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Abstract
In general, trapezoidal channels are used in irrigation and drainage networks. When installing a side weir on the side wall of 
a trapezoidal channel, as excess water reaches the side weir plane, additional flow from the crest of the side weir is driven 
into the side channel. The main aim of this study is to predict the discharge coefficient of rectangular side weirs located 
on trapezoidal channels using support vector machines (SVMs). Based on the effective parameters on the discharge coef-
ficient of side weirs in trapezoidal channels, six different models (SVM 1–SVM 6) are introduced. According to the analysis 
results of SVM 1–SVM 6 models, the superior model is introduced as a function of the Froude number (Fr), ratio of side 
weir length to the bottom width of a trapezoidal channel (L/b), ratio of side weir length to the flow depth upstream of the 
weir (L/y1), side slope of the trapezoidal channel (m) and ratio of flow depth upstream of the weir to the trapezoidal channel 
bottom width (y1/b). Based on the simulation results, the superior model has a reasonable accuracy. For example, the root 
mean square error, mean absolute relative error and correlation coefficient (R2) values calculated for the superior training 
model are 0.0156, 0.0327 and 0.884, respectively. Furthermore, the ratio of side weir length to trapezoidal channel bottom 
width (L/b) is identified as the most effective input parameter for modeling discharge coefficient. Additionally, a matrix is 
presented for superior model to estimate discharge coefficient of the side weirs.

Keywords  Trapezoidal channel · Support vector machine (SVM) · Side weir · Discharge coefficient

Introduction

Rectangular and triangular channels are considered as a cer-
tain channel type with trapezoidal cross sections. Trapezoi-
dal-shaped channels are widely used in irrigation channels. 
In general, side weirs are employed to regulate and measure 
flow in open channels. Additionally, the side weirs along 
the trapezoidal channels are used for irrigation networks, 
drainage lands and other hydraulic purposes. Flow along the 
side weir is considered as a spatially varied flow (SVF) with 
decreasing discharge.

On the one hand, several experimental, analytical and 
numerical studies have been done on the hydraulic charac-
teristics of side weirs located on the rectangular channels.

For example, Cheong (1991) conducted a laboratory 
study regarding the flow hydraulic behavior over side weirs 
in trapezoidal channels. The experimental result analysis 
suggested a relationship for calculating the side weir dis-
charge coefficient. The relationship was as a function of 
Froude number (Fr) as follows:

Additionally, Novak et al. (2013), Granata et al. (2013), 
Emiroglu et al. (2014), Azimi et al. (2015), Parvaneh et al. 
(2016), Azimi and Shabanlou (2017), Maranzoni et  al. 
(2017) and Azimi and Shabanlou (2017) studied hydraulic 
of the side weirs on the main channels.

On the other hand, soft computing and artificial intelli-
gence techniques have been employed as efficient and useful 
tools to model the complex phenomena in nonlinear hydrau-
lics, hydrology and water resource science (Mondal et al. 
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2012; Saba et al. 2017; Saghi et al. 2015; Khoshbin et al. 
2016; Shaghaghi et al. 2017; Azimi et al. 2018). In addition, 
Bilhan et al. (2010) predicted the sharp-crested rectangular 
side weir discharge capacity as a function of the hydraulic 
geometry characteristics, main channel and hydraulic param-
eters using feedforward neural network (FFNN) and radial 
basis neural network (RBNN) algorithms. Kisi et al. (2012) 
estimated the discharge coefficient of a triangular labyrinth 
side weir located on a rectangular channel in subcritical 
flow condition using radial basis neural network (RBNN), 
generalized regression neural network (GRNN) and gene 
expression programming (GEP) models. Emiroglu and Kisi 
(2013) applied artificial neural networks (ANNs) and adap-
tive neuro-fuzzy inference systems (ANFISs) to predict 
trapezoidal labyrinth side weir discharge coefficient in sub-
critical flow regime. Zaji and Bonakdari (2014) modeled the 
triangular side weir discharge coefficient using multi-layer 
perceptron neural networks (MLPNNs), radial basis neural 
networks (RBNNs) and nonlinear particle swarm optimiza-
tion (PSO). Ebtehaj et al. (2015a, b, c) used the neural net-
work algorithm of group method of data handling (GMDH) 
to model the discharge capacity of rectangular side orifices 
on the side walls of main channels. Ebtehaj et al. (2015a, b, 
c) estimated the discharge coefficient of sharp-crested side 
weirs in subcritical flow condition. Ebtehaj et al. (2015a, 
b, c) utilized GEP to determine the discharge coefficient of 
side weirs located on the side walls of rectangular channels. 
Czibula et al. (2014) simulated the intelligent selection of 
data representations using support vector machines (SVMs). 
Also using the SVM, Anifowose et al. (2015) improved the 
prediction of petroleum reservoir characterization. Bonak-
dari et al. (2015) predicted the discharge coefficient of the 
triangular side weir using ANFIS.

