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Abstract In this study, the adsorption potential of acti-

vated carbon prepared from Ziziphus mauritiana nuts for

the removal of methylene blue (MB) from aqueous solution

has been investigated using batch mode experiments. The

effects of some operating parameters on the removal dye

such as, initial pH (2–12), temperature (298–328 K), initial

MB concentration (20–100 mg L-1), and contact time

(5–70 min) were investigated. Adsorption kinetic showed

that the rate adsorption followed the pseudo-second-order

kinetic model. Four adsorption isotherms models were

applied to experimental equilibrium data (Langmuir, Fre-

undlich, Redlich–Peterson, and Fritz–Schlunder) and the

different constants were calculated using non-linear equa-

tions models. Fritz–Schlunder model was found the best

one to describe the adsorption process which suggests that

the adsorption of MB onto activated carbon derived from

Ziziphus mauritiana is heterogeneous with a multilayer.

Thermodynamic adsorption showed that the process was

endothermic and spontaneous in nature.

Keywords Activated carbon � Ziziphus mauritiana �
Adsorption � Removal dye � Kinetic and thermodynamic

study

Introduction

Dyes are considered as major contaminant of waste water

quality. In this fact, dyes effluents contain about

50 mg L-1, and consequently, this concentration is unac-

ceptable. Importantly, the accumulation of dyes in water

can seriously damage food chains of humans and animals

(Rodrigues da Silva et al. 2012). Most of these dyes are

toxic, mutagenic, or carcinogenic (Punzi et al. 2015).

Methylene blue (MB) is a cationic dye having various

applications in chemistry, biology, medical science, and

dyeing industries. Its long-term exposure can cause vom-

iting, nausea, anemia, and hypertension (Pathania et al.

2013). Therefore, the removal of dyes from wastewaters is

required before discharge into receiving waters to avoid

these complications.

The wide and general applicable dyes treatment tech-

niques are flocculation, coagulation, precipitation, mem-

brane filtration, electrochemical techniques, ozonation,

biological techniques, photodegradation, and advanced

oxidative process (Gupta and Suhas 2009; Downham and

Collins 2000). These methods are not very successfully due

to suffering from many restrictions (Sulak et al. 2007).

Adsorption (Al-Qodah and Shawabkah 2009; Al-Qodah

et al. 2007) is one of the most popular and extensively used

methods for the removal of various dyes from wastewaters.

Activated carbons are carbonaceous materials that can be

distinguished from elemental carbon by the oxidation of

the carbon atoms found on the outer and inner surfaces

(Mattson and Mark 1971). These materials are character-

ized by their extraordinary large specific surface areas,

well-developed porosity, and tunable surface containing

functional groups (Baker et al. 1992; Jiang et al. 2003). For

these reasons, activated carbons are widely used as adsor-

bents for the removal of organic chemicals and metal ions
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of environmental or economic concern from air, gases,

potable water, and wastewater (El-Hendawy 2003). Acti-

vated carbon usually increases the cost of the treatment

process. Its economical drawback has stimulated the

interest to utilize cheaper raw materials for the production

of activated carbon (Rengarag et al. 2002; Yahya et al.

2015). Therefore, there is an increasing interest in the

development and application of activated carbon derived

from several materials. Several studies have been reported

to find low-cost carbonaceous materials. Ultimately, Jer-

usalem artichoke (Yu and Luo 2014), waste rice hulls

(Luna et al. 2013), homemade cocoa shell (Ribas et al.

2014), waste tea (Auta and Hameed 2011), coir pith

(Santhy and Selvapathy 2006), orange peels (Fernandez

et al. 2014), jute sticks (Asadullah et al. 2010), olive stones

(Rodriguez-Reinoso et al. 2001; Lafi. 2001; Elsheikh et al.

