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Abstract
This study used live Azolla pinnata (AP) to remediate rhodamine B (RB) from aqueous solutions via the phytoextraction 
method, and machine learning algorithms such as artificial neural networks and random forests were used as predictive 
models. The pH was found to have a major influence on the phytoextraction process, and the AP dosage can change the pH 
of the aqueous solution. The optimum condition for the phytoextraction of RB (initial dye concentration at 10 ppm) is at pH 
3.0 with a plant dosage of 0.4 g, resulting in removal efficiency as high as 76%. The growth estimation (relative frond num-
ber) indicates that AP can tolerate RB concentration of as high as 20 mg L−1, and the estimations from the pigment studies 
showed that the exposure of AP to RB causes AP to produce higher concentrations of plant pigments than the control, which 
hinted the possibility of AP using RB and its intermediates for growth.

Keywords Phytoextraction · Rhodamine B · Artificial neural network · Random forests · Machine learning algorithms · 
Azolla pinnata

Introduction

Water remediation methods have been intensively researched 
and used in the current industrial era. This is due to the 
production of waste products and contaminants from indus-
tries whereby water bodies such as seas, rivers and lakes are 
used as disposal sites. The irresponsible disposal of these 

pollutants will not only deteriorate the environment’s aes-
thetics but also cause problems to the existing fauna and 
flora, which would eventually affect humans at large. These 
water remediation methods have been discussed in the lit-
erature (Ali et al. 2013; Robinson et al. 2001).

Phytoextraction is one of the simplest, easiest and low-
cost methods. This is because the method utilises living 
plants to take in the pollutant through their root systems 
and these plants only require solar input and nutrients from 
either soil or water. Phytoextraction has been used for the 
remediation of wastewaters containing heavy metals (Ali 
et al. 2013), hydrocarbons (Agamuthu et al. 2010) and dyes 
(Movafeghi et al. 2013; Torbati et al. 2014). Various plants 
had been studied for their phytoextraction potential, includ-
ing water lettuce (Lu et al. 2010), Tagetes patula (Sun et al. 
2011) and sunflowers (Adesodun et al. 2010).

Azolla pinnata (AP) is a water fern found in Asia, tropical 
Africa and some regions of Australia. It has a symbiotic rela-
tionship with a species of bacteria known as Anabaena azollae 
that can fulfil the necessary nitrogen requirements of AP due to 
its nitrogen fixation ability. This not only allows AP to thrive 
in water bodies that lack nutrients, but is also responsible for 
AP’s fast growth and high reproduction rate. Recent studies 
have shown that AP has the potential to be used as a water 
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remediation material through the biosorption of textile dyes 
(Kooh et al. 2015, 2016b, c, d) and by phytoextraction methods 
(Sood et al. 2012).

Rhodamine B (RB) is a red-coloured solid dye that dis-
solves in water to emit a fluorescent reddish violet-coloured 
solution. Due to this, it is highly used in fluorometers, flow 
cytometry, ELISA and fluorescence microscopy, and also in 
many other industrial products such as paints, textiles, paper, 
wool, silk, cotton and leather. As in most synthetic dyes, RB 
is also considered as a toxic compound with  LD50 for rat at 
500 mg kg−1;  LC50 for rainbow trout is 217 mg L−1 and  EC50 
for water flea is 22.9 mg L−1 (Safety Data Sheet: rhodamine 
B, Global Safety Management, Inc. 2018).

This study focuses on using live AP to remove RB from 
aqueous solutions by the phytoextraction method. Three 
parameters, namely pH, AP dosage and RB dye concentra-
tion, were investigated to see how they can affect the perfor-
mance of the phytoextraction process by AP. Artificial neural 
network (ANN) and random forests (RF) models are used to 
predict the removal efficiencies of the phytoextraction method 
and the performances of both the ANN and RF models were 
compared.

