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Abstract
In this research, two equations are considered as examples of hyperbolic and elliptic equations. In addition, two finite element 
methods are applied for solving of these equations. The purpose of this research is the selection of suitable method for solv-
ing each of two equations. Burgers’ equation is a hyperbolic equation. This equation is a pure advection (without diffusion) 
equation. This equation is one-dimensional and unsteady. A sudden shock wave is introduced to the model. This wave moves 
without deformation. In addition, Laplace’s equation is an elliptical equation. This equation is steady and two-dimensional. 
The solution of Laplace’s equation in an earth dam is considered. By solution of Laplace’s equation, head pressure and the 
value of seepage in the directions X and Y are calculated in different points of earth dam. At the end, water table is shown 
in the earth dam. For Burgers’ equation, least-square method can show movement of wave with oscillation but Galerkin 
method can not show it correctly (the best method for solving of the Burgers’ equation is discrete space by least-square finite 
element method and discrete time by forward difference.). For Laplace’s equation, Galerkin and least square methods can 
show water table correctly in earth dam.

Keywords  Earth dam · Elliptical equations · Hyperbolic equations · Numerical methods · Shock wave · The Burgers’ 
equation · The Laplace’s equation

Introduction

Finite element method is a powerful numerical method for 
solving very complex differential equations. Finite difference 
method, finite volume method and boundary element method 
are especial forms of finite element method. Finite element 
method can consider complex boundaries and domains. 
Finite element method classifies to two types (calculus vari-
ation principles and weighted residual methods). Galerkin 
finite element method and least square finite element method 
are weighted residual methods.

Bateman (1915) developed Burgers’ equation and Burgers 
(1948) utilized this equation in turbulent model. Cole (1951) 
and Hopf (1950) solved this equation analytically by Fourier 
series. They considered simple initial conditions. Jiang and 

Carey (1988) applied least square finite element method for 
solution of Burgers’ equation. They discretized time domain 
by finite difference method. Öziş et al. (2003) used Galerkin 
finite element method for solving of Burgers’ equation. They 
utilized two-nodded elements. They considered initial and 
boundary conditions of Hopf and Cole problem and dis-
cretized time domain by forward differences. In addition, 
Dogan (2004) used Galerkin finite element method for solv-
ing Burgers’ equation but he approximated time domain by 
Crank–Nicolson method. De Maerschalck and Gerritsma 
(2005) utilized least-squares spectral element method for 
solving of one-dimensional and pure advection Burgers’ 
equation. Kumar and Mehra (2005) separated Burgers’ equa-
tion to advection and diffusion terms and solved it by wave-
let-Taylor Galerkin method in two phases, while Roig (2007) 
applied third- and fourth-order Taylor–Galerkin schemes 
for this purpose. He developed two new Taylor–Galer-
kin schemes for maintaining the accuracy properties and 
improving the stability restrictions in convection–diffusion. 
In addition, Dag et al. (Dag et al. 2006) solved Burgers’ 
equation by least-square finite element method and quadratic 
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B-spline finite element method. They showed that results of 
least-square finite element method are more accurate. Zhang 
et al. (2009) utilized element-free characteristic Galerkin 
method (EFCGM) for solving of one-dimensional and two-
dimensional Burgers’ equation. They considered different 
viscosity and fully explicit scheme for discretization of time 
domain. They compared results of their method to results 
of analytic method. In addition, Zhang et al. (2010) devel-
oped a new numerical method, which is based on the cou-
pling between variation multi-scale method and mesh-free 
methods for 2D Burgers’ equation with various values of 
Reynolds number. Their method was stable for high Reyn-
olds number. In recent years, Mukundan and Awasthi (2015) 
presented new efficient numerical techniques for solving 
one-dimensional quasi-linear Burgers’ equation. They used 
a non-linear Cole–Hopf transformation, therefore, the Burg-
ers’ equation is reduced to one-dimensional diffusion equa-
tion. The linearized diffusion equation is semi-discretized 
using method of lines (MOL) which leads to a system of 
ordinary differential equations in time. Resulting system of 
ordinary differential equations is solved by backward dif-
ferentiation formulas (BDF) of order one, two and three. 
Comparison results with those of exact solution illustrate 
efficiency of proposed numerical methods, also Shi et al. 
(2013) applied a new low-order least squares nonconform-
ing characteristics mixed finite element method (MFEM) 
for solving two-dimensional Burgers’ equation. They used 
two typical characters of the elements for approximating 
the velocity and flux variables. Dehghan and Abbaszadeh 
(2017) utilized proper orthogonal decomposition (POD) 
meshless and radial basis function generated finite differ-
ences (RBF-FD) technique to simulate the shallow water 
equations. New method reduced CPU time for solving of 
shallow water equations in comparison with discontinuous 
Galerkin and finite volume methods. Dehghan et al. (2007) 
used Adomian–Pade technique (ADM-PADE) and combina-
tion of modified Adomian decomposition method and Pade 
approximation (MADM–PADE) for solving Burgers’ equa-
tion. They showed that MADM–PADE is more accurate than 
ADM–PADE and has faster convergence rate.

