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Abstract
In this study, a comparative analysis is done to evaluate the ability of classified radial basis function neural network (CRB-
FNN) model in estimation of flow variables in sharp open-channel bends with bend angles of 60° and 90°. Accordingly, a 
RBFNN model is integrated with classification method to design a novel CRBFNN model to predict two velocity and flow 
depth parameters in a 60° sharp bend. Furthermore, Gholami et al. (Neural Comput Appl 30:1–15, 2018a) pointed out to 
acceptable ability and more efficiency improvement of hybrid CRBFNN model in prediction of flow variables in 90° sharp 
open-channel bend compared to simple RBF model. On the other hand, the flow pattern in sharp bends is more complicated 
than in mild open-channel bends. Moreover, the behavior of flow and its variables is varied in 60° and 90° sharp bends. 
Therefore, the present paper is aimed to evaluate the performance of RBF and CRBF models in two 60° and 90° (Gholami 
et al. 2018a) sharp open-channel bends. Available experimental data for velocity and flow depth at six different hydraulic 
conditions are used to train and test the CRBFNN and simple radial basis function neural network (RBFNN) networks in 
60° open-channel bend. Accordingly, efficiency of both RBFNN and CRBFNN models in different bend cross sections is 
evaluated and compared with each other. The results show that using classified model has improved the simple RBF model 
performance, as in the CRBFNN model, the error root mean square error and mean absolute error value, 18% and 15.3% 
for the flow depth prediction and 9% and 5% for the velocity prediction compared to the simple RBFNN model is reduced, 
respectively. Furthermore, the comparison of model performance in 60° and 90° bends represents that both RBFNN and 
CRBFNN models in all discharge values in velocity prediction have more ability in 60° bend so that the mean absolute 
relative error (MARE) value in 60° bend is equal to 0.080 and 0.082 which are lower than MARE values in 90° bend (0.125 
and 0.131 for RBFNN and CRBFNN, respectively). Furthermore, both RBFNN and CRBFNN models with lower MARE 
values equal to 0.015 and 0.012 in 90° bend have more accuracy than the models in 60° bend (0.017 and 0.014). Therefore, 
the proposed classified models can be used in design and implementation of the curved channels with various bend angles.
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Introduction

Flow pattern in curved paths is different from direct ones. 
The presence of bend in the river path and artificial chan-
nels causes the researchers to perform a lot of researches on 
flow structures in bends. This subject is important when it 
was understood that complex flow structure and high turbu-
lence in bends cause to create phenomena such as outer wall 
erosion, sedimentation in inner wall, water surface slope in 

river width or through the bend, changing of maximum flow 
velocity situation, bed washing in moveable beds, changing 
geometry plan and river path. Therefore, recognition of flow 
characteristics in curved channels is the favorite of most 
researchers. Researchers believe that the secondary flows 
which are created from interaction of centrifugal forces and 
pressure gradient (Lien et al. 1999; Ferguson et al. 2003) 
are the main factor to induce these phenomena (Naji et al. 
2010; Shaheed 2016). In mild bends, there is more oppor-
tunity to making this interaction and the flow passes more 
path through the bend despite of sharp bends that flow is 
suddenly affected by bend therefore the flow structure and 
the mentioned above phenomena in sharp bends are more 
complex than mild bend (Ye and McCorquodale 1998). One 
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of the few researches on sharp bends is related to Leschziner 
and Rodi 1979’s study. They pointed out that the main item 
to transfer maximum velocity to outer wall in final bend 
cross section is longitudinal pressure gradient, while in 
mild bend the main factor is secondary flows. Experimen-
tal and numerical studies have been done on the flow pat-
terns at different bend angles by many researchers. Jung and 
Yoon (2000) studied flow pattern in a 180° mild bend. They 
observed that, generally, in mild bends with any type of bed 
material, maximum velocity for the first half of the entrance 
zone of the bend is oriented toward the inner wall, and as it 
moves toward the end of the bend, gradually, its geometric 
location falls on the outer wall. Uddin and Rahman (2012) 
Blanckaert and Graf (2001) evaluated the three-dimensional 
velocity pattern and the cause of secondary and spiral flow 
formation in the bends experimentally. In relation to the 
numerical works, De Marchis and Napoli (2006) examined 
the flow pattern in sharp bends using computational fluid 
dynamic (CFD) as three dimensions. The velocity distribu-
tion and water surface in the channel were also considered, 
and it was declared that at the end of the bend, the velocity 
value at the outer channel wall will be greater than at the 
rest. Ramamurthy et al. (2012) examined the flow pattern in 
a 90° sharp bend using three-dimensional numerical model, 
and they indicated that using a suitable method for free sur-
face modeling and a turbulence model that solve the hetero-
geneity of flow turbulence in the prediction of the secondary 
rotary cells (especially rotary tributary cells at outer channel 
wall) is very important. Moharana and Khatua (2014) ana-
lyzed flow along the meander channel. The velocity profile 
and water surface variations have been methodically ana-
lyzed at different cross sections. The authors stated that the 
water surface profile remains higher on the outer wall than at 
the inner wall at every channel section. The results show that 
velocity profile shows higher-velocity results at the inner 
wall than at outer wall and gradually decreases toward the 
outer wall and horizontal velocity profile of a highly sinu-
ous meandering channel remains higher at the inner wall 
of the channel section and decreases toward the outer wall. 
Gholami et al. (2014) using experimental and numerical 
models evaluated the flow pattern in 90° sharp bend and 
studied the velocity and flow depth changing circumstances. 
They concluded that in the sharp bend, unlike the mild bend, 
maximum velocity up to the end bend sections remains at 
the inner channels wall. Also, they and Bodnár and Příhoda 
(2006) by using numerical study on 90° sharp bend declared 
that transverse water surface slope in sharp bends is non-
linear despite mild bends which had linear slope according 
to De Vriend and Geldof (1983) and Steffler et al. (1985)’s 
studies. Gholami et al. (2016a) evaluated the variation of 
water surface levels in 120° sharp bend numerically. They 
referred to nonlinear distribution of transverse water surface 
level changes so that these changes in inner half-width cross 

section are greater than in outer half-width of channel. They 
presented practical and certain relationships in calculating 
the water surface level differences along the bend.

