
ORIGINAL ARTICLE

Application of RBFN network and GM (1, 1) for groundwater
level simulation

Zijun Li1 • Qingchun Yang1 • Luchen Wang1 • Jordi Delgado Martı́n2

Received: 9 July 2016 / Accepted: 28 September 2016 / Published online: 13 October 2016

� The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Groundwater is a prominent resource of drinking

and domestic water in the world. In this context, a feasible

water resources management plan necessitates accept-

able predictions of groundwater table depth fluctuations,

which can help ensure the sustainable use of a watershed’s

aquifers for urban and rural water supply. Due to the dif-

ficulties of identifying non-linear model structure and

estimating the associated parameters, in this study radial

basis function neural network (RBFNN) and GM (1, 1)

models are used for the prediction of monthly groundwater

level fluctuations in the city of Longyan, Fujian Province

(South China). The monthly groundwater level data mon-

itored from January 2003 to December 2011 are used in

both models. The error criteria are estimated using the

coefficient of determination (R2), mean absolute error

(E) and root mean squared error (RMSE). The results show

that both the models can forecast the groundwater level

with fairly high accuracy, but the RBFN network model

can be a promising tool to simulate and forecast ground-

water level since it has a relatively smaller RMSE and

MAE.

Keywords Radial basis function neural network model �
GM (1, 1) model � Groundwater level

Introduction

Groundwater is a valuable resource for domestic, irrigation

and industrial uses. In China, a large part of water is sup-

plied by groundwater, thereby increasing its importance.

Therefore, it is essential to perform the dynamical predic-

tion of groundwater table to protect and sustain the

groundwater resources. In the natural scale, groundwater

levels, as the dynamic behaviour of storage balance, is

often affected by many factors, such as recharge driven by

climatic processes and discharge to surface water. The

groundwater system is inherently characterized with com-

plexity, nonlinearity, multiscalarity and randomness,

influenced by natural and/or anthropogenic factors, which

complicate the dynamic predictions (Yang et al. 2015).

Past literature review indicates that the empirical time

series models proposed by Box and Jenkins (1976) and

Hipel and McLeod (1994) could be used for the prediction

of a longer time series of water table depth. Also, some

empirical approaches have been widely applied for the

prediction of water table depth by Knotters and van Wal-

sum (1997). Although conceptual and physically based

models are the main tool for depicting hydrological vari-

ables and understanding the physical processes taking

place in a system, they do have practical limitations. When

data are not sufficient and getting accurate predictions is

more important than conceiving the actual physics,

empirical models remain a good alternative method and

can provide useful results without a costly calibration time

(Daliakopoulos et al. 2005; Zhao et al. 2014). Unfortu-

nately, empirical models are not adequate for making

predictions when the dynamical behaviour of the hydro-

logical system changes with time as suggested by Bierkens

(1988). Subsequently, some non-empirical models have

been proposed for groundwater table depth modelling (Bras
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and Rodriguez-Iturbe 1985; Lin and Lee 1992; Brockwell

and Davis 2010; Doglioni et al. 2010). Time series models

and artificial neural network (ANN) models are such ‘black

box’ models which are capable of modeling a dynamic

system. In recent years, artificial neural networks have

been proposed as a promising alternative approach to time

series forecasting. Many successful applications have

shown that neural networks provide an attractive alterna-

tive tool for time series modelling, among them the

RBFNN model is wildly used for nonlinear system iden-

tification. The RBFNN model is characterized by a simpler

structure, faster convergence, less parameters and smaller

extrapolation and it is more computationally efficient

(Girosi and Poggio 1990; Xie et al. 2011).

The theory of the grey system was established during the

1980s for the purpose of making quantitative predictions.

As far as information is concerned, the systems which lack

information, such as structure message, operation mecha-

nism and behaviour document, are referred to as grey

systems, where ‘‘grey’’ means poor, incomplete, uncertain,

etc. It has received increasing application in the field of

hydrology (Xu et al. 2008). There are several models for

grey theory, among them the GM (1, 1) method is rela-

tively simple, but can get high precision of prediction

(Yang et al. 2015). The GM (1, 1) model is a multidisci-

plinary theory dealing with those systems for which we

lack information. From the point of view of the GM (1, 1)

model, the dynamics of groundwater level is regarded as a

typical grey system problem, where the GM (1, 1) model

can better reflect the changing features of groundwater

level. It especially has the unique function of analysis and

modelling for short time series, less statistical data and

incomplete information of the system and has been widely

applied (Deng 2002).

There has been no report of the comparativeness

between the time series model GM (1, 1) and the RBFNN

model in the prediction of groundwater level depth. In this

study, we evaluated the potential of the popular time series

models (1, 1) method and the seasonal decomposition

method; multiplicative and additive methods have been

applied to simulate groundwater water tables in a coastal

aquifer at Fujian Province, South China, and the simulated

results are compared by evaluating the root mean square

error (RMSE) and regression coefficient (R2).