Furthermore, Azimi et al. (2017a) simulated the discharge 
coefficient of the side weirs located on the trapezoidal chan-
nels using GEP. They presented an equation for comput-
ing the discharge coefficient of the side weirs. Addition-
ally, Azimi et al. (2017b) surveyed the factors affecting the 
discharge coefficient of side weirs on trapezoidal channels 
using extreme learning machine (ELM). They identified the 
Froude number as the most effective input variable to model 
discharge coefficient of the side weirs.

Moreover, support vector machines and support vector 
regression have been extensively used in various fields (Hu 
and Zheng 2015; Martínez López et al. 2014; Zhou et al. 
2015). Previous studies have shown that there is insufficient 
research on determining the side weir discharge coefficient 
in trapezoidal channels. Therefore, in this study, the dis-
charge coefficient of the side weirs located on the trapezoidal 
channels is modeled using support vector machines (SVMs). 
According to the effective parameters on the discharge coef-
ficient, some models are developed to calculate the discharge 
coefficient. Subsequently, the best model for predicting the 
discharge coefficient of this type of hydraulic structure is 
introduced.

Experimental apparatus

In this study, Cheong’s (1991) experimental model is used 
to estimate the discharge coefficient of a side weir located 
in a trapezoidal channel. The laboratory model consisted of 
a main channel with a trapezoidal cross section 10 m long. 
The slope of the main channel side walls was adjustable, and 
according to the required slope of trapezoidal channel side 
walls, the side weir opening width could easily be adjusted 
using plywood with variable length. The main channel bot-
tom width was 0.67 meters. To tranquilize the inflow into 
the trapezoidal channel, two screens full of sand aggregate 
were installed at the main channel entrance. In Cheong’s 
laboratory model, a side weir was installed on a side wall, 
two-thirds from the main channel entrance. In the main 
channel, the upstream flow was measured by a weir and the 
downstream flow was regulated using a volumetric tank. The 
schematic plan of Cheong’s (1991) experimental model is 
illustrated in Fig. 1. The maximum, minimum, average, 
variance and standard deviation values of Cheong’s (1991) 
experimental model parameters are listed in Table 1. In this 
table, Fr, y1 , b , L and m are the Froude number, water depth 
upstream of the side weir, bottom width of the trapezoidal 
channel, side weir length and trapezoidal channel wall slope, 
respectively.

Fig. 1   Schematic plan of Cheong’s (1991) experimental model
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Discharge coefficient of a side weir

Emiroglu et al. (2011) showed that the rectangular side 
weir discharge coefficient is considered as a function of the 
Froude number upstream of the side weir (Fr), ratio of side 
weir length to main channel width (L/b), ratio of side weir 
length to flow depth upstream of the side weir (L/y1), ratio 
of weir crest height to flow depth upstream of the side weir 
(P/y1), the deviation angle of flow (�) and the main channel 
slope 

(
S0
)
:

El-Khashab (1975) noted that the effect of � on the side 
weir discharge coefficient is hidden in parameter L/b, and 
the effect of � on the side weir discharge coefficient has not 
been studied previously. On the other hand, Borghei et al. 
(1999) stated that in subcritical flow condition, the effect of 
main channel slope is negligible. Thus, it can be written as 
follows:

Due to the wall slope of a trapezoidal channel, the effect 
of dimensionless parameter m on the side weir discharge 
coefficient is studied. As a result, Eq.  (3) is written as 
follows:

For training and testing of support vector machines 
(SVMs) to model the side weir discharge coefficient in trap-
ezoidal channels, Cheong’s (1991) experimental data are 
used. In Cheong’s (1991) model, the crest height of the side 
weir was zero (p = 0.0). However, in order to evaluate all 
parameters affecting the discharge coefficient of a side weir 
located in a trapezoidal channel, the dimensionless parame-
ter of ratio of flow depth upstream to the trapezoidal channel 
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bottom width (y1/b) is considered in different combination 
models. Therefore, the discharge coefficient of side weirs in 
trapezoidal channels can be written as follows:

Thus, by combining the parameters affecting the dis-
charge coefficient derived from Eq. (5), six different models 
(SVM 1–SVM 6) to simulate the discharge coefficient 

(
Cd

)
 

are introduced:

Supervised machine learning

The support vector machine (SVM) is a type of supervised 
machine learning that is part of the linear classification 
group. This method is formulated as structural risk mini-
mization (SRM), which is quite different from empirical 
risk minimization (ERM) that has extensive application in 
statistical learning procedures. SRM decreases the upper 
bound error, while ERM reduces the training data errors. 
This difference leads to using SVM owing to further poten-
tial generalization. In addition, classical methods such as 
neural networks may present a local optimum solution as 
a global optimum solution (GOS), while using SVM guar-
antees obtaining a GOS. SVM can be applied for a variety 
of topics, such as regression and classification (Cortes and 
Vapnik 1995).

Feature space and kernel selection

The fundamental principle of SVM entails providing a 
nonlinear data mapping of some dot product spaces (called 
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Table 1   Maximum, minimum, average, variance and standard devia-
tion values of Cheong’s (1991) experimental model parameters

Parameter Max Min Average Variance SD

Fr 0.988 0.240 0.591 0.0343 0.185
y1 (cm) 22.140 2.80 10.889 24.620 4.962
b (cm) 67 34 52.766 260.617 16.144
L (cm) 97 27.7 54.938 608.176 24.661
m 2 0 0.875 0.406 0.637
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feature spaces). In dot product evaluation, a feature space 
with a high-dimensional nature is recognized, thus requiring 
high computational resources and a long time. However, in 
some cases, the performance is evaluated with less complex 
kernel formulations. Real-world problems have certain com-
plexity, therefore requiring better assumptions than linear 
functions because current linear learning machines not only 
have computational advantages but also have some limita-
tions. In other words, the target data cannot demonstrate 
simple linear combinations of given features. One of the 
remarkable properties of linear learning machines is dual 
representation. This means that the hypothesis can present 
linear combinations’ training points for low decisions to 
evaluate the inner training and testing products. To directly 
calculate the inner product in a feature space as a function 
of the main entry points, a nonlinear learning machine is 
built as a kernel function and can be expressed as K. A ker-
nel function may be interpreted as a k function, and conse-
quently, for all x, z ∈ X , we have:

A kernel function has two different conditions. First, the 
function has to be symmetric (Eq. 12), and second, the ker-
nel function must encounter the Cauchy–Schwartz incongru-
ence (Eq. 13) (Suykens and Vandewalle 1999):

In the above equations, albeit necessary, guaranteeing a 
feature space defined by the kernel function is not enough. 
However, kernel representations exhibit optional solutions 
via projection data in a feature space with high dimension-
ality to increase the capacity of linear learning machine 
computing. Among the different kernel functions available 
to develop a specific model, the nonlinear core functions 
perform better in analyzing relationships among real-world 
problems. Therefore, the radial basis function (RBF) is used 
as a kernel function in this study.