The ability of soft computing methods in the analysis 
of the complex issues caused extensive use of these meth-
ods in various engineering sciences (Kim and Parnichkun 
2017; Manu and Thalla 2017; Sanikhani et al. 2018; Li 
et al. 2019), especially river engineering (Ghorbani et al. 
2018; Yaseen et al. 2018a, b) and water engineering such as 
sediment transport (Azamathulla et al. 2012; Kumar et al. 
2014; Pektaş and Doğan 2015; Afan et al. 2016; Ebtehaj and 
Bonakdari 2017), scour (Zahiri et al. 2014; Balouchi et al. 
2015; Yousif et al. 2019), hydraulic structures (Basser et al. 
2014; Bonakdari and Zaji 2018), rainfall and runoff (Kisi 
et al. 2013; Sulaiman et al. 2018; Tao et al. 2018a, b), flood 
forecasting (Lohani et al. 2014; Kasiviswanathan et al. 2016; 
Solgi et al. 2017; Diop et al. 2018; Al Sudani et al. 2019), 
groundwater level (Chang et al. 2016; Li et al. 2017), stable 
channel designing (Bonakdari and Gholami 2016; Gholami 
et al. 2017a, b, c, d, 2019a, b, c). In the fields of curved 
channel, in recent years the authors used various types of 
AI methods in prediction of different flow variables in some 
angles (60°, 90° and 120°) of open-channels bends. Gholami 
et al. (2017b) investigated the complete flow pattern govern-
ing to 90° sharp bend using adaptive neuro-fuzzy inference 
system (ANFIS) model based on different optimization algo-
rithms such grid partitioning (GP) and sub-clustering (SC) 
methods for fuzzy inference system generation. Their results 
demonstrated the high ability of ANFIS in combination of 
back-propagation (BP) algorithm in prediction of flow vari-
ables. One of the most common soft computing methods is 
artificial neural networks (ANN) which applies in differ-
ent types such as multi-layer perceptron (MLP), radial basis 
function (RBF) and so on (Wu and Wang 2012; Ghosh et al. 
2015). Simple structure, high performance, high train speed 
caused extensive application of RBF model in different sci-
ences (Moody and Darken 1989; Park and Sandberg 1991; 
Sarimveis et al. 2003; Bilhan et al. 2011; Jiang et al. 2012). 
Gholami et al. (2015) presented an ANN model based on 
MLP type in prediction of different flow variables (veloc-
ity fields, flow depth changes, streamlines, etc.) in a 90° 
sharp bend extensively. They compared the MLP model 
results with a computational fluid dynamic (CFD) model 
and declared that MLP model is capable of estimating the 
flow pattern in curved channel similar to CFD model and has 
an acceptable performance in accordance with experimental 
data. They announced that despite high efficiency of MLP 
model, the CFD model acts more accurately than MLP in 
prediction of high-risk areas such as contraction and separa-
tion zones which cause deposition and erosion in outer and 
inner walls of curved channels. Tahershamsi et al. (2006) 
predicted sediment loads using two different types of neural 
networks (MLP and RBF). They found that the RBF model 



Applied Water Science (2019) 9:145	

1 3

Page 3 of 17  145

shows more errors than the MLP model. Zaji and Bonakdari 
(2014) evaluated the MLP and RBF model performance and 
linear and nonlinear particle swarm optimization (PSO) in 
discharge capacity anticipation at triangular side weirs. Their 
results indicated that MLP model compared to the rest of 
models in anticipation of this parameter shows the greatest 
error. So, one method that can improve the performance of 
ANN models is necessary. One of the methods is using deci-
sion tree in combination with various artificial intelligence 
(AI) models which cause the model performance improve-
ment. Senthil Kumar et al. (2011) using different AI models: 
ANN, RBF, decision trees (DT) such as M5 and fuzzy logic 
(FL) predicted the suspended sediment concentration in the 
reservoir of the river. Their results indicated that M5 tree 
models are more accurate than other models. This model 
also presents decision makers with a better outlook com-
pared with the rest of the models, and it offers engineers 
explicit expressions for practical uses. Other applications 
of hybrid model can be pointed out to rainfall–runoff model 
(Solomatine and Dulal 2003), flood forecasting (Solomatine 
and Xue 2004), scour downscaling (Goyal and Ojha 2011), 
rating curves modeling (Ajmera and Goyal 2012; Bhattacha-
rya and Solomatine 2005), discharge estimation (Wolfs and 
Willems 2014). In the field of curved channels using these 
classified models, Gholami et al. (2016b, c) and Gholami 
et al. (2018a) presented different ANN models (MLP and 
RBF models) in combination with DT to improve the abil-
ity of classified ANN models compared to simple MLP and 
RBF models in estimation of flow variables in 90° sharp 
bend extensively. Their results showed the high performance 
of hybrid DT models in comparison with simple ANN mod-
els. The DT models ability to present practical and reliable 
equations along with simple matrix makes these models as 
appropriate models in calculating flow variables in curved 
channels. On the other hand, because of the importance of 
angle of 60° in deviations, convergence intakes, inlet chan-
nels and bends and because of the complicated flow nature 
especially in sharp bends, engineers are interested in the 
investigations of this angle of curved channels. In the fields 
of evaluation of flow pattern in 60° sharp bends, based on 
knowledge of authors fewer recent studies have been seen. 
Gholami et al. (2016d) by fully numerically study based on 
CFD and Gholami et al. (2019d) investigated the flow pat-
terns in 60° sharp bend using ANN, CFD and support vector 
machines (SVM) models. Their results showed that the ANN 
models with high correlations in results have an acceptable 
performance compared to other numerical models. However, 
the CFD models considering physics that governs fluid flow 
are introduced as important numerical models that act simi-
lar to ANN model with a less difference. On the other hand, 
Gholami et al. (2019d) stated that the ANN model in some 
critical zones cannot detect the pattern governing on flow 
which caused the model efficiency to decrease. Accordingly, 