2003), sugarcane bagasse (Ahmedna et al. 2000), pecan

shells (Shawabkeh et al. 1998), and palm seed (Rengarag

et al. 2002). The choice of Ziziphus nuts as source of

adsorbent is dictated by the fact that it is abundant in

several regions, cheap, and especially for a valuation of

said biomaterial. The Ziziphus lotus belongs to the family

Rhamnaceae (Maraghni et al. 2010). Its fruits used as

edible food and traditional Chinese medicine (Adeli and

Samavati 2015), claimed to purify the blood and aid

digestion (Tripathi et al. 2001).

In the current study, effects of many variables, including

pH, adsorbent dosage, contact time, and initial dye con-

centration, were investigated. In addition, we have

achieved the kinetics, thermodynamics, and isotherms

models of methylene blue adsorption onto activated carbon

derived from Ziziphus mauritiana. The request adsorbent

was prepared and characterized by technical spectroscopy

such FT-IR, XRD, and by the analysis of SEM.

Materials and methods

Adsorbent and dye

The Z. mauritiana nuts were collected, washed with

distilled water, and dried at room temperature. The

unmodified Z. mauritiana nuts were abbreviated as

ZMN. The carbonization of ZMN materiel was carried

out using an appropriate weight of ZMN and 25 mL of

concentrated KOH with a mass ratio (1:4) in a glass

beaker of 100 mL, heated at 500 �C for 1 h producing

a black carbonaceous residue. Carbonization removes

the volatile matter in the used wastes, whereas acti-

vation with chemical agents KOH would produce a

well-developed porosity of activated carbon. The

resulting support was neutralized with HCl 0.1 N at

neutral pH. After, the carbonized Z. mauritiana nuts

(denominated as C-ZMN) were filtered and washed

several times with distilled water. The C-ZMN adsor-

bent was then dried at 100 �C for 2 h and kept in

desiccators for further use.

The cationic dye chosen in this study is methylene blue

(MB). This choice is in the basis that MB as a reference

adsorbate, being employed in several industrial fields, and

used for the adsorption experiments. The molecular for-

mula and UV–visible spectrum of methylene blue are

shown in Fig. 1.

Adsorption experiments

Adsorption experiments were conducted in 50 mL Erlen-

meyer flasks. They were shaken at 150 rpm for the required

time in water bath shaker. The effects of various operating

parameters such as adsorbent dose (0.2–1 g L-1), initial

dye concentration (20–100 mg L-1), contact time

(5–70 min), pH (2–12), and temperature (298–328 K) were

achieved on adsorption of MB dye onto C-ZMN. The

residual concentrations of MB dye after adsorption process

were determined by UV–Vis spectrophotometer at 663 nm.

For the adsorption isotherm study (used models: Lang-

muir, Freundlich, Redlich–Peterson and Fritz–Schlunder),

the experimental data obtained were compared and the

constants appearing in each equation of those models were

determined by non-linear regression analysis using origin

9.1 software.

The amount of adsorption qt (mg g-1) at time t (min)

was calculated using the following equation:

qt ¼
C0 � Ct

m
V; ð1Þ

where C0 and Ct (mg L-1) are concentrations of MB dye at

the initial and time t, respectively, V is the volume of the

solution (L), and m is the mass of dye adsorbent (g).
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Fig. 1 Molecular formula and UV–Visible spectrum of methylene

blue
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The amount of adsorption qe (mg g-1) at equilibrium

was calculated using the formula:

qe ¼
C0 � Ce

m
V; ð2Þ

where Ce (mg L-1) is the liquid concentration of dye at

equilibrium and C0 (mg L-1) is the initial concentration of

the dye in solution.

The MB dye removal percentage (%) can be calculated

as follows:

%removal ¼ C0 � Ce

C0

� 100; ð3Þ

where Ce (mg L-1) is the concentration of MB at

equilibrium.