RBF kernel function

The flexible nature of SVMs is attributed to the kernel 
function that implicitly converts data into a higher-dimen-
sional feature space. A linear solution in a higher-dimen-
sional feature space that is originally associated with a 
nonlinear solution reduces the dimensional input space. 
This is because the SVM method is considered a good 
choice in hydrology and hydraulics, which are generally 
nonlinear. Several methods employ the nonlinear kernel 
function in strategy solving for regression problems. One 
of the radial basis function (RBF) methods used is known 
as the least square SVM (LS-SVM). The main advantage 

(12)K(x, z) = ⟨�(x) ⋅ �(z)⟩

(13)K(x, z) − ⟨�(x) ⋅ �(z)⟩ = ⟨�(x) ⋅ �(z)⟩ − K(x, z)

(14)K(x, z)2 − ⟨𝜑(x) ⋅ 𝜑(z)⟩2 < ���𝜑(x)���2�𝜑(z)��2

of LS-SVM is that it is more efficient than SVM in terms 
of computation, whereby LS-SVM training only solves a 
set of linear equations instead of the time-consuming and 
difficult calculation of second-order equations (Behzad 
et al. 2009a, b).

Compared to other kernel functions, RBF supports 
kernels and is more compressed, which limits the train-
ing process and increases the LS-SVM calculation effi-
ciency—a valuable design feature. Lin et al. (2006) car-
ried out rainfall-runoff modeling using different SVRs 
with various kernel functions for design and demonstrated 
that using the RBF kernel function leads to better results 
than other kernel functions. In addition, many studies on 
hydrology and hydraulic modeling using SVR have dem-
onstrated good RBF kernel function performance (Arun 
and Mahesh 2009; Zahrahtul and Ani 2012; Nourani and 
Andalib 2015).

Support vector regression (SVR)

ε-SVR is presented as an arbitrary ε-insensitive loss func-
tion Masjedi et al. (2010). The purpose of SVR is a search 
function with a maximum ε deviation from the real target 
vector for all received training. This function can be flat. 
Suppose that 

{
xi, yi

}N

i−1
 is a training set in SVR, where 

xi ∈ Rp represents an input vector with p-dimensions and 
yi ∈ R is a scalar measured output. The purpose of modeling 
is to develop a function y = f(x), indicating that the output 
is related to yi on input xi, which can be expressed as the 
following function:

where w is the weight vector and b is the bias. The regres-
sion model can be provided using a nonlinear mapping func-
tion ϕ (.). Using input data mapping on the high-dimensional 
space changes the nonlinear separable problem into a linear 
separable problem. The �(.) = Rp

→ Rh function is largely 
nonlinear and maps the data on a higher-dimensionless fea-
ture space. Optimization problems and limitations are inter-
preted using the following equations:

subject to

where ei is the random error and y ∈ R+ is a setting param-
eter in the optimization trade-off between training error 
minimization and the degree of model complexity. The 
purpose of the present study is to find the optimal param-
eters that minimize regression model error. The optimum 
model is selected using the minimization target function 
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where the ei error is minimized. The formulation is related 
to feature space regression, and because the feature space 
dimensions are high, it is not a simple solution. To solve 
this problem, the Lagrange function can be expressed as 
follows:

The above equation can be solved using partial differen-
tiation with respect to w, b, e and α:

(18)

L(w, b, e, �) = J(w, e) −

N∑
i−1

�i
{
wT�

(
xi
)
+ b + ei − yi

}

(19)�L

�w
= 0 → w =

N∑
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�i�
(
xi
)

(20)�L

�b
= 0 → b =

N∑
i−1

�i = 0

Results and discussion

In order to accurately evaluate SVM(1)–SVM(6) models, 
statistical indices including root mean square error (RMSE), 
mean absolute relative error (MARE) and correlation coef-
ficient (R2) are used:

Here, Cd(Observed)i , Cd(Predicted)i and n are the experimental dis-
charge coefficient, predicted discharge coefficient and exper-
iment number, respectively. In this study, half of the labora-
tory measurements were used for training and the remaining 
data were applied for model testing. Figure 2 presents the 
statistical indices for training models SVM(1)–SVM(6). 
According to the figure, SVM(1) and SVM(2) have the low-
est errors and greatest R2 values.