based on recent studies in 60° bend, the necessity to high 
powerful and robust model is felt in evaluating flow pat-
tern in 60° open-channel bend. So, in order to increase the 
performance of previous AI models, Gholami et al. (2019e) 
investigated the application of hybrid ANN models inte-
grated with classification technique. However, the main 
focus of Gholami et al. (2019e) is to extensively analyze 
the uncertainty of hybrid models regarding application of 
these models in studies of Gholami et al. (2018a). On the 
other hand, the flow pattern in sharp bends of open channels 
is more complicated than in mild channels bend because 
of sudden change of flow path. And also, flow patterns in 
various angles of bend (30°, 60°, 90°, 120° and 180°) are 
different in the sharp bends (Gholami et al. 2016a). Accord-
ingly, performance of hybrid models in different bend angles 
is of great importance for engineers to use a practical and 
useful AI model in the design and implementation of curved 
channel.

Therefore, in this study, first, the radial basis function 
neural network model based on classification tree (CRB-
FNN) to improve the simple RBF model performance is 
modified. The classified radial basis function (CRBF) and 
simple RBF models predict the velocity and water surface 
depth parameters at 60° sharp bend. The performance of 
both models is evaluated and compared with each other. 
Furthermore, another contribution of this study is investi-
gation of the performance of CRBF and RBF models in two 
important bend angles of 60° and 90° in order to evaluate 
the capability of RBF and hybrid models in different bend 
angles. Accordingly, the results of Gholami et al.’s (2018a) 
study are used in estimation of velocity and flow depth in 
a 90° sharp bend to compare with 60° bend results in this 
study. Discharge is a key input parameter in network training 
so that 6 different discharge modes are used for train and test 
models. The performance of simple RBF and CRBF models 
in different channel cross sections and different discharges is 
studied and compared with the errors contours.

Experimental model

This experimental work was done on a laboratorial flume 
in the hydraulic laboratory at Ferdowsi University of Mash-
had (Akhtari et al. 2009; Gholami et al. 2014; Akhtari and 
Seyedashraf 2017). The geometric flume characteristics and 
details are as follows: a straight entrance channel of 3.6 m 
length; curved channel with the central angle of the 60° 
bend and its central radius (Rc) equal to 60.45 m, a sharp 
bend (Rc/b = 1.5 < 3) in terms of channel width (b = 40.3 cm) 
and a straight exit channel of 1.8 m length. The channel’s 
cross section is 40.3 × 40.3 cm (width and height) square. 
The channel bed and walls are fixed and smooth and made 
of Plexiglas. Experiments were conducted with 6 different 
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discharge flow rates of 5, 7.8, 13.6, 19.1, 25.3 and 30.8 l/s. 
Six various hydraulic properties used in the experiments are 
given in Table 1. A one-dimensional velocity meter (propel-
ler) with 2 cm/s accuracy and a micrometer with 0.1 mm 
accuracy were utilized to read the axial velocities and water 
depth in the flume, respectively. It can be referred to the 
Gholami et al. (2014) for more experimental details. The 
geometric channel characteristics and a detailed view of 
the laboratory flume are shown in Fig. 1. Due to the side 
and channel bed effect on the velocity components and to 
determine the flow pattern, there are 13 transverse points in 
channel cross section and in each point, 4 depth points with 
3, 6, 9 and 12 cm from the water surface level are chosen to 
measure flow parameters. Calculations in 8 different cross 
sections including a section before the bend (40 cm), two 
sections after the bend (40 cm and 80 cm) and seven sections 
in bend (0°, 10°, 20°, 30°, 40°, 50°, 60°) are performed. 
Figure 2 shows a cross section and points on it at 60° sharp 
bend.  

Artificial neural network methods

The first part of this section refers to the presentation of 
the simple RBFNN as one of the most popular AI methods 
that is used in many engineering problems. After that, in 
the second part of this section, the CRBFNN method, as an 
efficient combination of a classification algorithm and the 
RBNN method, is illustrated. Finally, in the last part of this 
section, the formulations of the statistical indexes that are 
used in order to evaluate and compare the performance of 
the employed methods are presented.

