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Abstract
Side orifices are installed on side walls of the main channel to regulate and measure the flow. Generally, discharge coeffi-
cient is the most important hydraulic parameter of side orifices. In this study, using ANFIS and firefly algorithm, discharge 
coefficient of rectangular and circular side orifices was simulated. Firstly, effective parameters were defined then six ANFIS 
and ANFIS-FA models were introduced. Monte Carlo simulations were utilized to survey the ability of numerical models, 
and the k-fold cross-validation approach was used to validate numerical results. Then, a sensitivity analysis was employed 
to introduce the superior model. The superior model predicted discharge coefficient with reasonable accuracy. This model 
estimated discharge coefficient in terms of all input variables. For example, for ANFIS model, R and SI were computed 
0.832 and 0.029, respectively. In addition, for the hybrid model, RMSE, MARE and SI were calculated as 0.017, 0.017 and 
0.027, respectively. Additionally, the ratio of width of the main channel to the side orifice diameter (B/D) was identified as 
the most effective parameter.
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Introduction

Side orifices are classified as divert structures installed 
on the main channel wall to conduct the flow into the side 
channel. Such structures are broadly utilized in drainage net-
works, sewage disposal systems and other hydraulic goals. 
In general, a side weir is used in wastewater treatment plants 
to disturb inflow to the location of the treatment process 
such as sedimentation tanks and aeration ponds. Due to the 
importance of divert structures, many experimental, ana-
lytical and numerical studies have been carried out on the 
hydraulic behavior of them.

For instance, Ramamurthy et al. (1987), Gill (1987), 
Swamee et al. (1993) and Ojha and Subbaiah (1997) exam-
ined the hydraulic behavior of gates and side orifices. Hus-
sein et al. (2010) conducted an experimental study on the 
behavior of the passing flow through rectangular channels 
with circular side orifice. They provided a relationship for 
calculating discharge coefficient of circular sharp-edged 

side orifices. Hussein et al. (2010) formula is presented as a 
function of Froude number and the ratio of the circular side 
orifice diameter to width of the main channel. This equation 
forecasted discharge values of the side orifice with ± accu-
racy. Hussein et al. (2011) carried out an experimental study 
on the characteristics of the flow in the main channel with a 
rectangular sharp-edged side orifice. They also investigated 
the parameters affecting the flow passing through rectangu-
lar side orifices. Hussein et al. (2011) provided a relation-
ship for calculating discharge coefficient of side orifices as a 
function of Froude number and the ratio of width of rectan-
gular side orifice to width of the main channel. Hashid et al. 
(2015) experimentally studied the hydraulic behavior of the 
flow in channels with circular side intake. They considered 
the effects of the main channel width to the circular side 
intake as well as flow Froude number on discharge coeffi-
cient of such divert structures and proposed an equation for 
determining discharge capacity of such intakes.

In recent years, different artificial intelligence tech-
niques have been used for modeling and pattern cognition 
of various hydraulic phenomena. For example, Emiroglu 
et al. (2010), based on neuro-fuzzy ANFIS techniques, pro-
vided a relationship for calculating discharge coefficient 
of labyrinth side weirs located on a rectangular channel 
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in subcritical flow conditions. Their proposed relationship 
predicts discharge coefficient values of such structures in 
terms of weir geometric characteristics and flow hydrau-
lic parameters. Kisi et al. (2012) using different neural net-
work algorithms and gene expression programming as well 
as linear and nonlinear regressions predicted properties of 
the divert flow passing over labyrinth side weirs. By analyz-
ing the modeling results, they exhibited that the artificial 
neural network model has higher accuracy in predicting 
discharge coefficient of this type of side weirs compared to 
other algorithms. Azamathulla and Ahmad (2013) by means 
of the gene expression programming model predicted the 
passing flow through rectangular side gates. They analyzed 
the results to prove that the gene expression programming 
model is significantly capable to model discharge coefficient 
of such hydraulic structures.

Additionally, Ebtehaj et al. (2015) simulated the discharge 
coefficient of rectangular side orifices using group method of 
data handling. They carried out a sensitivity analysis in order 
to identify effective input parameters. Also, Khoshbin et al. 
(2016) estimated the discharge coefficient of rectangular side 
weirs by means of a hybrid artificial intelligence technique. 
They optimized ANFIS network using genetic algorithm and 
singular value decomposition method. Azimi et al. (2017a) 
identified the most influenced input parameters on discharge 
coefficient of side weirs located on trapezoidal channels in 
subcritical flow conditions.