SVM(1) is a function of the Froude number upstream 
of the side weir (Fr) , ratio of side weir length to trapezoi-
dal channel bottom width (L/b), ratio of side weir length 
to upstream depth flow of the side weir (L/y1), side wall 
slope in a trapezoidal channel (m) and ratio of flow depth 
upstream of the side weir to trapezoidal channel bottom 
width (y1/b). Hence, all effective dimensionless parameters 
on the discharge coefficient are considered in SVM(1). The 
RMSE, MARE and correlation coefficient values calculated 
for SVM(1) are 0.0156, 0.0327 and 0.884, respectively. On 
the other hand, SVM(2) is a function of the Froude num-
ber upstream of the side weir, ratio of side weir length to 
main channel bottom width, ratio of side weir length to flow 
depth upstream of the side weir and trapezoidal channel wall 
slope. The RMSE value obtained for SVM(2) is 0.0157, the 
mean absolute relative error is 0.0329, and R2 is predicted 
as 0.882. After SVM(1) and SVM(2), models 3 and 6 are the 
most accurate in discharge coefficient simulation. Accord-
ing to the simulation results, the SVM(3) and SVM(6) have 
similar accuracy. The SVM(3) is as a function of the Fr, 
L/b, L/y1 and y1/b parameters, and the RMSE, MARE and 
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The values of b and αi can be estimated by solving a 
linear system. Consequently, the LS-SVM is stated as 
follows:

where K (x, xi) is a kernel function and a nonlinear RBF 
kernel function defined as follows is used in this study:

where σ is the RBF kernel function parameter. Setting 
parameter γ is also important in LS-SVM. The value of 
this parameter with the trade-off between the minimum 
fitting error and estimated function is determined. LS-
SVM parameters are determined by the user via trial 
and error. The optimum values are C = 4, ε = 0.0005 and 
γ = 0.01.
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R2 are 0.0173, 0.0406 and 0.861, respectively. In addition, 
the RMSE, MARE and R2 for SVM(6) are 0.0183, 0.0389 
and 0.840, respectively. The SVM(6) models the discharge 
coefficient as a function of the ratio of side weir length to 
main channel bottom width, ratio of side weir length to flow 
depth upstream of the side weir, trapezoidal channel wall 
slope and ratio of flow depth upstream of the side weir to 
trapezoidal channel bottom width. The SVM(4) and SVM(5) 
are the least accurate in discharge coefficient modeling. 
Also, the SVM(4) is a function of Fr, L/b, m and y1/b,where 
the root mean square error and mean absolute relative error 
predicted are 0.020 and 0.0469, respectively. Moreover, for 
the SVM(4) model, the R2 is 0.810. The SVM(5) produces 
the highest error value (RMSE = 0.209) and the lowest cor-
relation coefficient (R2 = 0.787). This model predicts the 
discharge coefficient using Fr , L/b, m and y1/b.

The RMSE, MARE and R2 results for SVM(1)–SVM(6) 
in testing are shown in Fig. 3. Similar to training, models 
SVM(1) and SVM(2) have the lowest errors and high-
est correlation coefficient values. Regarding the modeling 
results, the SVM(1) and SVM(2) are almost the same in 

testing mode. In other words, the RMSE for the SVM(1) 
and SVM(2) models is 0.0168 and 0.0167, respectively, 
while the R2 calculated for these models is 0.808 and 0.810, 
respectively. In test mode, after the SVM(1) and SVM(2), 
SVM(6) model has the maximum correlation coefficient 
(R2 = 0.772) and lowest RMSE and MARE (RMSE = 0.0187 
and MARE = 0.0399), respectively.

Based on Fig. 3, SVM(3), SVM(4) and SVM(5) models 
perform similarly in the test mode. The root mean square error 
predicted for SVM(3), SVM(4) and SVM(5) models in the test 
mode is 0.0206, 0.0205 and 0.0207, respectively. The R2 val-
ues for these models are 0.715, 0.713 and 0.704, respectively.