The involvement of machine learning (ML) algorithms for 
the modelling of water remediation process is not uncommon. 
Data (training sets) are fed into the algorithms, and the pre-
dicted output was compared with the experimental data to test 
the performance of the models. There are many mathematical 
models that are useful for building models in water science 
(Dehghan and Abbaszadeh 2017); however, this study focused 
on ANN and RF. The monitoring of biological processes is 
not simple due to the involvement of many processes and the 
occasional nonlinear nature of the data. Therefore, the use of 
the ML algorithms can be advantageous because they can pro-
cess nonlinear and noisy data, and predict the performance of 
the biological systems. ANN is one of the commonly used 
models and it is inspired by the basic function of a biological 
neuron (Dehghan et al. 2009). Its use was reported in several 
phytoextraction studies such as the phytoextraction of basic 
red 46 using watercress (Torbati et al. 2014) and Lemna minor 
(Movafeghi et al. 2013). RF is an improved version of decision 
tree algorithms which averages the output from many smaller 
decision trees, instead of using a single massive decision tree 
which can overfit the training data (Breiman 2001; Dehgha-
nian et al. 2016). The use of RF in modelling water remedia-
tion has been limited and was reported in the adsorption stud-
ies of Congo red removal using tin sulphide-modified activated 
carbon (Dehghanian et al. 2016).

Materials and methods

Plant sample and chemical reagents

The AP was obtained from the Brunei Agriculture Research 
Center, Brunei Darussalam. The AP was sonicated for 30 s, 
followed by gentle washing using distilled water and gently 
dried with a paper towel before introducing it into disposable 
plastic cups with a diameter of 6.5 cm, 8.5 cm height and a 
volume capacity of 250 mL.

RB (95% dye content, Mr 479.01  g  mol−1, Sigma-
Aldrich) was used as purchased without further purification. 
The pH of the aqueous solution was adjusted using diluted 
0.1 mol L−1 NaOH and  HNO3 solutions (Fluka) and monitored 
using a Thermo Scientific Orion 2-star benchtop pH meter.

Phytoextraction procedures

The effects of initial dye concentrations (5, 10, 15 and 
20 mg L−1), pH (3, 4, 5, 6 and 7) and plant dosage (0.2, 0.4, 
0.6 and 0.8 g, fresh mass) were investigated systematically in 
this study. All final dye solutions and the control contained 
macronutrients which included 3.3 mM Mg(NO3)2, 2 mM 
 CaCl2, 1.3 mM  K3PO4 and 1 mM  KNO3, and micronutrients 
of 5.4 μM  FeCl3, 0.016 μM Cu(NO3)2, 0.038 μM Zn  (NO3)2 
and 0.004 μM  (NH4)6  Mo7O24·4H2O as according to Wag-
ner (1997), although with some modifications concerning the 
amount of nitrate. The reason for adding nitrate was because 
RB possesses antiseptic properties which can interfere with 
the nitrogen fixing ability of AP’s symbiotic cyanobacteria, 
Anabaena azollae. The setup was placed under a balcony in 
order to avoid the exposure of direct sunlight and provide shel-
ter during rain and was subjected to a photoperiod of 13 h of 
natural light and 11 h of darkness. A Shimadzu UV-1601PC 
UV–visible spectrophotometer was used to determine the RB 
dye concentration at λmax of 555 nm. All the experiments were 
carried out in duplicates.

The removal efficiency was calculated by the equation:

where Ci is the initial dye concentration and Cf is the final 
dye concentration.

Growth rate estimations

The growth rate of AP was determined by using relative frond 
number (RFN) (White 1936). The equation used is as follows:

(1)Removal efficiency =

(

Ci − Cf

)

× 100%

Ci

(2)
RFN = (Frond number at nth day−frond number at 0 day)∕

frond number at 0 day
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Fronds of AP were counted daily, from day 0 to day 14, 
for all experiments.

Determination of plant pigments

The plant photosynthetic pigments such as chlorophyll 
a  (Chla), chlorophyll b  (Chlb) and total xanthophylls and 
carotenoids (CX) were determined spectrometrically using 
a Shimadzu UV-1601PC UV–visible spectrophotometer at 
wavelength ranging from 350 to 750 nm. At the end of the 
phytoextraction process, the AP was washed with distilled 
water to remove excess dye and dried using paper towels. 
The AP was weighed and then ground with a mortar and 
pestle and extracted using 10 mL of 80% acetone in a dark 
area. All extractions were analysed within 30 min and the 
estimation of plant pigments were based on the Arnon’s 
method (Arnon 1949).