They also presented an equation for calculating discharge 
coefficient of side gates. In addition, Azimi et al. (2017b) 
implemented computational fluid dynamics as well as a 
hybrid ANFIS-Genetic Algorithm model to approximate dis-
charge coefficient of rectangular side orifices. They showed 
that the artificial intelligence model estimates discharge 
coefficient values with higher accuracy.

On the one hand, reviewing of previous studies shows 
that the use of various artificial intelligence techniques is 
increasing every day, so that we necessarily need to develop 
an optimized artificial intelligence hybrid model for esti-
mating discharge coefficient of circular and rectangular side 

orifices. On the other hand, in order to enhance the per-
formance of the ANFIS network, different techniques were 
utilized (Azimi et al. 2017c, 2018; Gharabaghi et al. 2018). 
Thus, for the first time, the ANFIS network is optimized by 
the firefly algorithm for modeling discharge coefficient of 
circular and rectangular side orifices in this study. Then, the 
superior model and the most effective input parameter are 
identified.

Methods and materials

ANFIS network

The ANFIS network is a combination of the fuzzy system 
and the artificial intelligence networks which has the advan-
tages of the both simultaneously. The fuzzy part creates a 
relationship between inputs and outputs, and the parameters 
related to the membership part are determined by the edu-
cational algorithms of the neural network. Thus, the char-
acteristics of both fuzzy and neural models are hidden into 
this system. Using linguistic concepts, this system creates 
and concludes a nonlinear relationship between inputs and 
outputs. The proper structure of ANFIS is selected appropri-
ate to input data, membership degree as well as rules and 
functions of the output membership function. The designed 
sample of the ANFIS model with two inputs is presented in 
Fig. 1. In the first layer (input), the dependence level of each 
input to different fuzzy domains is determined. By multiply-
ing each node input values to each other, weight of rules (wi) 
in the second layer is obtained. In the third layer, the calcula-
tion of the relative weight of rules is operated. The fourth 
layer is the layer of rules created by performing operation 
on this layer input signals. The final layer is the output of 
the network (f) whose objective is to minimize the difference 
between the outputs obtained from the network and the real 
output (Jang et al. 1997). 

The ANFIS network has m input properties and n rules, 
and each rule is expressed as follows:

Fig. 1   ANFIS structure for 
model with two inputs
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where xj is the jth input, fij is the membership function of the 
rule on xj and fi is the rule output. gij membership functions 
which has Gaussian form are defined as follows:

The multiplication is used as the “AND” operator. So we 
have:

where μi denotes the activated degree of the rule. The out-
put of the system is also presented by the center of gravity 
relationship as follows:

Five important and effective factors in modeling ANFIS are 
type of input fuzzy sets, the number of input fuzzy sets, type 
of output fuzzy sets, optimization procedure and the number 
of iterations. Input fuzzy sets are in different shapes includ-
ing triangular, trapezoidal, Gaussian, etc. In addition, the 
number of iterations considered for learning the network is 
equal to 5000. The method used to create fuzzy inference 
system (FIS) in this study is fuzzy c-means clustering (FCM) 
which compared to other methods requires less number of 
parameters and has had a successful performance in recent 
studies. In optimization of the ANFIS network, two optimi-
zation methods including back-propagation (BP) and hybrid, 
where the latter is a combination of BP and least square 
(LS), are classical algorithms for learning the network. In 
addition to using the hybrid method, in this study the fire-
fly algorithm which is a new and powerful meta-heuristic 
algorithm in solving nonlinear problems is utilized. FA is 
used to optimize the membership function factors (c and σ) 
for various inputs. In the following, the performance of this 
algorithm is discussed.

Firefly algorithm

The firefly algorithm (FA) was proposed for the first 
time by Yang (2010). The main idea of this algorithm is 
inspired from the light relationship between fireflies. This 
algorithm is one of the swarm intelligence manifestations 
in which cooperation and probably competition of simple 
and low intelligence members create a higher degree of 
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intelligence that is obtainable by none of the components. 
The firefly algorithm is presented based on the following 
rules (Yang 2010):

(1)	 All fireflies are sexless, meaning they move in a more 
attractive and transparent way, regardless of their sex. 
In general, a firefly absorbs other fireflies.