Surana and Huels (1989) applied least-square finite ele-
ment method in an aquifer for calculation of transitivity. 
They discretized domain to elements that have two, three 
or four nodes and solved Laplace’s equation. Results of 
elements with four nodes were more accurate than results 
of other elements. Thompson and Pinsky (1995) utilized 
Galerkin least-squares finite element method (GLS) for 
solving the two-dimensional Helmholtz equation. This 
equation is a form of Laplace’s equation and makes used 
of modeling of wave movement. They applied two-dimen-
sional Fourier series. On the other hand, Amini and Nixon 
(2006) applied multi wavelet Galerkin boundary element 
for solution of Laplace’s equation. Fu and Jin (2009) 

developed a model for simulating the unsteady seepage 
flow through dam, with both saturation and water head 
as variables to describe the seepage domain. This model 
provided a relatively simple computing scheme, as com-
pared with traditional methods. In recent years, Dosiyev 
(2014) developed the combined block–grid method for the 
highly accurate approximation of the pure second-order 
derivatives for the solution of Laplace’s equation on a 
staircase polygon. In addition, Ren et al. (2014) prepared 
a theoretical analysis of the moving least-squares (MLS) 
approximation, which belongs to the family of meshless 
methods. They establish the error estimates for interpolat-
ing element-free Galerkin (IEFG) method when it is used 
for solving Poisson’s equation. Tatari and Dehghan (2005) 
applied the Adomian decomposition method (ADM) to 
solve Laplace equation. This method is an accurate method 
for analytical solutions and numerical approximations of 
different equations.

In this research, two finite element methods (Galer-
kin and least square) will apply to solve Burgers’ and 
Laplace’s equations and the best solution method will be 
selected for each equation. Reason of selection of these 
methods is similarity of these methods. Galerkin method is 
simpler than least-square method but it may not be suitable 
for solving some equations. In these cases, least-square 
method can be applied and this research will find these 
cases. The FORTRAN codes of these methods were writ-
ten by authors. Because of access to source code of these 
methods, authors can cause their considered changes for 
solving of different equations easily. These changes can be 
related to initial conditions, boundary conditions, param-
eters of model and size of elements. Other advantages of 
developed method over other methods (as different finite 
difference, finite volume and other finite element schemes) 
are high accuracy and little runtime of developed method. 
In addition, authors utilized a Pentium IV, 2400 MHz CPU 
machine.

The research methodology

Burgers’ equation:
The global form of one-dimensional Burgers’ equation 

is:
 

where u is velocity, u is average of velocity, x is space, t is 
time, a is left boundary of space, b is right boundary of space 
and r is diffusion coefficient. Because of using u , the form of 

(1)du

dt
+ ū

du

dx
= r

d
2u

dx2
a < x < b, t > 0,
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this equation becomes linear. In this research, r is considered 
equal to zero and Burgers’ equation is converted to a pure 
advection equation and it can show shock wave movement. 
For model space, a two-nodded element (linear element) 
is used. For discretizing time and space, four methods are 
applied:

1.	 Discretizing space by Galerkin finite element method 
and discretizing time by forward difference.

2.	 Discretizing space and time by Galerkin finite element 
method.

3.	 Discretizing space by least-square finite element method 
and discretizing time by forward difference.

4.	 Discretizing space and time by least-square finite ele-
ment method.

After calculation of value of residual, it multiplies to weight 
function and below integral must be solved.

 

where R is residual, N is weight function, Δx is space step 
and Δt is time step. By calculating Eq. 2 at each node, the 
equilibrium equations are derived.

where K is stiffness matrix, X is unknown parameters vector 
and F is force vector.

Matrix K and vectors X and F are shown for four methods 
below.