Arnon’s expressions of plant pigment estimation are as 
follows:

where V (mL) is the volume of 80% acetone, m (mg) is the 
mass of the plant, while A663, A645 and A470 represent the 
absorbance at wavelengths 663 nm, 645 nm and 470 nm, 
respectively.

Machine learning algorithm setup procedures

The Weka software package version 3.9 (Hall et al. 2009) 
was used for building both the ANN and the RF models. The 
classifiers used for the ANN and RF models were function/
multilayerPerceptron and tree/randomforest, respectively. 
Stratified tenfold cross-validation was applied to both algo-
rithms, where there is a holdout of 10% data for testing, 
following which the process is repeated 10 times with each 
repeat using a different segment of data. This process is to 
avoid overfitting and overtraining of data to obtain a more 
generalised predicted outcome (Witten et al. 2011).

The construct of the ANN model (backpropagation) con-
sists of three layers: input, hidden and output. The input 
layer consists of four neurons (time, plant dosage, pH and 
initial dye concentration) where each consists of 154 values 
as obtained from the experiment. The main parameter used 
for optimising the ANN model is the number of neurons in 
the hidden layer (0–12, at interval of 1). The output layer 
consists of only one neuron (removal efficiency).

(3)
Chla

(

mg g−1
)

=
[(

12.7 × A663

)

−
(

2.6 × A645

)]

× V∕m

(4)
Chlb

(

mg g−1
)

=
[(

22.9 × A645

)

−
(

4.68 × A645

)]

× V∕m

(5)
C
X

(

mg g−1
)

=
[(

1000A470 × V∕m
)

−1.90Chla−63.14Chlb
]

∕214

The RF model is optimised using different parameters as 
its architecture is different from ANN. RF is an ensemble 
method which involves the averaging of many decision trees 
(Breiman 2001; Dehghanian et al. 2016). The RF model 
in Weka (no pruning at default) uses an estimator known 
as bagging, which means the algorithm picks a sample of 
data rather than all of them at once. Three parameters such 
as the bagsize (20–100%, at interval of 20%), numIteration 
(1–100) and seed (1–5) were selected for optimising the 
RF algorithm. The numIteration parameter (default at 100) 
is equivalent to the number of trees used in other software 
packages, which refers to the number of repeats of algo-
rithm learning where the previously built model influences 
the newer model. The seed is the generation of a sequence 
of randomness, which is random when the value is 1, and 
becomes less random as the value increases.

The performance of both ANN and RF models were 
evaluated based on the value of correlation coefficient (R) 
and error function mean squared error (MSE) and root mean 
squared error (RMSE). The R, MSE and RMSE are all gen-
erated by the Weka software package. The R measured the 
statistical correlation between the experimental and the pre-
dicted values. The value of R ranged from 0 to 1, with 1 
indicating a perfect correlation and 0 indicating the other 
extreme (Witten et al. 2011). Both MSE and RMSE are com-
mon error functions and their smaller values indicate smaller 
magnitudes of error.

All experimental data were converted into values between 
0 and 1, using the minimum–maximum normalisation equa-
tion as follows:

where X represents neuron in the input and output layers, 
XN and Xi are the normalised and non-normalised values of 
the experimental data, respectively, and Xmax and Xmin are 
the maximum and minimum values of the experimental data 
(Basheer and Hajmeer 2000). The generated predicted data 
of both ANN and RF models were back-calculated to the 
original scale before plotting the graphs.

Results and discussion

Optimisation of ML models

Prior to the prediction of the phytoextractive capability of 
AP, the parameters of the machine learning algorithms were 
required to be optimised in order to obtain quality output. 
The summary of the optimisation of the two ML models 
(ANN and RF) is given in Table 1.