(2)	 The attraction degree of a firefly is proportional to its 
brightness. Brightness may also decrease by increas-
ing the distance from other fireflies. Now if there is no 
more attractive firefly, then it moves randomly.

(3)	 Brightness of a firefly is determined by the value of the 
objective function.

The firefly algorithm is a population-based evolutionary 
algorithm inspired from the behavior of fireflies in finding 
food and their social intelligence. In nature, fireflies move 
randomly and each of them that find better bait emits more 
light and attracts others. As the distance between two fire-
flies increases, their attraction percent decreases. In other 
words, distance has an inverse relationship with veloc-
ity and attraction. This algorithm consists of two basic 
parts: variations of light intensity and movement toward 
the brighter firefly. Light intensity depends on the value 
of the cost function. Thus, in minimization problems, the 
brighter firefly attracts fireflies with less light, and assume 
that n is the number of fireflies, xi is the ith particle loca-
tion and f(xi) is the cost function. So, brightness of each 
firefly is equal to the cost function value:

Each firefly has a light feature representing how much it is 
strong. This feature is a relative value changing by chang-
ing the distance between firefly i and firefly j. The attraction 
function is defined as follows:

where β0 is the attraction level in terms of r = 0 andγ repre-
sents the light attraction coefficient. The movement of firefly 
i with the location xi toward firefly j with the location xj 
(with more light) is calculated as follows:

Generally, the flowchart related to the firefly algorithm 
is as follows:

1.	 The determination and initialization of fireflies (initial 
population).

2.	 Obtaining the cost function for each individual of the 
population in its location.

3.	 Random allocation of light intensity to each individual 
of the population.

(5)Ii = f
(
xi
)
, 1 ≤ i ≤ n

(6)�(r) = �0e
−�r2

(7)xi(t + 1) = xi(t) + �r
(
xj − xi

)
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4.	 The determination of the best (brightest) individual of 
the population through the calculation of the cost func-
tion of the whole population.

5.	 The movement of other individuals of the population 
toward the best individual and updating light intensity.

6.	 The examination of iteration conditions, if iteration 
conditions are provided, move toward the next stage, 
otherwise move toward step 4.

7.	 End of the algorithm.

The performance of the firefly algorithm completely 
depends on the number of the initial population, the attrac-
tion function and the attraction coefficient. As the light 
attraction coefficient is greater, the attraction speeds of 
population individuals toward the brightest individual 

increases. In Fig. 2, the flowchart of the firefly algorithm 
is drawn.

Training of adaptive neuro‑fuzzy inference system 
using hybrid algorithm

In each iteration, the system movement continues in a for-
ward path until it reaches to the calculation of the matrix 
expressed in the least square error approach. Having model 
outputs and using the hybrid method, parameters are cal-
culated. It should be noted that all learning data should be 
applied and also premise parameters remain fixed. Then, 
consequent parameters remain fixed and premise parameters 
are adjusted by a decreasing gradient.

Fig. 2   Flowchart of firefly algorithm used in this study
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Training of adaptive neuro‑fuzzy inference system 
using firefly algorithm

In order to learn the adaptive neuro-fuzzy inference system 
(ANFIS) using the firefly algorithm, first the problem envi-
ronment or the range of variables which should be optimized 
and the fitness functions are determined. In this study, root 
mean square error (RMSE) is used as the fitness function for 
evaluating the performance of the ANFIS system learned by 
the firefly algorithm. Each firefly consists of a set of antecedent 
and subsequent parameters. Assuming three input variables as 
vector (x1, x2, x3) and an output variable as (z) and using three 
fuzzy sets with Gaussian-type membership functions, the fol-
lowing relationship holds:

Parameters which need to be set (σ, c, p, q, k, t, r) are coded 
in a chain of real numbers. In order to initiate the modeling 
process, the initial population of fireflies is determined 
randomly. Each firefly can be mapped to a set of ANFIS 
parameters. According to the light intensity related to each 
firefly, the attraction of each one is computed and compared 
with others and fireflies with less light move toward fire-
flies with more light. In the following, the fitness function 
value is calculated. This process continues until it reaches a 
determined iteration value or the least value of the desired 
fitness function.