Method 1 Discretizing space by Galerkin finite element 
method and discretizing time by forward difference:

Method 2 Discretizing space and time by Galerkin finite 
element method:
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Method 3 Discretizing space by least-square finite ele-
ment method and discretizing time by forward difference:

Method 4 Discretizing space and time by least-square 
finite element method

Laplace’s equation:
The global form of two-dimensional steady Laplace’s 

equation (seepage equation) is:

where kx, ky are hydraulic conductivity coefficients in direc-
tions x, y, respectively, while h represents head pressure and 
Q is source or sink term. For discretization of space domain, 
linear triangular elements (with three nodes) are used. To 
discretize space, two methods are applied:
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1.	 Discretizing space by Galerkin finite element method.
2.	 Discretizing space by least-square finite element method.

Matrix K and vectors X and F are shown for two methods 
below.

Method 1 Discretizing space by Galerkin finite element 
method

where A is the area of element.

Method 2 Discretizing space by least square finite element 
method

Because order of Laplace’s equation is 2 for using linear 
triangular elements in the least-square finite element method, 
this equation must be converted to two first-order equations. 
These equations are shown below:
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By substituting Eqs. 24 and 25 in Eq. 16, the following 
equation system is derived:
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The flowchart of research methodology is Fig. 1

Results and discussion

Burgers’ equation:
By applying four methods for solving a typical example, 

it is observed that results of space discretization by least-
square finite element method and time discretization by 
forward difference scheme are more accurate than those of 

(35)[F] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1
f2
f3
f4
f5
f6
f7
f8
f9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(36)f1 =
1

3
QA,

(37)f2 = f3 = 0.

other methods. Results of this method have the most fit-
ness to results of analytic method. The characteristics of this 
problem are: 0 < X<2 m, Δt = 0.01 s, the number of ele-
ments = 100 (Δx = 0.02 m), velocity of downstream bound-
ary = 2 m/s and velocity of upstream boundary = 5 m/s. The 
results of four methods at t = 0.01 s are shown in Fig. 2.

The used CPU times of full system are 2 and 3 s for 
Galerkin and least-square finite element methods, respec-
tively (discrete time by forward difference did not increase 
the used CPU time).

Root mean square error (RMSE) between results of dis-
crete space and time by Galerkin finite element method, dis-
crete space and time by least-square finite element method, 
discrete space by Galerkin finite element method and 

Development of four methods for solving hyperbolic equations as Burgers' equation (extraction 
of stiffness matrix and force vector)

1- Discretizing space by Galerkin finite element method and discretizing time by forward 
difference

2- Discretizing space and time by Galerkin finite element method
3- 

4- Discrete space and time by least square finite element method

Discretizing space by least square finite element method and discretizing time by forward 
difference

Development of two methods for solving elliptical equations as Laplace's 
equation (extraction of stiffness matrix and force vector)
1- Discretizing space by Galerkin finite element method

2- Discretizing space by least square finite element method

Selection of the best method for 
solving hyperbolic and elliptic

equations using different examples

Fig. 1   The flowchart of research methodology

t=0.01 s

1.8
2.3
2.8
3.3
3.8
4.3
4.8
5.3

0.47 0.48 0.49 0.5 0.51 0.52 0.53

X(m)

U
(m

/s)

Galerkin time forward diff
Galerkin
least  square forward diff
least square
analytic method

Fig. 2   The results of four numerical methods for typical example ver-
sus analytic method
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discrete time by forward difference, discrete space by least-
square finite element method and discrete time by forward 
difference and results of analytic method are 0.0794, 0.0789, 
0.0676 and 0.0376 m, respectively.

Example 1  0  <  X<10  m, Δt  =  1  s, the number of ele-
ments  =  100 (Δx  =  0.1  m), velocity of downstream 
(x = 3) = 0.1 m/s and velocity of upstream (x = 3) = 0.3 m/s. 
The results of discrete space by least-square finite element 
method and discrete time by forward difference are shown 
below for different times (Fig. 3).

The execution time of full system is 4 s.

Example 2  This example shows effects of size of elements. 
Characteristics of this problem are similar to example 1 but 
the number of elements is 50 (Δx = 0.2 m). Comparison 
between results of two states is shown in Fig. 4.

The used CPU time of full system is 1 s for 50 elements.
Laplace’s equation:

t=20 s
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t=30 s
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t=40 s
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t=1 s
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t=10 s
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Fig. 3   Movement shock wave in different times

t=1 s
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Fig. 4   Comparison between results of discretization to 50 elements 
and 100 elements
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Methods of solution of this equation (Galerkin and least-
square finite element methods) are suitable and their results 
are similar. Their results have no numerical oscillations. This 
subject is shown by several examples.