Radial basis neural network

Because of the simplicity and flexibility, the RBNN method 
(Broomhead and Lowe 1988) is frequently used in various 
fields of the hydraulic engineering problems (Gan et al. 
2012; Zaji et al. 2015; Al-Abadi 2016). As shown in Fig. 3, 

Table 1   Experimental hydraulic 
properties

No. of Test Normal depth y 
(cm)

Discharge Q 
(lit/s)

Velocity (m/s) Froude number 
(Fr)

Reynolds 
number 
(Re)

1 4.5 5 0.273 0.42 12,460
2 6 7.8 0.321 0.42 18,460
3 9 13.6 0.374 0.40 28,940
4 12 19.1 0.394 0.36 36,860
5 15 25.3 0.419 0.34 44,705
6 17.6 30.8 0.435 0.33 50,830

Fig. 1   Experimental model geometry and flume’s details
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the structure of an ordinary RBNN consists of three layers, 
namely the input, hidden and the output layers. Each of these 
three layers contains some neurons. The neurons of the input 
layer are the input variables of the considered problem so 
that the number of the input layer neurons is equal to the 
number of input variables. The neurons of the output layer 
perform the results of the problem. It is possible to perform 
various outputs from a RBNN model. However, similar to 
the models of the present study, in most of the researches, 
only one neuron is considered for the output layer. Unlike 
the input and the output layers, the number of hidden layer’s 
neurons could not be determined easily and the appropriated 
amount of them is different for each problem.

After introducing the input variables to the RBNN model 
by input layer, the neurons are transferred to the hidden 

layer. Hidden layer could be considered as the computational 
core of the RBNN that collects the input neurons using the 
weighted summation and transfers them to the nonlinear 
future by radial basis functions. Radial basis (φ) is defined 
as a function that only depends on the distance of the con-
sidered point from the origin (r) (Chen et al. 2014), where r 
is defined as follows:

In this equation, x is the input variable and c is the radial 
basis function’s center. By using this nonlinear projec-
tion, the results’ course of dimensionality is reduced and 
N-dimensional radial basis functions are developed as 
follows:

Despite the hidden layer nonlinearity, the output layer per-
forms similar to a linear regressor and accumulates the hid-
den layer’s results to prepare the RBNN output as follows:

As mentioned above, determining the appropriated amount 
of hidden layer’s neurons significantly depends on the con-
sidered problem so that in the present study, the trial-and-
error method is employed to determine the hidden layer’s 
neurons (Kisi 2008; Gholami et al. 2019e).

(1)r = ‖x − c‖

(2)
{
�
(
||x − xi||

)
|i = 1, 2,… ,N

}

(3)f (x) =

N∑

i=1

ci�
(
||x − xi||

)

Fig. 2   a Three-dimensional view of the 60° bend, b cross sections and c the section points on cross sections and their coordinates to measure the 
velocity and flow depth

Fig. 3   The structure of a simple RBNN
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Classified radial basis neural network

The aim of this section is to combine the RBNN as a pow-
erful and popular regression method with a classification 
algorithm, namely decision tree (Coppersmith et al. 1999), 
to evaluate the novel hybrid method of CRBFNN (Gholami 
et al. 2019e). CRBFNN solves the problems more intelli-
gently, and it is expected to perform higher simulation preci-
sion in facing with complex situations.

The reason for selecting the decision tree for the classifi-
cation part of the CRBFNN is the simplicity and fastness of 
this algorithm. Decision tree has a class variable Y that has 
the maximum amount of k. The algorithm tries to predict Y 
considering the input variables of the problem. The deci-
sion tree training procedure starts with examining all of the 
input samples to find the best split position. The decision 
tree algorithm consists of decision nodes that are branched 
to other decision trees and leaf nodes. The first split point 
of the algorithm is called the root decision node. After find-
ing the root decision node, the same procedure is done for 
each divided dataset to find the next decision node. This 
procedure is continued until one of the termination criteria 
is satisfied.

The goal of the CRBFNN method is to divide the RBNN 
power into k parts and allocate the optimized power to each 
class of the dataset so that all of the RBNN power is not 
assigned to the whole dataset; instead, this power is parti-
tioned and optimized to the proper positions of the dataset.

The CRBFNN method contains some important steps. 
In the first step, the whole dataset is divided into two train-
ing and testing datasets. After that, the training dataset 
is sorted from the minimum to maximum amounts of 
their target and divided into k different parts. Then, the 

classification algorithm is trained according to the divided 
dataset. The ultimate results of the CRBFNN model are 
very sensible to this step because high precision of the 
classification algorithm leads to a big decision tree that 
may cause overtraining in the results. In addition, low 
classification precision leads to low performance of the 
power allocation of the RBNN so that the appropriated 
classification accuracy should be determined by adjust-
ing the parameters of the decision tree algorithm that is 
done by the trial-and-error method. In the next step of the 
CRBFNN method, the trained decision tree divides the 
dataset into k classes. Then, the primal RBNN structure 
is divided into k smaller RBFNN models and each small 
RBFNN models one of the dataset’s classes. Similar to the 
primal RBFNN model, the number of hidden layer’s neu-
rons of each smaller RBFNN model is determined using 
the trial-and-error method. However, in order to have a fair 
comparison between the ultimate results of the RBFNN 
and CRBFNN methods, the maximum allowable number 
of hidden layer’s neurons of the RBNN model is consid-
ered equal to the sum of the hidden layer’s neurons of the 
smaller RBFNN models that are used in the CRBFNN 
method. Finally, at the last step of CRBFNN method, the 
outputs of the smaller RBFNNs are cumulated and the ulti-
mate results of the CRBFNN are exported. The CRBFNN 
algorithm is presented in Table 2.

After finishing the training procedure of CRBFNN 
method, in case of facing with a new sample, firstly, the 
classification part of the CRBFNN method recognizes the 
most appropriate class of that sample and after that, the 
smaller RBFNN of that specified class modeled that sam-
ple. For more details about the classified RBFNN model, 
Gholami et al. (2019e) can be referred.