Results and discussion

Characterization of C-ZMN adsorbent

To investigate the surface characteristic of C-ZMN adsor-

bent, FT-IR, XRD, and SEM spectrums were studied. The

bands positions shown in FT-IR spectrum as depicted in

Fig. 2, are 1125, 1381, 1570, 2915, and 3442 cm-1. In this

fact, the wide band at 3442 cm-1 is attributed to O–H and

N–H stretching. The bands at 2915, 1570, and 1381 cm-1

correspond, respectively, to unsymmetrical aliphatic C–H

stretching, C=C stretching of aromatic rings, and aromatic

C=C stretching vibration. Band at 1125 cm-1 is ascribed to

C–O stretching in alcohol or ether or hydroxyl group

(Pavia et al. 1987). The XRD spectrum of C-ZMN adsor-

bent which was explored in Fig. 3 presented a typical XRD

pattern of an amorphous sample. SEM has been a primary

tool for characterizing the surface morphology and funda-

mental physical properties of the adsorbent surface. It is

useful for determining the particle shape, porosity, and

appropriate size distribution of the adsorbent. The surface

morphology of the C-ZMN adsorbent is shown in Fig. 4.

The SEM image indicates that the surface is relatively

smooth and contains many pores. It shows very distin-

guished dark spots which can be taken as a sign for

effective adsorption of dye molecules in the cavities and

pores of this adsorbent.

Effect of C-ZMN dose

Figure 5 depicts the effect of C-ZMN dose on the removal

efficiency of MB from aqueous solutions. In the light of

these results, it appeared that at equilibrium time of

70 min, the percent adsorption was increased from 47.16 to

86.5% when the adsorbent dose increased from 0.2 to

1 g L-1. This behavior is done, because that number of

available adsorption sites and the surface area increase by

increasing the adsorbent dose, it, therefore, results in the

Fig. 2 FT-IR spectrum of C-ZMN adsorbent

Fig. 3 XRD spectrum of C-ZMN adsorbent

Fig. 4 SEM of C-ZMN adsorbent
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increase of amount of adsorbed dye. It was also observed at

equilibrium time a decrease in amount of adsorption. This

may be attributed to overlapping or aggregation of

adsorption sites resulting in a decrease in total adsorbent

surface area available to MB and as an increase in diffusion

path length (El Haddad et al. 2012).

Effect of MB concentration

The effect of initial MB concentration on the adsorption

rate was investigated. The experiment was carried out with

fixed C-ZMN dose (0.8 g L-1) at room temperature. The

adsorption capacity for C-ZMN was increased from 17.86

to 102.5 mg g-1 when the MB concentration was increased

from 20 to 100 mg L-1 (see Fig. 6). Maximum adsorption

MB dye was attained within 20 min after the start of every

experiment. The Increasing of MB concentration enhances

the interaction between the dye and C-ZMN providing

necessary driving force to overcome the resistance to mass

transfer of dye (Gil et al. 2011). Therefore, rate of

adsorption and hence dye uptake increased with an increase

in MB dye concentration.

Effect of pH

We achieve the accurate study of the adsorption of MB dye

onto C-ZMN with variation of pH ranging between (2 and

12), and the results are shown in Fig. 7. It is observed that

removal % increases slightly from 19.22 to 88.77% when

pH was increasing from 2 to 12. To explain the results, we

have determined the point of zero charge (pHPZC = 2.3) of

C-ZMN, by the titration method (Preethi and Sivasamy

2006). At pH[ pHPZC, negatively charged adsorbent sites

increase, which favor the adsorption of MB as cationic dye

due to attractive electrostatic interactions. The lower

adsorption of this dye at pH = 2 (pH\ pHPZC) was not

solely due to the presence of excess H? ions competing

with the dye cation for the adsorption sites, but also to the

electrostatic repulsion between the cationic dye MB and

protonated C-ZMN surface. The similar result was

obtained and reported by other author’s researchers

(Hameed 2009).

Adsorption kinetic

Many kinetic models have been proposed to elucidate the

mechanism of dye biosorption. The rate and mechanism of

biosorption is controlled by various factors like physical

and/or chemical properties of biosorbent as well as mass

transfer process. These kinetic models are useful for the

design and optimization of effluent treatment process. To

investigate the mechanism of Methylene blue biosorption

by C-ZMN, the following kinetic models were considered.