The SVM(1)–SVM(6) results for predicting the side 
weir discharge coefficient in training mode are presented in 
Fig. 4. According to this figure, the correlation coefficient 
for SVM(1) is higher than other models (R2 = 0.884). As 
mentioned in the previous section, the SVM(1) model simu-
lates the discharge coefficient as a function of Fr , L/b, L/y1, 
m and y1/b parameters. Moreover, a comparison between 
the experimental and predicted discharge coefficients by 

Fig. 2   RMSE, MARE and R2 values for SVM(1)–SVM(6) in training Fig. 3   RMSE, MARE and R2 values for SVM(1)–SVM(6) in testing 
mode
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Fig. 4   Comparison between experimental and predicted discharge coefficient in training a SVM(1), b SVM(2), c SVM(3), d SVM(4), e SVM(5), f SVM(6)
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SVM(5) in training mode indicates that this model has a 
low correlation (R2 = 0.787). Also, the SVM(5) is a function 
of Fr , L/y1, m and y1/b, and in comparison with the SVM(1), 
only the L/b dimensionless parameter has been removed. 
Therefore, the ratio of side weir length to trapezoidal chan-
nel bottom width (L/b) for predicting the discharge coeffi-
cient of a side weir in a trapezoidal channel has a consider-
able effect. In other words, removing this parameter causes 
substantial calculation errors.

The changes in discrepancy ratio (DR) against the 
side weir discharge coefficient for the SVM(1)–SVM(6) 

models in training mode are shown in Fig. 5. The DR is 
the ratio of the discharge coefficient value predicted with 
the SVM method to the experimental discharge coefficient (
DR = Cd(Predicted)i

/
Cd(Observed)i

)
 . As DR is closer to one, the 

performance of the numerical model is better. The maximum 
(DRmax), minimum (DRmin) and average (DRave) discrep-
ancy ratios obtained for SVM(1) are 1.159, 0.919 and 1.001, 
respectively. After SVM(1), SVM(2) model has the lowest 
average discrepancy ratio (DRave = 1.002). The maximum 
and minimum DR for SVM(2) is 1.160 and 0.922, respec-
tively. For SVM(3), the DRave value is 1.002, and the DRmax 

Fig. 5   Discrepancy ratio values of the discharge coefficient in training mode for models a SVM(1), b SVM(2), c SVM(3), d SVM(4), e SVM(5), 
f SVM(6)
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and DRmin for this model are 1.133 and 0.879, respectively. 
When it comes to discrepancy ratio, the SVM(4), SVM(5) 
and SVM(6) models have similar performance. In other 
words, the average discrepancy ratio calculated is 1.005 for 
SVM(4), 1.004 for SVM(5) and 1.007 for SVM(6).

Regarding an analysis of the SVM method results for pre-
dicting the discharge coefficient of side weirs located on trap-
ezoidal channels, SVM(1) is introduced as the superior model. 
As noted above, this model is a function of Fr , L/b, L/y1, m 
and y1/b. Therefore, the following equation is proposed to 
calculate the discharge coefficient of this hydraulic structure:

and

where xi is the matrix of input parameters of the ith sample (
Fr, L∕b, L∕y1,m, y1∕b

)
 , σ is equal to − 50 (σ = − 50) and 

Nsup is the number of all samples.