Methodology

RBFNN model

Neural networks have gone through two major develop-

ment periods: the early 1960s and the mid-1980s. Up to

now, there are many types of artificial neural networks

(ANNs) that have been used for time series forecasting.

They were a key development in the field of machine

learning. Artificial neural networks were inspired by bio-

logical findings relating to the behaviour of the brain as a

network of units called neurons (Rumelhart et al. 1986).

Architecture of radial basis function neural network

Basically, radial basis function neural network is composed

of a large number of simple and highly interconnected

artificial neurons and can be organized into several layers,

i.e. input layer (X), hidden layer (H) and output layer

(Y) (Gevindaraju and Rao 2000; Haykin 1999). Figure 1

shows the neural network’s topology structure.

RBFNN learning

RBF neural network learning algorithm aims to solve the

three parameters: ci (the centre of the ith unit in the hidden

layer), r (the width parameter) and xij (the connecting

weight between ith hidden unit and the jth output unit)

(Huang et al. 2003).

Input layer An input pattern enters the input layer and is

subjected to direct transfer function and output from the

input layer is the same as the input pattern. The number of

nodes in the input layer is equal to the dimension of the

input vector L.

Output from the input layer with element Ii (i = 1 to

L) is Ii.

Hidden layer The hidden layer transforms the data from

the input space to the hidden space using a nonlinear

function. There are many activation functions, the most

commonly used is the Gaussian function (Schwenker et al.

2001) and its mathematical model of the algorithm can be

defined as follows:

X             H         Y 

…
 

…
 

…

Fig. 1 Structure of the radial basis function neural network model
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R xp � ci
� �

¼ exp � 1

2r2
jjxp � cijj2

� �
; ð1Þ

where jjxp � cijj denotes the Euclidean norm; ci is the

centre of the ith unit in the hidden layer; r is the width

parameter. R xp � ci
� �

is the response of the ith hidden unit

resulting from all input data and h is the number of output

units (Wang et al. 2013).

The output layer is linear and serves as a summation

unit. The activity of the jth unit in the output layer yj can be

calculated according to:

yj ¼
Xh

i¼1

xij exp � 1

2r2
jjxp � cijj2

� �
; ð2Þ

where xij is the connecting weight between the ith hidden

unit and the jth output unit;

In brief, the RBF neural network model learning is

constructed following three steps:

Step 1. Initializing the centre using a clustering method.

Step 2. The r is the centre width, which can be obtained

from

ri ¼
cmaxffiffiffiffiffi
2h

p i ¼ 1; 2; . . .; h; ð3Þ

where cmax is the maximum distance between the centres of

the hidden units.

Step 3. The connecting weight between the hidden unit

and the output unit can be calculated by the least squares

estimation as follows:

x ¼ exp
h

c2max

jjxp � cijj2
� �

i ¼ 1; 2; . . .; h;

p ¼ 1; 2; 3; . . .;P:

ð4Þ

Evaluation criteria

To evaluate the effectiveness of each network in its ability

to make precise predictions, the root mean square error

(RMSE) criterion is used in this paper. It is calculated by:

RMSE ¼ 1

n

Xn

i

ðyi � �yiÞ
2; ð5Þ

where yi is the observed data, �yi the estimated data and

n the number of observations. The lower the values of

RMSE, the more precise is the prediction.

GM (1, 1) model

As we all know, there are three kinds of information, in

which the white information is already known well, the

grey information is known partly and the black infor-

mation is not known at all (Deng 1982, 1989). The GM

(1, 1) model is a multidisciplinary theory dealing with

those systems that lack information. GM (1, 1) means a

single differential equation model with a single varia-

tion. The dynamics of groundwater level is controlled

and related by many factors, which is a very compli-

cated and not known well by people. From the point of

view, the grey system theory provides us one of methods

to study the system (Xu et al. 2008). The modelling

process of the grey system theory can be summarized as

follows:

1. Suppose there is a series of discrete nonnegative data

as

X 0ð Þ mð Þ ¼ x 0ð Þ 1ð Þ; x 0ð Þ 2ð Þ; . . .; x 0ð Þ nð Þ
n o

: ð6Þ

2. Accumulate the discrete data above once to get a new

serial, that is

X 1ð Þ mð Þ ¼ x 1ð Þ 1ð Þ; x 1ð Þ 2ð Þ; . . .; x 1ð Þ nð Þ
n o

; ð7Þ

where X 1ð Þ mð Þ ¼
Pm

i¼1

x 0ð Þ ið Þ;m ¼ 1; 2; . . .; n:
3. According to the GM (1, 1) model, the differential

equation of the new sequence can be described as

follows:

dx 1ð Þ tð Þ
d tð Þ þ ax 1ð Þ tð Þ ¼ ut 2 ½0;1Þ: ð8Þ

4. Suppose â ¼ a; uð ÞT , â can be calculated by the least

squares estimation as

â ¼ a; bð ÞT¼ BTB
� ��1

BTY ; ð9Þ

in which; B ¼

� 1

2
ðx 1ð Þð1Þ þ x 1ð Þð2Þ 1

� 1

2
ðx 1ð Þð2Þ þ x 1ð Þð3Þ 1

. . .