The kinetic models applied in this study are the pseudo-first

order (Lagergren 1898) and pseudo-second order (Ho and
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Fig. 5 Effect of C-ZMN dose on the removal of MB. Initial dye

concentration: 100 mg L-1; temperature: 298 K
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McKay 1998). The linearized kinetic used for the pseudo-

first order model was as follows:

logðqe � qtÞ ¼ logðqeÞ �
k1

2:303
t; ð4Þ

where qe (mg g-1) is the amount of dye adsorbed at

equilibrium, qt (mg g-1) is the amount of dye adsorbed at

time t, k1 is the pseudo-first-order rate constant (min-1),

and t is time (min).

The linearized form of the pseudo-second-order kinetic

model is presented as follows:

t

qt
¼ 1

k2q2
e

þ 1

qe

t; ð5Þ

where k2 is the pseudo-second-order rate constant

(g mg-1 min).

The experimental kinetic data have been plotted as log

(qe–qt) and t for the pseudo-first order model and as t/qt and

t (as shown in Fig. 8) for the pseudo-second-order model.

The kinetic parameters related to pseudo-first-order and to

pseudo-second-order models were obtained according to

the intercept and slope from the plot of log (qe–qt) versus

t and t/qt versus t, respectively. The applicability of the

kinetic model is compared between r2 and the calculated qe

(cal) and the experimental qe (exp) values. The different

kinetic parameters are summarized in Table 1. The r2

values of the pseudo-second-order kinetic model are higher

than those of pseudo-first order kinetic model. Meanwhile,

the qe (cal) values calculated by the pseudo-second-order

kinetic model are much closer to the qe (exp) values than

fitting by pseudo-first-order kinetic model. Therefore, the

pseudo-second-order kinetic model is more appropriate to

describe the adsorption behavior of MB onto C-ZMN.

Intraparticle diffusion model was employed to identify

the mechanism by plotting the uptake

qt versus the square root of time t1/2 using the mathe-

matical expression:

qt ¼ kidt
1=2 þ C: ð6Þ

If the plot is linear with the line passing through the

origin, then intra particle diffusion is the rate controlling

step (Bhattacharyya and Sharma 2004). The constants in

the intraparticle diffusion model Kid and C were evaluated

from the plot, and some results are depicted in Table 1. The

correlation coefficients for the model are low, which

indicates that the intraparticle diffusion is not a rate

determining step for the biosorption process of MB onto

C-ZMN. These results confirmed that the actual adsorption

contains surface adsorption.

Adsorption isotherm

Adsorption isotherms are basic requirements for the design

of adsorption systems. To describe the removal mechanism

of MB from aqueous media onto C-ZMN, four isotherm

models (Langmuir, Freundlich, Redlich–Peterson, and

Fritz–Schlunder) were applied. The Langmuir model

(1916) is based on monolayer adsorption onto a homoge-

neous structure without any reaction between the adsorbed

molecules. This model is illustrated as:

qe ¼
KLqmCe

1 þ KLCe

; ð7Þ

where qm (mg g-1) is the maximum adsorption capacity, qe

is the amount of MB in the C-ZMN at equilibrium

(mg g-1), Ce is the equilibrium concentration (mg L-1),

and KL (L mg-1) is Langmuir constant related to

adsorption capacity and rate of adsorption. The essential

characteristics of Langmuir equation can be expressed in

terms of dimensionless separation factor, RL, defined as:

RL ¼ 1

1 þ KLC0

; ð8Þ

where C0 is the initial concentration of MB dye; the RL

value implies whether the adsorption is: unfavorable:

RL[ 1, linear: RL = 1, favorable: 0\RL\ 1, irre-

versible: RL = 0.