(6)XN =

(

X
i
− Xmin

)

(

Xmax − Xmin

)
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For the ANN model, only the number of neurons in the 
hidden layer was optimised. When the parameter of the num-
ber of neurons in the hidden layer of the ANN was set to 
zero, the algorithm reverted to a simple linear regression 
where the R value was 0.772, which is a poorer model when 
compared to the ANN that was built with a hidden layer. 
The optimum number of neurons for the ANN model for 
modelling the phytoextractive capability of AP is 6, where 
the R is 0.941 and the error is the lowest (MAE = 0.59, 
RMSE = 0.81). For the RF model, three parameters (bag-
size, numIterations and seed) were optimised. By setting the 
numIteration to 1, the model reverted to a single tree model 
where the R is 0.888 and is inferior to models that have a 
higher numIteration setting. The optimised RF model was 
achieved with 100% bagsize (default value), numIterations 
at 100 (default value) and seed at 3, where the R is 0.975, 
MAE at 0.042 and RMSE at 0.055.

The closeness between the experimental data and those 
predicted by both the ANN and RF algorithms is shown in 
Fig. 1, where it can be observed that the RF-predicted data 
are much closer to the experimental data than the ANN, 
while the ANN-predicted data generalised better than the 
RF.

Effect of pH

The effect of the RB dye uptake by live AP at different 
pH levels is shown in Fig. 2. The highest dye removal 
efficiency occurred at pH 3.0, while increasing pH resulted 
in decreased dye removal efficiency. At the 14th day, the 
removal efficiencies at pH 3.0, 4.0, 5.0, 6.0 and 7.0 were 
76.0%, 69.4%, 61.8%, 55.8% and 49.1%, respectively. This 
behaviour was due to the chemical property of the RB 
dye molecule. RB dye molecules exist as cationic mon-
omeric forms at pH < 4.0, while becoming zwitterionic 
and dimeric at pH > 4.0 (Gad and El-Sayed 2009). Our 
previous work also reported that cationic species of RB 
adsorbed on AP’s surface better than the bigger, dimeric 
forms (Kooh et al. 2016a).

As shown in Fig. 2, the ANN generated smooth curves 
and generalised more when compared to the RF model. 
The curves generated by the RF are “noisy”, but are much 
closer to the experimental data than the ANN.

Table 1  Optimisation of parameters for ANN and RF algorithms

Hidden layer 0 1 2 3 4 5 6 7 8 9 10 11 12

Artificial neural network algorithm
R 0.772 0.882 0.92 0.936 0.939 0.931 0.941 0.937 0.942 0.934 0.931 0.933 0.932
MAE 0.121 0.097 0.075 0.065 0.065 0.065 0.059 0.061 0.06 0.061 0.064 0.059 0.063
RMSE 0.155 0.118 0.094 0.085 0.083 0.089 0.081 0.085 0.081 0.087 0.088 0.086 0.087
Random forests algorithm
bagsize (%) 100 100 80 60 40 20 100 100 50 100 100 100 100
numIterations 1 100 100 100 100 100 50 10 50 100 100 100 100
Seed 1 1 1 1 1 1 1 1 1 2 3 4 5
R 0.888 0.973 0.972 0.968 0.955 0.928 0.973 0.972 0.965 0.974 0.975 0.974 0.975
MAE 0.074 0.044 0.046 0.051 0.061 0.079 0.044 0.046 0.054 0.043 0.042 0.044 0.043
RMSE 0.111 0.057 0.059 0.064 0.076 0.098 0.058 0.059 0.068 0.056 0.055 0.057 0.056

Fig. 1  Plots that visualised the 
closeness between the experi-
mental data and predicted data 
obtained from a ANN, b RF 
algorithms
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Effect of plant dosage

The effect of plant dosage on the removal efficiency of RB 
using AP is summarised in Fig. 3. At the end of the phyto-
extraction process, the plant dosage at 0.4 g was observed to 
obtain highest removal efficiency at 76.0%, followed by 0.6 g 
(71.9%), 0.8 g (70.8%) and lastly 0.2 g (67.4%).

The pH is a major factor influencing the removal effi-
ciency of a phytoextractive process, as shown in Fig. 2. 
However, aquatic plants have been known to change the 
pH of the water medium over time (Gopal 1987). The pH 
measurement of the dye solution during the phytoextraction 

process is summarised in Table 2, where a higher dosage of 
AP caused larger alterations of the pH within the first 24 h 
of the phytoextraction process. On day 1, the 0.6 g and 0.8 g 
AP dosages incurred changes in pH of the aqueous solution 
from 3.0 to 4.0 and 5.0, respectively, as compared to 0.4 g 
AP which only increased to 3.5. The huge deviation from the 
initial pH may have been caused by the higher dosage of AP 
resulting in the phytoextraction process operating outside 
their optimum pH of 3.0 (as discussed in previous section) 
due to the formation of larger dimeric RB dye molecules. 
Thus, these data explain the higher removal efficiency of AP 
dosage at 0.4 g when compared to 0.6 g and 0.8 g.