Experimental model

In this study, to validate the results of the numerical models, 
the experimental values obtained by Hussein et al. (2010) 
and Hussein et al. (2011) are used. The experimental model 
is composed of a rectangular channel with length, width 
and height of 9.15, 0.5 and 0.6, respectively. They installed 
rectangular and circular orifices at a distance of 5 m from the 
main channel inlet on the side wall. In Fig. 3, the schematic 
of the experimental model for the rectangular and circular 
orifices is depicted.

Discharge coefficient of side orifices

Hussein et al. (2010) and Hussein et al. (2011) considered 
the discharge coefficient of rectangular side orifices as a 
function of the length and width of rectangular side orifices 
or the diameter of circular orifices (D), width of the main 
channel (B), the bed elevation of the side orifice from the 
main channel bed (W), velocity in the main channel (V1), 
flow depth in the main channel (Ym), density of fluid (ρ), 
viscosity of flow (μ) and the gravitational acceleration (g):

(8)
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The flow Froude number is Fr = V1∕
√
g.Ym and density, 

viscosity and the gravitational acceleration are considered 
constant. In addition, values of B, W and Ym with respect 
to length of the rectangular side orifice are dimensionless. 
Thus, Eq. (9) is written as follows:

In addition, the influence of the shape of the side orifice is 
investigated in this study. The parameter φ is introduced for 
taking into account the effects of the side orifice shape. For 
the rectangular side orifice, the values of the parameter φ 
for the rectangular and circular side orifices are considered 
equal to 1 and 2, respectively. Therefore, the combination of 
the input parameters are written as follows:

Thus, for modeling the discharge coefficient of side ori-
fices, the dimensionless parameters of Eq. 11 are utilized. In 
Fig. 4, the combinations of the input parameters of different 
artificial intelligence are shown in two cases including Nos. 
1 and 2. These two different combinations are made to iden-
tify the influence of the shape factor in modeling discharge 
coefficient. In order to detect the most effective parameter in 
each combination, the influence of the dimensionless input 
parameters is removed one by one and then by modeling 
runs. 

In this study, the Monte Carlo simulations are used for 
examining the abilities of the numerical models. These simu-
lations are a broad classification of computational algorithms 
which uses random sampling for calculating numerical results. 
The main idea of this method is based on solving problems 
which might be actual in nature using random decision-mak-
ing. The Monte Carlo methods are usually implemented for 
simulating physical and mathematical systems which are not 
solvable by means of other methods. In general, the Monte 
Carlo simulations are used by means of the probable distribu-
tion for solving different problems such as optimization and 
numerical integration. Furthermore, the k-fold cross-valida-
tion method is utilized for examining the proficiency of the 
mentioned models. In the k-fold cross-validation method, the 
main sample is divided into k subsamples with the same size 
randomly. Among k subsamples, one subsample is used as 
the validation data and the remaining as the test data of the 
model. Then, the method repeats k times (equal to the number 
of layers) so that each k subsample is used exactly once as 
the validation data once. The results obtained from the men-
tioned k layers are averaged and provided as an approxima-
tion. The advantage of this method is the random repetition 
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of subsamples in the test and learning process for all observa-
tions. In this paper, the k value is assumed 5. The schematic of 
the k-fold cross-validation method is depicted in Fig. 5.

Results and discussions

Criteria for examining accuracy of numerical models

In this study, in order to study accuracy of artificial intel-
ligence models, the mean absolute error (MAE), root mean 

square error (RMSE), correlation coefficient (R) and mean 
absolute percent error (MAPE) statistical indices are used 
as follows:

(12)RMSE =

√√√√1

n

n∑
i=1

(
R(Predicted)i − R(Observed)i

)2

(13)MARE =
1

n

n�
i=1

⎡⎢⎢⎣

���(R)(Predicted)i − (R)(Observed)i
���

(R)(Observed)i

⎤⎥⎥⎦
× 100

Fig. 3   Schematic of experimental model for rectangular and circular side orifices (Hussein et al. 2010 and Hussein et al. 2011)
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In the above equations, (R)(Observed)i , (R)(Pridicted)i , (R)(Observed)i 
and n are experimental values, results predicted by numeri-
cal models, the average of experimental values and the 
number of experimental measurements, respectively. The 
introduced statistical indices do not provide a simultaneous 
comparison of the average and variance of models. Thus, the 
Akaike information criterion is introduced to compare the 
predicted discharge coefficient with the experimental one 
as follows:

(14)R =

∑n

i=1

�
(R)(Observed)i − (R)(Observed)

��
(R)(Pridicted)i − (R)(Pridicted)

�
�∑n

i=1

�
(R)(Observed)i − (R)(Observed)

�2 ∑n

i−1

�
(R)(Pridicted)i − (R)(Pridicted)

�2

(15)SI =
RMSE

(R)(Observed)

(16)

AIC = n ⋅ log

[
1

n

n∑
i=1

(
Cd(Observed)i − Cd(Predicted)i

)2
]
+ 2k

where k is equal to the number of the estimated parameters 
used in the numerical model. ACI is considered as a crite-
rion for proper adaptation of a statistical model. In addition, 
this index is implemented as a suitable tool for choosing the 
model describing complexity and accuracy of the numerical 
model simultaneously.

Examination of different generations of fuzzy 
inference system

In this section, different generations of the fuzzy inference 
system are studied. The ANFIS model has three different 
fuzzy inference systems including grid partitioning (GP), 
subtractive clustering (SC) and fuzzy c-means clustering 
(FCM). In Table 1 and Fig. 6, the results of different sta-
tistical indices for these three generations are presented. In 
addition, the scatter plots for these generations are shown 
in Fig. 7. According to the modeling results, the value of 
the correlation coefficient for GP, SC and FCM is obtained 
as 0.677, 0.676 and 0.683, respectively. As shown, FCM 
simulates discharge coefficient values with higher accuracy 
compared to two other generations. Furthermore, the values 
of RMSE, SI and MARE for FCM are calculated to be 0.024, 
0.038 and 0.025, respectively. Thus, this generation is used 
for simulating the discharge coefficient of side orifices in 
the following.

Selection of optimized membership function

In fuzzy inference systems, the selection of the membership 

function is one of the most important parts of the modeling. 
In the following, the selection of the membership function is 
discussed. In Table 2, the results of different statistical indi-
ces for membership functions 2–10 are arranged. In addition, 
the changes in the ANFIS model versus different statistical 
indices are illustrated in Fig. 8. According to the modeling 
results, by increasing the membership function of the ANFIS 

Fig. 4   Combinations of different artificial intelligence models

Fig. 5   Dealing with observational data in k-fold cross-validation 
method

Table 1   Results of statistical indices for different generations of fuzzy 
inference system

R RMSE SI MARE AIC

GP 0.677 0.024 0.038 0.026 − 1174.35
SC 0.676 0.024 0.038 0.026 − 1174.01
FCM 0.683 0.024 0.038 0.025 − 1176.77
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model, accuracy increases significantly. In this study, the 
optimized membership function is considered equal to 5 and 
this function is chosen for the numerical model. For exam-
ple, the values of R and SI for the membership function are 

obtained 0.832 and 0.29, respectively. Also, the changes of 
the other statistical indices for the membership functions 
greater than 5 are negligible. The ACI value for this mem-
bership function is calculated − 1318.94. Thus, the opti-
mized number of the membership function is considered 5.

ANFIS models

As discussed in the previous sections, in this study six dif-
ferent models were developed for the ANFIS and ANFIS-FA 
models. Then, the influence of each input parameter was 
eliminated for finding the most effective input parameter as 
well as the superior model. The results of different statistical 
indices are shown in Table 3. Also, the comparison of dif-
ferent statistical indices for six ANFIS models is shown in 
Fig. 9. For instance, ANFIS1 approximates discharge coef-
ficient values in terms of all input parameters (B/D, W/D, 
Ym/D, Fr, φ). For this model, the values of MARE and 
RMSE are calculated to be 0.019 and 0.018, respectively. 