The Freundlich isotherm (1906) can be applied to non-

ideal adsorption on heterogeneous surfaces as well as mul-

tilayer adsorption. It is expressed by the following equation:

qe ¼ kFC
1
n
e; ð9Þ

where kF (mg g-1) and n are Freundlich constants related

to the capacity of adsorption and favorability of adsorption,

respectively. The values in the range of 0\ n\ 10 indi-

cate that adsorption is favorable. The greater the value of n,

better is the favorability of the adsorption.

The Redlich–Peterson isotherm (1959) is a combination

of Langmuir–Freundlich model. It approaches the Fre-

undlich model at high concentration and is in accord with
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Fig. 8 Plot of linear pseudo-second-order kinetic model at different

MB concentrations. C-ZMN adsorbent: 0.8 g/50 mL; temperature

298 K
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the low concentration limit of the Langmuir equation. The

equation is given as:

qe ¼
KRCee

1 þ aRC
b
e

; ð10Þ

where KR is Redlich–Peterson isotherm constant (L g-1),

aR is Redlich–Peterson isotherm constant (L mg-1), and b
is the exponent which lies between 0 and 1. The constant b
can characterize the isotherm as: if b = 1, the Langmuir

will be the preferable isotherm, while if b = 0, the Fre-

undlich isotherm will be the preferable isotherm.

The equations of Langmuir and Freundlich were also

developed empirically by Fritz and Schlunder (1974). It is

expressed by the equation:

qe ¼
ACa

e

1 þ BC
b
e

; ð11Þ

where qe (mg g-1) is the adsorbed amount of MB at

equilibrium, Ce is the equilibrium concentration of MB

(mg L-1), constants A and B are the Fritz–Schlunder

parameters, and a and b are the Fritz–Schlunder equation

exponents.

The sum of absolute errors is expressed by the equation:

SAE ¼
Xn

i¼1

qeðcalÞ � qeðexpÞ
�� ��: ð12Þ

To confirm the best model for the adsorption system, it

is necessary to analyze the data using errors analysis like

sum of the absolute errors (SAE) combined with the values

of determined correlation coefficient r2.

The results of these analyses are tabulated in Table 2.

The amounts of adsorbed quantities of dye at the equilib-

rium qe versus Ce are drawn in Fig. 9. The best fit of

experimental data was obtained with the Fritz–Schlunder

model with greatest r2 value and smallest SAE values.

Figure 10 depicts the plot of the calculated RL values

versus the initial dye concentration at 298, 308, 318, and

328 K. It was observed that all the RL values obtained were

between 0 and 1, showing that the adsorption of MB onto

C-ZMN was favorable. The RL values decrease with

increase in initial dye concentration, indicating that the

adsorption was more favorable at higher MB concentration.

Adsorption capacity increases with the increasing temper-

ature and the higher value of adsorption capacity attained

108.97 mg g-1 at 328 K. The values of KL increased with

increase in temperature, indicating that increasing tem-

perature induced a higher maximum adsorption capacity.

Thermodynamic adsorption

The thermodynamic parameters were evaluated to confirm

the nature of the adsorption and the inherent energetic

Table 1 Kinetic parameters of pseudo-first-order, pseudo-second-order, and intraparticle models for MB removal using C-ZMN

MB

(mg L-1)

Pseudo-first-order Pseudo-second-order Intraparticle diffusion model

k1

(min-1)

qe (cal)

(mg g-1)

qe (exp)

(mg g-1)

r2 k2 9 10-3

(g mg-1 min)

qe (cal)

(mg g-1)

r2 kid

(mg g-1 min)