Fig. 2  Experimental data of the 
effect of pH on the phytoextrac-
tion of RB (initial dye = 10 ppm, 
plant dosage 0.4 g), in com-
parison with those predicted by 
ANN and RF models
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Fig. 3  Experimental data of 
the effect of AP dosage on the 
phytoextraction of RB (initial 
dye = 10 ppm, initial pH = 3.0), 
in comparison with those pre-
dicted by ANN and RF models
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Table 2  pH of dye solutions 
before and after phytoextraction 
process using AP

Effect of AP dosage (g) (initial dye 
concentration = 10 ppm)

Effect of pH (AP dosage = 0.4 g, initial dye 
concentration = 10 ppm)

0.2 0.4 0.6 0.8 3 4 5 6 7

pH at day 0 3.0 3.0 3.0 3.0 3.0 4.0 5.0 5.9 6.7
pH at day 1 3.2 3.5 4.0 5.0 3.5 5.1 5.6 6.0 6.6
pH at day 5 3.4 3.9 3.9 5.5 3.9 5.8 5.8 6.1 6.4
pH at day 10 3.6 4.0 4.1 5.0 4.0 5.0 5.1 5.4 6.0
pH at day 14 3.6 4.2 4.3 4.8 4.2 4.5 4.7 4.8 5.8
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The RF model, again, predicted data closer to the exper-
imental data than those generated by the ANN, although 
ANN model produced smoother curves.

Effect of initial dye concentration

The effect of initial dye concentrations (5–20 ppm) is sum-
marised in Fig. 4, where higher initial dye concentrations 
resulted in higher amounts of dye removal. This can be 
explained with the Fick’s diffusion law, where the concen-
tration gradient provides the driving force for the phytoex-
traction of RB dye (Frijlink et al. 2015). This behaviour is 
also observed in the phytoextraction of triphenylmethane 
dyes (malachite green and methyl violet 2B) using AP (Kooh 
et al. 2016a, 2018).

The ANN-predicted data generated by the ANN models 
were close to experimental data for the 5, 10 and 15 ppm 
concentrations, while there was a slight underestimation for 
the 20 ppm samples. However, for the RF model, the pre-
dicted data faithfully followed the experimental data at 5 and 
10 ppm, while generating oddly shaped curves for concentra-
tions of 15 and 20 ppm. This behaviour is probably due to 
noisier dataset, which is shown in Fig. 4.

Reusability of AP in phytoextraction of RB

In order to determine whether AP can be reused after a phy-
toextraction cycle (in this case 14 days, labelled as the first 
cycle), the remediated RB dye solution was removed and 
replaced on the 15th day with a new 10 ppm RB dye solution 
(with nutrient media added, pH 3.0) using the same AP. The 
phytoextraction process was continued for another 14 days 
(second cycle). The data are summarised in Fig. 5, where it 
can be seen that the same AP was able to phytoextract RB 
on the second cycle at about the same level as the first. These 
data hinted the usefulness and potential of AP in a continu-
ous treatment of dye wastewater.

Comparison of removal efficiency of AP with other 
plants via the phytoextraction method

There are currently no studies concerning the phytoextrac-
tion of RB for direct comparison, and therefore, our findings 
are compared with the phytoextraction of other dyes by other 
living plants. The removal efficiencies of 10 ppm methyl 
violet 2B (basic dye) and malachite green (basic dye) using 
0.4 g AP (at their individual optimum pH, phytoextraction 