Fig. 6   Comparison of different 
statistical indices for different 
generations of fuzzy inference 
system

Fig. 7   Scatter plots for different generations of fuzzy inference system

Table 2   Results of different statistical indices for ANFIS model 
membership functions

R RMSE SI MARE AIC

MF 2 0.683 0.024 0.038 0.025 − 1228.77
MF 3 0.689 0.024 0.037 0.024 − 1231.47
MF 4 0.785 0.020 0.032 0.021 − 1282.69
MF 5 0.832 0.018 0.029 0.019 − 1318.94
MF 6 0.836 0.018 0.028 0.019 − 1322.34
MF 7 0.801 0.019 0.031 0.020 − 1293.99
MF 8 0.817 0.018 0.030 0.019 − 1306.32
MF 9 0.846 0.017 0.027 0.017 − 1332.13
MF 10 0.849 0.017 0.027 0.017 − 1334.81
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In addition, the values of MARE and RMSE for this model 
are calculated to be 0.832 and 0.029, respectively. Among 
all ANFIS models, ANFIS1 has the highest accuracy. Then, 
five distinct ANFIS models (ANFIS2–ANFIS6) are devel-
oped through the elimination of the input parameters. For 
ANFIS2, the influence of the shape parameter (φ) is elimi-
nated and this model simulates discharge coefficient values 
in terms of B/D, W/D, Ym/D, Fr. For this model, the values 
of RMSE, MARE and AIC are calculated to be 0.021, 0.025 

and − 1132.66, respectively. For simulating discharge coef-
ficient of side orifices using ANFIS3, the influence of Fr is 
neglected. In other words, this model is a function of (B/D, 
W/D, Ym/D, φ). For this model, the values of R, SI and ACI 
are calculated as 0.777, 0.032 and − 1147.39, respectively. 
Furthermore, the values of RMSE and MARE for ANFIS3 
are 0.020 and 0.020, respectively. ANFIS4 simulates dis-
charge coefficient values in terms of (B/D, W/D, Fr, φ), 
and the influence of the parameter Ym/D for this model is 
removed. For ANFIS4, R and SI are computed to be 0.783 
and 0.032, respectively. As shown, among the models with 
four input parameters, this model estimates discharge coef-
ficient values with higher accuracy. In addition, the values 
of MARE and AIC for the mentioned model are obtained as 
0.021 and − 1151.52, respectively. For ANFIS5, the influ-
ence of the parameter W/D is removed. In other words, this 
model estimates objective function values in terms of (B/D, 
Ym/D, Fr, φ). Based on the modeling results, this model has 
the lowest accuracy among all ANFIS models. For instance, 
MARE and AIC for the mentioned model are 0.025 and 

Fig. 8   Changes in ANFIS 
model membership function 
versus different statistical 
indices

Table 3   Results of different statistical indices for six models

R RMSE SI MARE AIC

ANFIS1 0.832 0.018 0.029 0.019 − 1188.94
ANFIS2 0.752 0.021 0.034 0.025 − 1132.66
ANFIS3 0.777 0.020 0.032 0.020 − 1147.39
ANFIS4 0.783 0.020 0.032 0.021 − 1151.52
ANFIS5 0.689 0.024 0.037 0.025 − 1101.24
ANFIS6 0.710 0.023 0.036 0.026 − 1111.05

Fig. 9   Comparison of different 
statistical indices for six ANFIS 
models
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− 1101.24, respectively. In addition, the values of R and 
RMSE for ANFIS5 are computed to be 0.698 and 0.024, 
respectively. Furthermore, the ACI, SI and R values for 
ANFIS6 are approximated as − 111.05, 0.036 and 0.710, 
respectively. This model computes discharge coefficient 
values in terms of (W/D, Ym/D, Fr, φ), and the influence of 
the parameter B/D is eliminated. Furthermore, the values 
of RMSE and MARE for this model are calculated to be 
0.023 and 0.026, respectively. The scatter plots for different 
ANFIS models are illustrated in Fig. 10. Therefore, based 
on the sensitivity analysis conducted on the ANFIS mod-
els, ANFIS1 is detected as the superior model. This model 
simulates discharge coefficient values in terms of all input 
values. Furthermore, the ratio of main channel width to side 
orifice dimensions (length or diameter) is identified as the 
most effective parameter.