� 1

2
ðx 1ð Þ n� 1ð Þ þ x 1ð Þ nð Þ 1

������������

������������

;

Y ¼
x 0ð Þð2Þ
x 0ð Þð3Þ
. . .

x 0ð Þ nð Þ

��������

��������

:

ð10Þ

5. The approximate time response function for x̂ 1ð Þ is as
follows:

x̂ 1ð Þ mþ 1ð Þ ¼ x 0ð Þ 1ð Þ � b

a

� 	
e�am þ b

a
: ð11Þ

6. x̂ 0ð Þ can be restored as

x̂ 0ð Þ 1þ tð Þ ¼ x̂ 1ð Þ 1þ tð Þ � x̂ 1ð Þ tð Þ: ð12Þ

Thus, the grey forecasting model of x̂ 0ð Þ is as follows:

Appl Water Sci (2017) 7:3345–3353 3347

123



x̂ 0ð Þ mð Þ ¼ ð1� eaÞ x 0ð Þ 1ð Þ � b

a

� 	
e�aðmþ1Þ: ð13Þ

7. Before forecasting the groundwater level, the after-test

residue method should be used to test the accuracy of

the method (Chen et al. 1994).

Absolute error of samples:

e 0ð Þ kð Þ ¼ x 0ð Þ kð Þ � x̂ 0ð ÞðkÞ: ð14Þ

The mean of e 0ð Þ kð Þ and x 0ð Þ kð Þ:

�e ¼ 1

n

Xn

k¼1

e 0ð ÞðkÞ; ð15Þ

�x ¼ 1

n
xð0ÞðkÞ: ð16Þ

The variance of e 0ð Þ kð Þ and x 0ð Þ kð Þ:

S21 ¼
1

n

Xn

k¼1

ðeð0Þ kð Þ � �eÞ2; ð17Þ

S22 ¼
1

n

Xn

k¼1

ðx 0ð ÞðkÞ � �xÞ2: ð18Þ

The accuracy of the model can be examined by the

micro error probability:

P ¼ P eð0Þ kð Þ � �e
�� ��\0:6745S2

n o
: ð19Þ

The posterior error of the model is:

C ¼ S1

S2
: ð20Þ

The precision of the model = max {the grade of P, the

grade of C}.

The value ranges of P and C divide the degree of

accuracy for the GM (1, 1) model shown in Table 1.

Application

Study area

Longyan City is located at the western part of the Fujian

Province in the southeast of China, between 115�510E–
117�450E longitude and 24�230N–26�020N latitude, con-

sisting of Changting County, Shanghang County, Yongd-

ing District, Liancheng County, Wuping County,

Zhangping City and Xinluo District, and covers an area of

about 19,027 km2. Figure 2 shows the outlined location

map of the study area. It is characterized by the subtropical

marine monsoon climate. The annual average rainfall is

about 1457.87 mm, with an average evaporation of about

1530.33 mm. The rainfall is concentrated in April to

September, accounting for 74.5–80 % of the annual

precipitation.

Modelling

The RBFNN model

Preparations for neural network Considering the dynamic

change of groundwater, its influence factors and the actual

situation in the study area, we take well #1138 as an

example to perform groundwater level simulation. As the

groundwater aquifer is unconfined, the groundwater level is

influenced by many factors, mainly including river, runoff,

precipitation quantity, evaporation quantity, groundwater

manual mining quantity and so on. Given the limitations of

the monitored data, the number of input and output layer

neurons is 2 and 1, respectively. The monitored items

include X1 (precipitation quantity), X2 (evaporation quan-

tity) and Y (groundwater level). The number of hidden layer

is adjusted in the RBFN network model learning.

To avoid the errors between different units in the sample

data, the original data should be standardized as follows:

x
0

j ¼
xj

xjmax þ xjmin

; ð21Þ

where x
0

j is the standardized value of the sample; xj the

original value of the sample; xjmax the maximal value of xj;

xjmin the minimal value of xj. Then, the range of each input

data is 0–1 using the above equation (Zhang et al. 2012).

After running the model, the final prediction results can be

calculated with Eq. (22):

xj ¼
x̂
0

j

xjmax þ xjmin

; ð22Þ

where x̂
0

j is the simulated value of x
0

j.