Table 2   CRBFNN algorithm
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Model assessment

The results of the AI methods including RBFNN and 
CRBFNN are explained in this section along with the 
regression-based equations, the mean absolute relative 
error (MARE), root mean square error (RMSE), mean 
absolute error (MAE), determination coefficient (R2) and 
average absolute deviation (δ) statistical parameters in this 
paper (Khosravi et al. 2018; Yaseen et al. 2018a, b; Kisi 
and Yaseen 2019). These indexes are calculated as follows:

where ti is the output observational parameter, Oi is the 
parameter predicted by the RBFNN and CRBFNN models, 
Ōi is the mean neural models’ parameter, and N is the num-
ber of parameters. R2 is the linear regression line between 
the predicted values by the neural network (RBFNN and 
CRBFNN) model and the observed values to determine the 
network application. MAE and RMSE are closer to zero the 
model performance is better also these indices have the same 
scale and unit of actual values.

(4)MARE =
1

N

N∑

i=1

(||ti − Oi
||

ti

)

(5)RMSE =

�∑N

i=1
(Oi − ti)

2

N

(6)MAE =
1

N

N∑

i=1

||Oi − ti
||

(7)R2 = 1 −

∑N

i=1
(Oi − ti)

2

∑N

i=1
(Oi − Ōi)

2

(8)� =

∑N

i=1
(Oi − ti)

2

∑N

i=1
Oi

× 100

Results

In this section, the performance of RBFNN and CRBFNN 
models in prediction of flow variables (velocity and flow 
depth) in 60° sharp bend is evaluated in detail. Accord-
ingly, to evaluate the CRBFNN model performance, a sim-
ple RBFNN model is designed. 780 experimental data for 
velocity and 780 data for water surface depth are used for 
training and testing the network. These data are related to six 
different discharges of 5, 7.8, 13.6, 19.1, 25.3 and 30.8 l/s, 
of which 70% (546 data) are used to train networks and 30% 
(234 data) is used to test networks.

Performance evaluation of models in predicting 
water surface depth

In Table 3, the performance of the hybrid model CRBFNN 
is compared with simple RBFNN models to predict water 
depth in the 60° bend using different statistical indices, and 
from the table, it can be found that the hybrid CRBFNN 
model error is reduced compared to the simple RBFNN 
model error in three stages of train, test and whole datasets. 
RMSE and MAE error in the whole datasets, 17.7% and 
15.3% in hybrid model, are reduced compared to the simple 
model, respectively. The R2 value is almost the same in both 
models, indicating the high accuracy of both RBF and CRBF 
in predicting the water depth in the 60° sharp bend. 

As in this study, flow depth data of six different dis-
charges of 5, 7.8, 13.6, 19.1, 25.3 and 30.8 l/s are used, and 
thus, there are corresponding different flow depths of these 
discharges that make the difference between performance 
models, and both classified and simple models have not been 
seen well and both show the same accuracy in prediction.

Figure 4 shows the scatter plot diagram in test dataset, 
and Fig. 5 represents the water depths values predicted by 
CRBFNN and RBFNN models in test and train datasets, 
respectively. Figure 4 shows that data compression in both 
CRBFNN and RBFNN models is around the exact line 
which indicates a good accuracy in models to predict the 
water depth in the bend. In these models, low error values 
in all three stages are confirmed acceptable (according to 

Table 3   Evaluation of the 
RBFNN and CRBFNN models 
performance to predict the 
velocity in the train, test and 
whole datasets

Index Train datasets Test datasets Whole datasets

RBF CRBF Accuracy 
increase 
(%)

RBF CRBF Accuracy 
increase 
(%)

RBF CRBF Accuracy 
increase 
(%)

RMSE 0.21 0.18 16.6 0.2 0.17 17.6 0.2 0.17 17.7
MAE 0.152 0.13 17 0.147 0.126 16.6 0.15 0.13 15.3
R2 0.99 0.99 – 0.998 0.998 – 0.998 0.99 –
BIAS − 6.5E − 6 5.8E − 4 – 0.0049 − 0.016 – 0.0015 − 0.005 –
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Table 3 error values). Therefore, the hybrid classified model 
causes improvement in simple RBFNN model performance, 
and CRBFNN model can be used to design sharp curved 
channel walls. Figure 5 shows the predicted water depth val-
ues by both models in comparison with experimental data; 
due to the water depth difference in each discharge, results 
are separated, but all are related to one model run. It is clear 
that both models are in good agreement with the correspond-
ing experimental data in all discharges, but in 19.1 l/s dis-
charge, RBFNN model at the peak shows the higher values 
and at the minimum points predicts the lower values than 
experimental values that can be seen well in both train and 
test datasets. At 7.8 and then 13.6 l/s discharges, both mod-
els (especially in the test dataset) completely overlap. With 
the increase in discharge, the data compliance is almost 
increased, and in the highest discharge (30.8 l/s) compared 
to the previous discharges, compliance will be improved. 
Therefore, it can be said that using hybrid classified models 
causes improvement of simple previous models in estimation 
of water surface depth, especially in high discharge values. 
Furthermore, the high accuracy of proposed models in pre-
dicting flow depth in high discharge values results in more 
usability of these models in practical cases such as design 
and implementation of walls of artificial curved channels. 

In high values of flow depth, the flow patterns experience 
the more changes in variables and critical conditions which 
need to more accurate models to estimate flow variables. 
Therefore, the proposed classified models can be used in 
estimating flow variables with good security in the high dis-
charge values.  