ANFIS‑FA models

In the following, the ANFIS-FA hybrid models are stud-
ied. As discussed above, the first model is a function of all 
input parameters and the five remaining (ANFIS-FA2 to 
ANFIS-FA6) are a function of four input parameters. Based 

on the modeling results, ANFIS-FA1 estimates objective 
function values with the highest accuracy compared to the 
other hybrid models. The results of different hybrid statis-
tical indices are listed in Table 4. Furthermore, the com-
parison of these statistical indices is shown in Fig. 11. In 
addition, the scatter plots for these models are illustrated in 
Fig. 12. For example, for ANFIS-FA1, the values of RMSE, 
MARE and SI are calculated to be 0.017, 0.017 and 0.027, 
respectively, whereas the R value for the mentioned model 
is computed equal to 0.850. Based on the results obtained 
from the hybrid numerical models, ANFIS-FA1 simulates 

Fig. 10   Scatter plots for six ANFIS models

Table 4   Results of different statistical indices for six ANFIS-FA 
models

R RMSE SI MARE AIC

ANFIS-FA1 0.850 0.017 0.027 0.017 − 1207.14
ANFIS-FA2 0.808 0.019 0.030 0.022 − 1169.42
ANFIS-FA3 0.785 0.020 0.032 0.020 − 1153.17
ANFIS-FA4 0.793 0.020 0.031 0.019 − 1158.37
ANFIS-FA5 0.693 0.023 0.037 0.025 − 1103.06
ANFIS-FA6 0.788 0.020 0.032 0.021 − 1154.84
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discharge coefficient values with higher accuracy. Further-
more, for this model the values of R, RMSE and AIC are 
obtained 0.808, 0.019 and − 1169.42, respectively. How-
ever, SI and MARE for this model are computed 0.030 and 
0.022, respectively. Among the hybrid models with four 
input parameters, ANFIS-FA2 has the highest accuracy. For 
ANFIS-FA, the values of SI, R and ACI are 0.032, 0.785 and 
− 1153.17, respectively. In addition, the values of RMSE 

and MARE are also approximated to be 0.020 and 0.020, 
respectively. Among the models with four input parameters, 
after ANFIS-FA2, ANFIS-FA4 has the highest correlation 
with the observational values. For example, MARE and SI 
for this model are computed as 0.019 and 0.031, respec-
tively. Also, the values of RMSE and AIC for the mentioned 
model are obtained to be 0.020 and − 1158.37, respectively. 
According to the modeling results, ANFIS-FA5 has the 

Fig. 11   Comparison of differ-
ent statistical indices for six 
ANFIS-FA models

Fig. 12   Scatter plots for six ANFIS-FA models
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lowest accuracy among all hybrid models. The values of 
R, Si and AIC for ANFIS-FA5 are calculated 0.693, 0.037 
and − 1103.06, respectively. For ANFIS-FA6, the values of 
RMSE and MARE are also 0.020 and 0.021, respectively, 
while AIC is calculated to be − 1154.84. In addition, for this 
model the value of R is obtained equal to 0.788.

According to the results of the hybrid numerical mod-
els, ANFIS-FA1 which calculates discharge coefficient 
values in terms of all input parameters is introduced as 
the superior model. In addition, the ratio of main channel 
width to side orifice diameter is detected as the most effec-
tive input parameter.

Conclusions

In this study, using the ANFIS model and the firefly algo-
rithm a hybrid algorithm was developed for estimating dis-
charge coefficient of such hydraulic structures. For validation 
of the results, the k-fold cross-validation method with k = 5 
was used. In order to examine the numerical model abilities, 
the Monte Carlo simulations were used. Then, the most effec-
tive parameters on discharge coefficient of side orifices are 
identified. Then, 6 ANFIS models and 6 ANFIS-FA models 
were developed. By conducting a sensitivity analysis, the 
superior models for each of ANFIS and hybrid models were 
introduced. The superior models predicted discharge coef-
ficient values with reasonable accuracy. For example, the 
ANFIS superior model calculated the values of R and SI to 
be 0.029 and 0.832, respectively. In addition, the values of 
RMSE, MARE and SI for the hybrid superior models were 
computed 0.017, 0.017 and 0.027, respectively. Compared 
to the corresponding models, all hybrid models simulated 
discharge coefficient values with higher accuracy. Accord-
ing to the results of the hybrid models, ANFIS-FA1 which 
predicted discharge coefficient values in terms of all input 
parameters was detected as the superior model. Furthermore, 
the ratio of main channel width to side orifice diameter (B/D) 
was identified as the most effective input parameter.
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