(28)Cd =

Nsup∑
i=1

wipi + b

(29)pi = exp

(
xi × xT

sup

�2

)

(30)wT =

⎡⎢⎢⎢⎢⎢⎢⎣

+1.04 −0.05 +0.67 −.032 −1.83 +0.70 −0.86 +1.65 +1.69 +1.06

… −0.06 +3.13 −0.13 +0.57 −1.27 −0.10 +1.05 +0.38 +1.79 +0.82

… +0.25 +0.96 +0.18 +0.31 +0.44 −0.53 +0.7 −0.52 +1.95 −0.58

… −0.13 −3.46 +1.08 +0.58 −0.47 +0.03 −0.36 −0.22 −4.00 +1.55

… −4.00 −0.47 +2.92 −2.06 −0.51 −0.14 −0.52 +0.86 −0.72 +0.27

… −0.23 +1.08 +0.96 −0.35 −0.31 −1.29 −2.17 −0.42 −0.55 +0.01

⎤⎥⎥⎥⎥⎥⎥⎦

(31)xT
sup

=

⎡
⎢⎢⎢⎢⎢⎣

A1 A2 A3 … A60

B1 B2 B3 … B60

C1 C2 C3 … C60

D1 D2 D3 … D60

E1 E2 E3 … E60

⎤
⎥⎥⎥⎥⎥⎦5×60

(31-1)
�
A1 A2 A3 … A60

�
=

⎡⎢⎢⎢⎢⎢⎢⎣

0.29 0.32 0.35 0.37 0.46 0.53 0.47 0.49 0.70 0.72

… 0.70 0.73 0.24 0.31 0.26 0.30 0.50 0.51 0.68 0.69

… 0.69 0.68 0.38 0.40 0.41 0.41 0.51 0.52 0.55 0.54

… 0.54 0.50 0.60 0.57 0.42 0.55 0.60 0.64 0.99 0.54

… 0.48 0.74 0.86 0.86 0.87 0.84 0.79 0.74 0.66 0.61

… 0.45 0.58 0.51 0.66 0.77 0.89 0.92 0.93 0.90 0.85

⎤⎥⎥⎥⎥⎥⎥⎦
1×60

(31-2)

�
B1 B2 B3 … B60

�
=

⎡⎢⎢⎢⎢⎢⎢⎣

0.50 0.50 0.50 0.50 1.02 1.02 1.02 1.02 1.45 1.45

… 1.45 1.45 0.50 0.50 0.50 0.50 1.02 1.02 1.45 1.45

… 1.45 1.45 0.50 0.50 0.50 0.50 1.02 1.02 1.02 1.02

… 1.45 1.45 1.45 1.45 0.81 0.81 0.81 0.81 0.81 1.01

… 1.01 1.01 1.01 1.64 1.64 1.64 1.64 1.64 0.80 0.80

… 0.80 1.00 1.00 1.00 1.00 1.00 1.60 1.60 1.60 1.60

⎤⎥⎥⎥⎥⎥⎥⎦
1×60

(31-3)�
C1 C2 C3 … C60

�
⎡⎢⎢⎢⎢⎢⎢⎣

1.51 1.82 1.74 1.68 5.03 4.88 4.14 4.65 8.36 8.15

… 7.49 8.50 1.54 1.76 1.57 1.80 5.78 5.25 8.22 7.82

… 7.46 7.94 2.64 2.48 2.36 2.28 5.19 4.89 5.71 5.27

… 7.64 7.81 7.92 7.87 4.26 3.55 3.38 9.89 7.29 5.48

… 5.95 8.02 7.67 8.55 8.83 8.97 9.11 9.93 3.41 3.59

… 4.31 5.56 6.03 5.00 8.14 7.78 8.62 8.89 9.03 9.18

⎤⎥⎥⎥⎥⎥⎥⎦
1×60
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Comparison of SVM with previous studies

According to the studies, some studies were carried out on 
discharge coefficient of side weirs on trapezoidal channels, 
Cheong (1991), Azimi et al. (2017a, b). Therefore, error 
distribution of the superior model (SVM) and the studies is 
determined. In Fig. 6, the error distribution for these models 
is illustrated. For instance, almost 75% of the SVM results 
have an error less than 5%. Also, this figure for Azimi et al. 
(2017a) and Cheong (1991) is 87.5% and 50%, respectively. 
Additionally, roughly 12% of Azimi et al. (2017b) model has 
an error between 5% and 10%. Furthermore, the MARE for 
Azimi et al. (2017a, b) and Cheong (1991) is 0.029, 0.033 
and 0.059, respectively. Based on the error distribution and 
MARE index, SVM model is more accurate than Azimi et al. 
(2017b) and Cheong (1991) models.