C r2

20 0.127 9.48 17.86 0.97 39 18.52 0.999 0.531 14.1 0.673

40 0.086 17.3 37.28 0.938 12 38.46 0.999 1.259 28 0.853

60 0.085 40.18 61.27 0.932 4.5 66.66 0.999 2.574 41.9 0.937

80 0.074 44.05 82.15 0.942 3.3 90.9 0.999 3.278 57.21 0.941

100 0.046 38.02 102.5 0.787 2.9 111.12 0.998 3.343 74.91 0.959

Table 2 Adsorption isotherm constants for MB removal onto

C-ZMN

Temperature

298 K 308 K 318 K 328 K

Langmuir isotherm

qm (mg g-1) 152.89 158.12 178 153.22

KL (L mg-1) 0.123 0.135 0.139 0.219

r2 0.79 0.8 0.82 0.84

SAE 47.77 51.76 54.95 51.42

Freundlich isotherm

KF (mg g-1) 24.54 27.25 27.68 35.5

n 1.96 1.97 1.796 2.18

r2 0.76 0.75 0.78 0.75

SAE 57.36 62.06 63.45 65.88

Fritz–Schlunder isotherm

A 7.81 9 10-12 3.19 9 10-6 7.6 9 10-3 1.435

B 1.56 9 10-13 5.79 9 10-8 1.29 9 10-4 0.02

a 24.92 15.8 9.48 5.66

b 24.68 15.57 9.24 5.49

r2 0.999 0.996 0.962 0.97

SAE 3.17 6.52 22.69 21.45

Redlich–Peterson isotherm

KR(L g-1) 14.1 15.59 17.27 21.27

aR (L mg-1) 0.012 0.056 0.003 0.021

b 1.667 2.13 2.286 2.565

r2 0.81 0.83 0.85 0.83

SAE 44.81 42.76 42.45 34.11
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changes involved during MB adsorption. Standard enthalpy

(DH�), free energy (DG�), and entropy change (DS�) were

calculated to determine the thermodynamic feasibility and

the spontaneous nature of the process (Choi et al. 2009).

The free energy change of the sorption reaction is given

by:

DG� ¼ �RT lnðKCÞ; ð13Þ

where DG� is the free energy change (kJ mol-1), R is the

universal gas constant (8.314 J mol-1 K), T is the absolute

temperature (K), and KC states the equilibrium constants

(qe/Ce). The values of DH� and DS� can be calculated from

the Van’t Hoff equation:

lnðKCÞ ¼ �DH�

RT
þ DS�

R
; ð14Þ

where KC is plotted against 1/T; a straight line with the

slope (-DH�/R) and intercept (DS�/R) are found, as shown

in Fig. 11. The calculated thermodynamic parameters are

depicted in Table 3. The values of DH� are within the

range of (1–93 kJ mol-1) indicating the physisorption.

From these results, it is clear that physisorption is much

more favorable for the adsorption of MB.
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The positive values of DH� show the endothermic nature

of adsorption and it governs the possibility of physical

adsorption (Karagoz et al. 2008). The negative values of

DG� show that the adsorption is highly favorable and

spontaneous. The positive value of DS� shows the

increased randomness with MB adsorption, probably

because the number of desorbed water molecules is larger

than that of adsorbed MB molecules.

Comparison of adsorption capacities of C-ZMN

with those of various adsorbents

The maximum adsorption capacities of various adsorbents

prepared differently used for MB removal were compared

with the present study and given in Table 4. From Table 4,

the capacities of adsorbents for adsorbing MB are in a wide

range; it is vary from 3.745 to 152.89 mg g-1. It’s

appeared that C-ZMN can be considered as a good adsor-

bent with an adsorption capacity of 152.89 mg g-1.

Conclusions

This paper demonstrates that C-ZMN was an effective

adsorbent for removal of MB from aqueous solution. The

experimental factors such as adsorbent dose, contact time,

dye concentrations, adsorption kinetic, and isotherm mod-

els were investigated to study the adsorption process. MB

followed the pseudo-second model well. The equilibrium

isotherm analysis reflects that the Fritz–Schlunder model

well-fitted isotherm data. Furthermore, thermodynamic

studies show that this adsorption process was spontaneous,

favorable, and endothermic. Therefore, it can be concluded

that the C-ZMN was a promising adsorbent.
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