Performance evaluation of models in predicting 
flow velocity

Figure 6 shows the velocity scatter plot in the test, and Fig. 7 
demonstrates velocity values predicted by the RBFNN and 
CRBFNN models in test and train datasets in comparison 
with experimental values, respectively. Table 4 shows the 
RMSE, MAE, BIAS, R2 error values for the models for 
velocity prediction. It can be concluded from the table that 
CRBFNN model accuracy is more than simple models’ and 
R2 values increase at all three datasets (15% in the total data-
set) so that the RMSE and MAE predicted errors in classi-
fied models have been reduced 9% and 5%, respectively, 
compared to simple RBFNN model. It can be seen from 
Fig. 6 that the data scattering in both models (especially the 
CRBFNN model) is low. Also, if the fitted line is located on 
the left and right sides of the exact line, model experiences 

Fig. 4   Scatter plots of the 
RBFNN and CRBFNN models 
in predicting water depth with 
the testing datasets
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the overestimation and underestimation, respectively. It is 
clear that both RBFNN and CRBFNN models have been 
considered as underestimation. RBFNN model underesti-
mation due to more fitted line deviation from the exact line 
compared to the CRBFNN model is increased.

BIAS index shows the underestimation and overestima-
tion of models, and negative and positive values of this 
index indicate the models as underestimation and overes-
timation, respectively. According to Table 4, BIAS values 
in the both test and whole datasets (negative BIAS values), 
models are considered as underestimation. This index value 
in the RBFNN and CRBFNN models is close to zero in three 
stages of datasets. In the prediction velocity models, clas-
sified model error value in the three stages is improved to 
the simple RBFNN model. Therefore, the classified hybrid 

designed model in the present study, to predict the velocity 
in the sharp bend channels similar to water depth predic-
tion, is better than the simple RBFNN model and can be 
used in practical applications. The velocity values predicted 
by the models in comparison with the experimental data 
in Fig. 7 show that in both dataset stages (train and test), 
the velocity compliance predicted by the CRBFNN model 
with experimental values is more than by the simple RBFNN 
model. In the train dataset, RBFNN model at the peak and 
minimum points, respectively, predicts more and less values 
from experimental model that in the data range of 220–360 
(discharge of 5,7.8, 13.6 and 19.1 l/s) can be seen better. The 
CRBFNN model performs well in this range. The underesti-
mation of both models is seen in the data range of 360–540 
(at the discharges of 25.3 and 30.8 l/s) as well, and lower and 

Fig. 6   Scatter plots of the 
RBFNN and CRBFNN models 
in predicting velocity with the 
testing datasets
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Table 4   Evaluation of the 
RBFNN and CRBFNN models’ 
performance in predicting 
velocity with the train, test and 
whole datasets

Index Train datasets Test datasets Whole datasets

RBF CRBF Difference (%) RBF CRBF Difference (%) RBF CRBF Difference (%)

RMSE 6.05 5.6 8 4.53 4.2 8 4.43 4.08 9
MAE 6.24 6 4 3.5 3.42 2.3 3.35 3.2 5
R2 0.63 0.7 11.2 0.6 0.71 18.3 0.61 0.7 15
BIAS 3E − 9 E−13 – − 0.17 − 0.12 – − 0.05 − 0.036 –
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more values are predicted in the peak and minimum point 
anticipation. In this range, CRBFNN model performance at 
the peak values is good while at minimum points RBFNN 
is performed better than CRBFNN. The given explanation 
for test can be seen also for train dataset. Therefore, it can 
be said that the proposed CRBFNN model in this paper can 
be used in prediction of high and low values of velocities 
which is useful to detect the risky zones exposed to erosion 
and sedimentation in vicinity of inner and outer banks of 
curved channels. Accordingly, this model can be applied in 
practical cases, especially design and execution of irrigation 
and conveyance channels such outflows in walls of curved 
channels.

Performance evaluation of the RBFNN and CRBFNN 
models at different cross sections and discharges

Table 5 shows the MAE index error value for the velocity 
and water depth predicted by the RBFNN and CRBFNN 
models in comparison with experimental values at the cross 
sections of 0°, 30°, 60° and 80 cm after the bend on six 
discharges values of 5, 7.8, 13.6, 19.1, 25.3 and 30.8 l/s. 
These results are related to one run number; in other words, 
discharge is an input parameter in calculation, and only the 
results of each discharge are separated. From the table, it is 
clear that in both RBFNN and CRBFNN models, the low-
est error value is almost in the middle discharges (13.6 and 
19.1 l/s). By increasing the flow discharge at the primary 
sections, the error value is increased and in the end and after 
cross sections of bend reduced. By increasing the flow dis-
charge in almost all sections, the error value in the CRBFNN 
model compared to the RBF model is reduced. But in the 
middle discharge (13.6 l/s) in most sections, error value in 

the RBFNN model is less than in classified model which 
with the error averaging in the two last columns is explained.

The error value averaging almost in all discharges shows 
that using hybrid classification algorithm reduces the error 
value compared to a simple model. Table (5a), related to 
water depth values, shows the lowest error value is obtained 
in the lowest flow discharges (5 l/s). By increasing the flow 
discharge, error value in 19.1 and 25.3 l/s discharges com-
pared to the rest is increased. Almost in all discharges and 
cross sections, the error value in classified hybrid model than 
the simple RBFNN model is reduced. The CRBFNN model 
performance, in 7.8 and 13.6 l/s discharge flow with 26% and 
83% reducing error, respectively, for velocity and the water 
depth prediction models, showed more improvement than 
in the rest of discharges. It can be said that using decision 
tree as a classification method in RBFNN structure network 
modification causes model improvement, especially in the 
water depth prediction. This model can be used in prediction 
of the velocity field and water depth in the curved channels 
for the optimal design of the channel operation.