Fig. 4  Experimental data of the 
effect of initial dye concentra-
tion the phytoextraction of RB 
using AP, in comparison with 
those predicted by ANN and RF 
models
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Fig. 5  Repeated batch of the 
phytoextraction of 10 ppm RB 
using AP (pH 3.0, 0.4 g AP)
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period = 7 days) were 89.8% and 84.4% (Kooh et al. 2016a, 
2018), respectively, which were slightly better when com-
pared to phytoextraction of RB (xanthine dye) at 76.0% 
(0.4 g AP, pH 3.0, phytoextraction period = 14 days). Duck-
weed (Lemna minor), at roughly similar conditions (phy-
toextraction period = 7 days), was reported to achieve 88% 
removal efficiency for 10 ppm malachite green (Torbati 
2015). Another study, which involved a different species of 
Azolla (Azolla filiculoides), reported a removal efficiency 
at about 85% for removal of 10 ppm acid blue 92 (azo dye) 
(2.0 g plant dosage, phytoextraction period = 6 days) (Kha-
taee et al. 2013).

Estimation of growth by RFN and plant pigment 
measurements

To determine the plant health under the phytoextraction pro-
cess, two growth estimators (RFN and plant pigment con-
centration) of AP were determined. RFN with a value of 1.0 
indicates that the plant growth has doubled, while a value 
of − 1.0 indicates that all the plants have died. The control 
(AP without addition of dye), as determined in our previous 
work, has an RFN of 0.17 at day 2 which gradually increased 

to 0.22 at day 3 and remained constant at 0.26 between day 4 
and 7 (Kooh et al. 2016a). Figure 6 shows the values of RFN 
of the phytoextraction of RB using AP at day 2 for 5, 10, 
15 and 20 ppm were 0.12, 0.03, 0.28 and 0.33, respectively, 
while at day 6 they were 0.32, 0.22, 0.36 and 0.34. At the 
end of the phytoextraction process (day 14), the RFN values 
were 0.32, 0.33, 0.34 and 0.31. With RFN values higher 
than 0.26 (the control), this indicates the AP with RB has 
higher growth than the control, and this hints the possibility 
of AP metabolising RB and its intermediates for growth. 
In comparison with the phytoextraction (day 6) of 10 ppm 
methyl violet 2B and 10 ppm malachite green using AP, the 
RFN was lower at 0.18 and 0.07, respectively, indicating that 
AP can tolerate RB much better than methyl violet 2B and 
malachite green dyes (Kooh et al. 2016a, 2018).

A summary of another growth estimator by the amount of 
pigments present at the end of the phytoextraction process 
is shown in Fig. 7. Chlorophyll and carotenoids are present 
in most plants, and there are two main forms of chlorophyll 
which are  Chla and  Chlb. The chlorophyll pigments are the 
main pigments used by plants for photosynthesis. The carot-
enoids are plant pigments that give the plant yellow, orange 
or red colours, and are generally used during photosynthesis 

Fig. 6  RFN data of the phyto-
extraction of various concen-
trations of RB using AP over 
period of 14 days
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and to protect chlorophyll from photodamage (Demmig-
Adams et al. 1996).

As determined in our previous work, the amount of  Chla, 
 Chlb and CX of the control (without dye) at the end of the 
phytoextraction process was 0.24, 0.27 and 0.05 mg g−1, 
respectively (Kooh et al. 2018), which were all lower than 
AP exposed to RB dye (Fig. 7). These data indicated that 
in the presence of RB, the growth was higher than the con-
trol, which is in agreement with the conclusion derived from 
RFN data (Fig. 6).

Conclusions

This investigation involved the use of AP to remediate RB by 
phytoextraction method with the inclusion of the ANN and 
RF machine learning algorithms for predictive modelling, in 
which the ANN model produced a more generalised output 
when compared to the RF. It was found that pH had major 
influence on the phytoextractive process, and plant dosage 
can change the pH of the aqueous solution. The optimum 
condition for the phytoextraction of 10 ppm RB is at pH 3.0 
with a plant dosage of 0.4 g, yielding removal efficiency at 
76%. The growth estimation by the RFN indicates that AP 
can tolerate RB up to concentrations as high as 20 mg L−1, 
and the estimation of pigment studies which show higher 
plant pigments than the control further reinforces the RFN 
data. These growth estimator data showed higher growth in 
the presence of RB and indicated the possibility of AP being 
able to utilise RB and its intermediates for growth.
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