater samples showed marked 
variability with shallow groundwater samples falling in good 
to excellent class. Whereas deep groundwater samples vary 
between good to excellent class and unsuitable to doubtful 
class, two samples from deep groundwater fall in unsuitable 
class. Generally, samples from shallow groundwater have 
very low to high sodium class. However, irrigation water of 
very low SAR and low salinity (< 200 µS/m) affects the rates 
of water infiltration into soils (Graham et al. 2006).

Permeability index (PI)

Prolonged application of irrigation water can interfere with 
soil permeability which is affected by bicarbonate, calcium, 
magnesium, and sodium (Li et al. 2016; Panaskar et al. 
2016). Doneen (1962) developed a standard for evaluating 
irrigation water suitability using permeability index which 
is defined as contained (Fig. 14).

Values are express in meq/l. Shallow groundwater clas-
sification showed that PI values ranged from 2.6 to 86.2 
with a mean value 29.8. In deep groundwater, PI values vary 
between 0 and 1.9 with an average value of 0.74. Based on 
permeability index, three classes can be discerned: Class I 
is classified as excellent for irrigation; Class II is classified 
as acceptable; Class III is categorized as unsuitable (Li et al. 
2016). All the shallow groundwater samples fall in Class III. 
This is deemed reasonable since the prolonged application 
of irrigation water of very low salinity is related to poor 
permeability (Graham et al. 2006). In deep groundwater, 
1 sample falls in Class III, 14 samples fall in Class II, and 
5 samples fall in Class I. Water samples from deep aquifer 
can be used for irrigation with little permeability problem, 

but such water of high SAR level destroys soil structure (Li 
et al. 2016; Panaskar et al. 2016).

Kelly’s index (KI)

Kelly’s index is employed to measure the concentration of 
 Na+ against  Ca2+ and  Mg2+ (Table 13). It is vital to evaluate 
groundwater suitability for agricultural use. Elevated  Na+ 
level in aquifers produces an objectionable impact on chang-
ing characteristics of soil and its permeability; thus, extreme 
 Na+ is used as an indicator of alkali hazard (Wagh et al. 
2016). Kelly’s index is greater than 1 in deep groundwater, 
whereas, in shallow groundwater, indices are less than 1 
(Table 13). Values less than 1 are considered suitable for 
irrigation, whereas KI values are greater than 1 in irrigation 
water can be classified as unsuitable for irrigation use (Wagh 
et al. 2016). KI values in shallow groundwater ranged from 
0 to 0.4 with a mean value of 0.13. KI values are extremely 
high in shallow groundwater and vary between 0 and 92.9 
with an average value of 28.06. The possible reasons for 
higher KI values in shallow groundwater need to be unveiled 
as it presents a serious environmental problem.

Magnesium adsorption ratio (MAR)

Magnesium hazard is also used to characterize groundwa-
ter and assess its suitability for irrigation use by revealing 
the amount of  Mg2+ over  Ca2+ (Ragunath 1987; Wagh et al. 
2016). The MAR ratio as calculated in Table 13 shows that 
MAR values ranged from 13.0 to 90.8 with a mean value of 
58.3 in shallow groundwater. In deep groundwater, MAR 
values vary between 4.8 and 76.9 with an average value of 
30.17. Based on mean MAR, shallow groundwater in the 
study area is unfit for irrigation use. Usually, magnesium 
and calcium occur in a state of equilibrium in groundwater 
sources. The concentration of magnesium beyond calcium 
in irrigation water fast-tracks the magnitude of  Mg2+ satu-
ration and consequently damages soil structure and reduces 
crop yields. High magnesium in irrigation water impacts soil 
quality by converting it to alkali which eventually reduces 
its productivity. The variability of MAR in the study area 
is further illustrated using a radar chart (Fig. 15). Overall, 
groundwater evaluation shows deep aquifers in the study 
area hold water of good quality as compared to shallow 
groundwater sources.

Implications for groundwater quality 
in Sub‑Saharan Africa

Characterization of groundwater in the study area showed 
marked variability between aquifers. Groundwater 

Fig. 15  Radar chart showing the variability of magnesium adsorption 
ratio between shallow and deep groundwater
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parameters showed marked variability between the shallow 
and deep groundwater. To better understand the composi-
tion of groundwater in the rest of SSA, data from 50 loca-
tions from the literature was compiled (Table 14). Further 
Table 14 shows that evaluation of groundwater quality in 
SSA is constrained by lack of data. Results from the patchy 
data derived from the literature indicate that 16.7% (n = 24) 
of groundwater in SSA have temperatures above 30 °C, 
90.0% (n = 40) have EC values above WHO reference guide-
lines (1000 µS/cm). At least, 38.6% (n = 44) of groundwa-
ter sources in SSA are acidic to alkaline in nature. Scholler 
and Versluy’s indices are positive, indicating overall base 
exchange reactions in aquifers underlying SSA. Kelly’s 
index is greater than 1 in about 10 locations, indicating water 
which is unsuitable for irrigation use.