(31-4)

�
D1 D2 D3 … D60

�
=

⎡⎢⎢⎢⎢⎢⎢⎣

0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

… 0.50 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

… 1.00 1.00 1.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

… 2.00 2.00 2.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00

… 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00

… 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

⎤⎥⎥⎥⎥⎥⎥⎦
1×60

(31-5)
�
E1 E2 E3 … E60

�
=

⎡⎢⎢⎢⎢⎢⎢⎣

0.33 0.27 0.29 0.30 0.20 0.21 0.25 0.22 0.17 0.18

… 0.19 0.17 0.33 0.28 0.32 0.28 0.18 0.19 0.18 0.19

… 0.19 0.18 0.19 0.20 0.21 0.22 0.20 0.21 0.18 0.19

… 0.19 0.19 0.18 0.18 0.19 0.23 0.24 0.08 0.11 0.19

… 0.17 0.13 0.13 0.19 0.19 0.18 0.18 0.16 0.23 0.22

… 0.19 0.18 0.17 0.20 0.12 0.13 0.19 0.18 0.18 0.17

⎤⎥⎥⎥⎥⎥⎥⎦
1×60

Fig. 6   Error distribution of SVM and previous studies

On the one hand, when it comes to discharge coefficient 
modeling, Azimi et al. (2017a) model has better perfor-
mance than other studies. They used ELM model so as to 
simulate the discharge coefficient. Also, a practical and 
simple matrix was presented which estimated the discharge 
coefficient with reasonable accuracy. Therefore, the matrix 
can be easily utilized by individuals without previous knowl-
edge of artificial intelligence techniques. Furthermore, an 
explicit equation was provided using GEP model by Azimi 
et al. (2017b) which was as a function of all input parameters 
affecting the discharge coefficient. Moreover, it was shown 
that the GEP model had a good performance compared to 
other studies.

On the other hand, although the SVM model simulates 
the discharge coefficient with acceptable accuracy, this tech-
nique has some drawbacks. This means that the SVM is bet-
ter just in MARE index and other indices for the model are 
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much worse than Azimi et al. (2017a, b) studies. By contrast, 
it should be noted that the SVM model has more accuracy 
than empirical equation (Cheong 1991). However, it is obvi-
ous that the matrix presented using the SVM model is not 
pretty easy to use.

Conclusion

In practice, side weirs located on trapezoidal channels regu-
late the flow surface in irrigation and drainage systems and 
are used in hydraulic engineering. In this study, the dis-
charge coefficient of side weirs located on trapezoidal chan-
nels was modeled using support vector machines (SVMs). 
Using dimensionless parameters affecting the discharge 
coefficient, six different models were defined to estimate 
the discharge coefficient of this type of diversion structure. 
Based on the modeling results, the superior model is a func-
tion of the Froude number (Fr), ratio of side weir length to 
trapezoidal channel bottom width (L/b), ratio of side weir 
length to flow depth upstream of the side weir (L/y1), side 
wall slope in a trapezoidal channel (m) and ratio of flow 
depth upstream of the side weir to trapezoidal channel bot-
tom width (y1/b). The RMSE and MARE in training mode 
were 0.0156 and 0.0327, respectively, while the RMSE and 
R2 values calculated for the superior model in test mode 
were 0.0168 and 0.808, respectively. Furthermore, the maxi-
mum (DRmax), minimum (DRmin) and average (DRave) dis-
crepancy ratios for the best model were 1.159, 0.919 and 
1.001, respectively. According to the sensitivity analysis, the 
ratio of side weir length to trapezoidal channel bottom width 
(L/b) was introduced as the most influenced input variable to 
simulate discharge coefficient. Since the SVM coefficients 
were determined using trial and error and inadequate deter-
mination leads to poor model performance, combining SVM 
with evolutionary algorithms is suggested to determine the 
coefficients.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
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