Velocity and water surface depth contours and error 
contours in 60° bend plan by RBF and CRBF models

Figures 8 and 9 show the velocity and water surface depth 
contours by the RBFNN and CRBFNN models, respec-
tively, and below them error contours by both models in 
two discharges flow of 7.8 and 13.6 l/s, respectively. As 
can be seen from Fig. 8, dimensionless velocity value (v*) 
is obtained by velocity values divided by normal velocity 
equal to 32.1 cm/s related to discharge flow of 7.8 l/s, and in 
Fig. 9, the dimensionless water depth values (h*) by depth 
values divided by the water depth in downstream of the bend 

Table 5   MAE error value 
at RBFNN and CRBFNN 
models in comparison with 
experimental models at different 
cross sections in six different 
flow discharges in prediction of: 
(a) velocity and (b) water depth

Q (lit/s) 0° 30° 60° 80 cm after bend Averaged

RBF CRBF RBF CRBF RBF CRBF RBF CRBF RBF CRBF

(a) Velocity prediction
5 3.1 3 4.4 4.4 2.7 2.76 4.2 4.07 3.6 3.5
7.8 2.64 1.93 4.65 2.5 2.34 2.2 4.35 4.5 3.5 2.78
13.6 1.52 2.68 3.83 2.28 1.94 2.94 2.22 4.8 2.37 3.17
19.1 4.95 1.78 2.95 4.3 3.13 2.64 3.18 3.9 3.55 3.15
25.3 2.97 2.86 3.56 4.3 2 2.7 2.17 2.08 2.7 2.6
30.8 4.3 4.3 6.6 5.12 2.5 2.5 4.9 3.2 4.6 3.7
(b) Water depth prediction
5 0.12 0.08 0.1 0.09 0.08 0.04 0.12 0.11 0.105 0.08
7.8 0.075 0.08 0.13 0.17 0.14 0.08 0.13 0.08 0.12 0.1
13.6 0.19 0.04 0.15 0.14 0.18 0.09 0.14 0.09 0.165 0.09
19.1 0.12 0.21 0.16 0.12 0.16 0.15 0.19 0.11 0.16 0.15
25.3 0.16 0.11 0.18 0.17 0.22 0.18 0.13 0.18 0.17 0.16
30.8 0.13 0.12 0.15 0.11 0.15 0.14 0.09 0.09 0.13 0.11
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value equal to 9 cm in flow discharge of 13.6 l/s become 
dimensionless.

In the velocity contour from Fig. 8a, it is observed that 
contraction zones (areas with low velocity and faced to 
sedimentation) in outer bend bank get greater and separa-
tion zones (areas with high velocity and faced to erosion) in 
inner bank get smaller. It can be said that hybrid classified 
algorithm can reduce the damaging effects of the bend and 
scour hole will be small at inner bank. But in general, the 
velocity values in classified model are predicted more than 
in simple RBFNN model. Compared with experimental data, 
error contours below the chart show that in CRBFNN model 
error ranges (− 10 to 35%) are less than the error ranges 
in the RBF model (− 15 to 45%). It can be seen from both 
models that the error values in separation zones are less than 
in the contraction zone; the model values are in agreement 
with experimental values in these areas and perform well in 

this sensitive area. Also in the classified model, blue areas 
(areas with fewer errors) compared to the simple RBFNN 
model (especially in sections before and after the bend) is 
increased. Using DT classification algorithm to reduce the 
bending effects (the secondary flow presence in the area 
after the bend) is very effective and can improve the simple 
model performance in this area.

In the water depth contours (Fig. 9), the top row indicates 
the dimensionless water depth that in both models at outer 
wall the water surface depth values are more and less in the 
outer and inner walls, respectively. This is due to that in 
bends, with flow entrance to bend, centrifugal force and lat-
eral pressure gradient cause the water depth in the inner and 
outer channel walls to decrease and increase, respectively. 
This matter causes a lateral gradient in the water surface; 
thus, the walls height designing in the curved channels is 
important. It can be seen from the figure that in the same 

Fig. 8   a Dimensionless velocity contours at discharge of 7.8 l/s and b velocities error contours as E = (v mod els − v
exp

)
/
v
exp

 (in percent) between 
the two RBFNN (left plots) and CRBFNN (right plots) models and experimental values
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areas, classified model than the simple model predicts more 
values. From the water depth contours, error can be seen 
that the hybrid classified model reduced the error and blue 
areas are increased compared to a simple RBFNN model. 
Therefore, it can be said that the proposed classified CRB-
FNN model is more accurate than simple RBFNN model 
to estimate flow variables, especially in critical zones and 
flow depth in curved channels walls. So, these models can 
be used in practical cases as an alternative to simple RBFNN 
models.

Discussion

In this section, the performance of RBFNN and CRBFNN 
in 60° bend design in this paper is compared with results of 
90° bend of Gholami et al.’s (2018a) study. The main goal 
of presenting this section is evaluation of performance of 

classified models in bends with different angles. Accord-
ingly, Fig. 10 presents the scatter plots of RBFNN and 
CRBFNN models in prediction of flow velocity in 60° and 
90° bends in all discharge values. Furthermore, the lines 
fitted on these data sets and also exact lines regarding each 
graph are drawn. Moreover, the error index values of MARE 
and RMSE for 60° and 90° bends for each discharge value 
separately and also for all datasets are gathered. As care-
fully seen in Fig. 10, in both RBFNN and CRBFNN models, 
the compaction of datasets around exact line in 60° bend 
is more than in 90° bend representing the more precision 
of both models of RBFNN and CRBFNN in prediction of 
flow velocity in 60° bend. Furthermore, as seen in Fig. 10, 
the trend lines fitted in 60° bend are more close to exact 
line than fitted trend line in 90° bend so that the fitted trend 
line in 90° bend is close to horizontal line representing the 
lower correlation of predicted values with corresponding 
experimental values. This issue is illustrated in Table 6, the 

Fig. 9   a Dimensionless water depth contours at discharge of 13.6 l/s and b water depth error contours as E = (v mod els − v
exp