Sodium percent is greater than 20 in most locations 
in SSA (Table 15). The high rates of sodium indicate the 
absence of ion exchange reaction between  Ca2+ and  Na2+. 
Wilcox plot indicates that most of the groundwater sources 
in SSA are suitable for irrigation use (Fig. 16). However, 
some parts of  Na+ in groundwater aquifers across SSA were 
not derived from silicate weathering, because the molar ratio 
is greater than 1 in most locations. Therefore, groundwater 
in SSA is not deficient in  Mg2+ + Ca2+. As a result, ground-
water sources may be hard in most parts of the continent. 
Magnesium hazard is less than 50 in most locations.

Conclusion

The literature is unanimous on the importance of evalua-
tion and understanding of the hydrochemical composition 
of groundwater under different environments. This study 
reveals that:
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 1. The concentrations of  Fe3+,  Zn2+,  Mg2+,  Na+,  PO4
3−, 

and  SO4
2− are above World Health Organization 

(2011) and National Standard for Drinking Water 
Quality (2007) reference guidelines. Groundwater in 
the study area is acidic to alkaline in nature;

 2. There is a significant difference in concentrations of 
temperature, pH, EC, hardness,  Na+,  Zn2+,  Mg2+, 
 PO4

3−,  Cl−,  HCO3
−,  SO4

2−, and  NO3
− between shal-

low and deep groundwater sources;
 3. Groundwater classification using TDS showed that 

water sources are suitable for drinking and irrigation 
use;

 4. Groundwater classification base on hardness showed 
that most of the groundwater sources are moderately 
hard;

 5. Groundwater classification based on EC showed that 
most of the water sources fall in excellent class. The 
relatively low EC levels in the study area are conse-
quent of low TDS, which is generally low in Sokoto 
Basin;

 6. Groundwater classification based on chloride revealed 
that most of the water samples fall fresh class, but most 
groundwater sources fall in severe class based on  NO3

− 
classification;

 7. Evaluation of geochemical faces showed that ground-
water composition is controlled by rock weathering, 
even though little inputs were derived from anthropo-
genic sources. This was further confirmed by the Gibbs 
model;

 8. Result of Na +/Cl- molar ratio indicates that most of 
the sampling locations have molar ration greater than 
1, which suggests that some parts of  Na+ were derived 
from silicate weathering;

 9. Most groundwater samples have positive Scholler 
index, suggesting overall base exchange reactions in 
the underlying aquifer;

 10. Groundwater classification based on Piper diagram 
revealed two types of faces: Ca–Mg–HCO3 and Ca–
Mg–SO4–Cl;

 11. Significant correlations between TDS and  Cl−, and 
positive correlation between TDS and  SO4 in shal-
low groundwater suggest input from anthropogenic 
sources;

 12. Groundwater evaluation using PCA, showed water 
sources are more influenced by rock mineral as com-
pared to anthropogenic inputs;

 13. Groundwater analysis using HCA showed that Group 
1 and 2 can be related to natural geogenic processes 
as it corresponds to ions of natural geogenic origin. 
Group 3 can be related to both anthropogenic (notably 
 NO3

− pollution) and rock weathering;

 14. Most of the groundwater samples derived from deep 
aquifer have SAR value > 18, whereas, all the ground-
water samples from shallow aquifer have SAR < 18;

 15. Base on  Na+% samples from shallow groundwater 
fall in very low to high sodium class, whereas, deep 
groundwater samples vary between good to excellent;

 16. Based on Doneen’s chart, permeability indices are 
excellent in deep groundwater, whereas, in shallow 
groundwater, PI indices are affected by low salinity 
water type;

 17. The possible reasons for higher KI values in shallow 
groundwater need to be revealed as it presents a serious 
environmental problem; based on mean MAR, shallow 
groundwater in the study area is unfit for irrigation use;

 18. Many sources of groundwater in SSA are acidic in 
composition; Scholler and Versluy’s indices suggest 
an overall base exchange reaction in aquifers underly-
ing SSA; and

 19. Kelly’s index is less than 1 in most locations in SSA, 
indicating water which is suitable for irrigation use. 
MAR is less than 50 in most locations.

Despite the significant difference in water quality param-
eters and chemical indices, evaluation of shallow and deep 
groundwater in the study area indicates that groundwater 
composition is more a product of rock weathering than 
anthropogenic inputs.
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