Example 1  This example shows effects of size of elements. 
Information of this problem is: upstream head = 10.5 m, 
downstream head = 1.5 m, kx = ky = 0.00001 m/s and Q = 0. 
Results of numerical method are shown in Figs 5, 6, 7 and 
Table 1.   

Fig. 5   Calculated water table 
by numerical method (coarse 
meshes)

Fig. 6   Calculated water table by 
numerical method (fine meshes)

Fig. 7   Comparison between cal-
culated water table by numeri-
cal method (fine elements and 
coarse elements)
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The execution times of full system are 4 and 7 s for coarse 
and fine elements, respectively. For Galerkin and least-
square finite element methods, this time is equal (because 
this problem is steady state).

Example 2  This example shows effects of non-homogenous 
of material of dam (kx ≠ ky). Characteristics of this prob-
lem are: upstream head = 8 m, downstream head = 2 m, 
kx = 0.001 m/s, ky = 10−8 m/s and Q = 0. Results of numeri-
cal method are shown at Fig. 8.

The used CPU times of full system are 7 s. For Galerkin 
and least-square finite element methods, this time is equal.

Example 3  This example shows effects of an impen-
etrable core in earth dam. Characteristics of this problem 
are: upstream head = 10.5 m, downstream head = 1.5 m, 
kx = ky = 0.001 m/s, kx = ky = 10−8 m/s for impenetrable core 
and Q = 0. Results of numerical method are shown in Fig. 9.

The used CPU times of full system are 9 s. For Galerkin 
and least-square finite element methods, this time is equal.

Table 1   Comparison between calculated water table by numerical 
method (fine elements and coarse elements)

X (distance 
from upstream) 
(m)

Water table in 
fine elements 
(m)

Water table in 
coarse elements 
(m)

Difference 
between water 
tables (cm)

21 8.81 7.88 93
30 5.69 5.31 38
39 3.03 2.96 7
45 2 1.96 4
54 1.5 1.52 −2

Fig. 8   Calculated water table by 
numerical method (kx ≫ ky)

Fig. 9   Calculated water table by 
numerical method (earth dam 
with impenetrable core)
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Example 4  This example compares results of two methods 
(Galerkin and least-square finite element methods) with 
those of Wang and Anderson (1982). They solved this 
example by finite difference and finite element methods. 
Characteristics of this problem are: upstream head = 4 m, 
downstream head = 3 m, kx = ky = 0.0001 m/s and Q = 0. 
Results of two methods and those of Wang and Anderson 
(1982) are shown in the Fig. 10 and Table 2. The execution 
time of full system is 2 s. For Galerkin and least-square finite 
element methods, this time is equal.

RMSE between results of Galerkin finite element 
method and results of Wang and Anderson (1982) is 
0.0094  m and RMSE between results of least-square 
finite element method and results of Wang and Anderson 
(1982) is 0.0025 m. Therefore, least-square finite element 
method is slightly more accurate than Galerkin finite ele-
ment method.

Conclusion

The least-square finite element method is a powerful tool 
for solution of hyperbolic and elliptic equations, while 
the Galerkin method can not solve hyperbolic equations 
because developed stiffness matrix by Galerkin method is 
non-symmetric. In addition, it is observed that discretizing 
time by forward difference method can improve results of 
finite element method. By attention to Figs. 4 and 7, accu-
racy of results of numerical models increases using fine 
elements. Using fine meshes, the front of wave becomes 
near to a vertical line (actual state) in solution of Burgers’ 
equation and water tables of upstream and downstream 
of dam become near to upstream and downstream head 
(non-continuity does not occur between water tables of 
upstream and downstream of dam in point of contact water 
and dam) in solution of Laplace’s equation. Figure 8 shows 
that by increasing hydraulic conductivity in a direction 
water table is converted to a straight line (seepage occurs 
in direction that hydraulic conductivity is very high).

Figure 9 shows the ability of model for consideration of 
impenetrable core in earth dam. Impenetrable core lowers 
water table and decreases the value of seepage.

Although numerical models are suitable tools for solution 
of differential equations but they can not show actual states 
very exactly. For example, front shock wave is a vertical 
line and numerical models cannot show it. For overcoming 
this problem, new methods must be applied for solution of 
differential equations. Artificial neural network and optimi-
zation models such as genetic algorithm are suitable tools 
for this purpose.
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mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.
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