)
/
v
exp

(in percent) 
between the two RBFNN (left plots) and CRBFNN (right plots) models and experimental values
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values of RMSE and MARE in 60° bend are lower than 
these values in 90° bend. This issue is seen for both RBFNN 
and CRBFNN models. The more values of RMSE index in 
90° bend in some discharge values represent the weakness 
of models in prediction of high velocity values. Therefore, 
it can be said that in addition to lower accuracy of models 
in velocity prediction in 90° bend, these models are weaker 
than 60° bend in areas with high velocity values (separation 
zones). Figure 11 shows the variations of MARE values in 
60° and 90° bends in prediction of velocity and flow depth 
in different discharge values. According to this figure, the 
MARE values in RBFNN and CRBFNN models in 60° bend 
are lower than MARE values in 90° bend. Therefore, it can 
be said that both RBFNN and CRBFNN models in all dis-
charge values in velocity prediction have more ability in 60° 
bend so that the MARE value in 60° bend is equal to 0.080 
and 0.082 which are lower than MARE values in 90° bend 
(0.125 and 0.131 for RBFNN and CRBFNN, respectively).   

The error index values of RBFNN and CRBFNN mod-
els in 60° and 90° bends in flow depth prediction are given 
in Table 7. As carefully seen, almost in all flow discharge 
values, the MARE in 60° bend is more than MARE in 90° 
bend which represents the more accuracy of models in flow 
depth prediction in 90° bend. Furthermore, in more cases the 

Fig. 10   Scatter plots of a RBFNN and b CRBFNN models in velocity 
prediction in 60° and 90° bends

Table 6   Index values of MARE and RMSE of RBFNN and CRBFNN 
models in velocity prediction in each discharge value separately and 
all discharges in 60° and 90° bends

Discharge Bend RBFNN model CRBFNN model

MARE RMSE MARE RMSE

5 60° 0.113 4.29 0.116 4.40
90° 0.109 13.90 0.106 14.07

7.8 60° 0.096 4.28 0.086 3.67
90° 0.112 24.02 0.113 25.14

13.6 60° 0.062 3.33 0.070 3.69
90° 0.162 57.59 0.161 63.38

19.1 60° 0.070 3.86 0.064 3.54
90° 0.119 39.21 0.140 56.5

25.3 60° 0.062 3.93 0.074 4.28
90° 0.122 43.05 0.137 53.04

All discharges 60° 0.080 3.95 0.082 3.93
90° 0.125 5.93 0.131 6.47

Fig. 11   Variation plots of MARE values of RBFNN and CRBFNN 
models in different flow discharge values separately and all dis-
charges in predicting, a velocity and b flow depth in 60° and 90° 
bends
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RMSE value in 60° bend is significantly increased represent-
ing the weakness of models in prediction of high flow depth 
values in 60° bend than in 90° bend. Therefore, it can be said 
that both RBFNN and CRBFNN with lower MARE values 
equal to 0.015 and 0.012 in 90° bend have more accuracy 
than the models in 60° bend (0.017 and 0.014). This issue is 
more seen in high values of discharge. Furthermore, com-
parison of RBFNN and CRBFNN represents that almost in 
all discharge values the error values in RBFNN model are 
more than error value in CRBFNN model representing the 
more accuracy of CRBFNN model than RBFNN model.

Conclusion

In this study, a RBFNN model is hybridized with classifica-
tion decision tree (DT) algorithm to predict the two most 
important velocity and water surface depth parameters at 60° 
sharp bend. Using hybrid classification algorithm improved 
the simple RBFNN model performance. Furthermore, evalu-
ation of such models performance in different bend angles 
is of great importance because of variations of flow pattern 
which needs more cautions to design different hydraulic 
structures such as deviation channels, irrigation and side 
weirs. Accordingly, another main goal of this paper is to 
assess and compare the ability of RBFNN and CRBFNN 
in prediction of flow variables in 60° and 90° bends. In 
the velocity prediction models, CRBFNN model accuracy 
about 19% (with more R2 value) compared to the simple 
RBFNN model is increased in the test dataset. In the water 
surface depth prediction model, the RMSE and MAE errors, 
18% and 17%, are reduced in the test dataset, respectively. 
The cross-section evaluation in bend demonstrates that the 

CRBFNN model performance, in flow discharge of 7.8 and 
13.6 l/s with 26% and 83% reduction error, respectively, 
for velocity and water depth prediction models show the 
most improvement to other rest discharges. In the separa-
tion zones of the inner bank, error value by the CRBFNN 
model is reduced. In entire bend, error value in CRBF model 
is reduced compared to the RBF model (especially in end 
and after the bend sections). The evaluation of models per-
formance in 60° and 90° bends showed that generally sim-
ple RBFNN and CRBFNN have an acceptable accuracy in 
both 60° and 90° bends with low error values, especially in 
flow depth prediction. Furthermore, RBFNN and CRBFNN 
models act like each other and both models have more abil-
ity in 60° and 90° bends in velocity and flow depth predic-
tion, respectively. Using classification decision tree algo-
rithm in RBF structure network modification improves the 
model performance (especially in water depth anticipation). 
This model can be used to design the optimal curved chan-
nel performance and specifically exactly design the walls 
height of curved channel. However, prediction of flow vari-
ables in critical zones (separation and contraction) and also 
estimation of flow variable in flood discharge values (high 
discharge values) using classified CRBFNN and simple 
RBFNN models should be conducted with more cautions. 
Therefore, it can be recommended to improve and enhance 
such AI models in prediction of flow variables in critical 
zones and special hydraulic conditions using different evo-
lutionary or optimization methods in combination with the 
classified models.
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