The monthly average groundwater tables are set as input

samples, a total of 108 samples from January 2003 to

December 2011. 28 samples from January 2003 to August

2009 are set as training samples and the others as the

testing samples.

In this case, the MATLAB platform is employed to

construct the training set and checking set, pretreatment of

original data and result evaluation of the neural network.

Table 1 The predicted grade for the GM (1, 1) model

Predicted grade P C

Good P� 0:95 C\0:35

Qualified 0:95[P� 08 0:35\C� 0:5

Just qualified 0:8[P� 0:7 0:5\P� 0:45

Disqualification P\0:7 C[ 0:65
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Its function format can be defined as follows:

Net ¼ newrb p; t; e:g: spread; MN; DFð Þ;

where p and t are the input vector and target respectively;

e.g. = 0.0001 (mean squared error goal); spread = 3.5 (the

evolution of radial basis function); MN = 80 (the neuron

maximal number); DF = 1 (the increased number of neu-

rons between two shows).

RBFNN training and testing 28 Samples from September

2009 to December 2011 were used to perform RBFNN

training, the order of the serial number is No 1 to No 28. By

comparing the calculated value and actual value of

groundwater level, we can judge the advantages and dis-

advantages of the network. During the model training

period, the RBFNN models are used to compute the

monthly groundwater level for well #1138 observation

wells. Figure 2 shows the median absolute percentage error

(MdAPE).

It can be seen that the maximum median absolute per-

centage error of the network for 28 training samples is

0.253 %. The root mean square error (RMSE) between the

RBFNN model computed values and observed data is

0.307. The result indicates that the RBFNN model has a

low value in the training sets. Figure 3 shows the training

stage and that the results computed by the RBFNN model

reasonably match the observed groundwater levels.

Therefore, the model can be used to predict the monthly

groundwater level.

GM (1, 1) model

The GM (1, 1) model is a classical mode in the grey

forecasting models. Following the modelling steps descri-

bed in ‘‘GM (1, 1) model’’, the same well #1138 used in the

RBFNN model is taken as an example to perform the

model test. Taking the data of January 2003–2011 as

original, we obtain the following results.

1. The observed data are converted into a new data series

by a preliminary transformation called AGO (accu-

mulated generating operation):

X 0ð Þ mð Þ ¼ 343:847; 343:335; 344:971; 344:104; 343:933;f
343:708; 343:003343:971; 343:435g;

X 1ð Þ mð Þ ¼ x 1ð Þ 1ð Þ; x 1ð Þ 2ð Þ; . . .; x 1ð Þ 9ð Þ
n o

¼ f343:383; 686:112; 1028:828; 1371:743;
1714:868; 2057:490; 2400:027; 2742:672; 3085:378g:
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Fig. 2 The outlined location map of the study area
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2. a and b are calculated using least squares estimation:

â ¼ 0:0001; b̂ ¼ 343:851:

3. The groundwater level prediction model of January is:

x̂ð0Þ tð Þ ¼ 342:864e�0:0001ðtþ1Þ: ð23Þ

Therefore, using the predictor formula (23), we can get

the predicted groundwater level of January 2003–

December 2011. Figure 4 shows the median absolute

percentage error (MdAPE) of the groundwater level.

Figure 4 illustrates that the maximal MdAPE is less than

0.5 % of the analysis of the predictable results. The dif-

ference check of the prediction model: 0:35\C ¼ S1
S2
¼

0:491� 0:5 P = 1[ 0.95 and the model precision is the

I-grade model. It can be seen in Fig. 5 that the model

follows the same tendency of the observed groundwater

level. So this model is reliable and accurate and can be

used to predict the groundwater level.

Results and discussions

To assess the models’ performance, 120 sets of monthly

average groundwater levels monitored from September

2009 to December 2011 were selected to make a forecast

with the two models. The comparisons of the observed

groundwater level with those forecasted using the BRFNN

model and GM (1, 1) model are given in Fig. 6. It can be

seen that the groundwater level forecasted using the

BRFNN model has a better fit to the observed values.

However, to evaluate quantitatively the accuracy of each

model, the root mean square error (RMSE), mean absolute

error (MAE) and the correlation coefficient (R2) are

obtained. They are defined as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
t¼1ðxt � x̂tÞ2

n

s

; ð24Þ

MAE ¼
Xn

t¼1

xt � x̂tj j
n

; ð25Þ
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R2 ¼ 1�
Pn

t¼1 xt � x̂tð Þ2
Pn

t¼1 x
2
t �

Pn

t¼1
x̂2t

n

; ð26Þ

where x̂t is the estimated value at time t, xt the observed

value at time t and n the number of time steps.

It is known that RMSE describes the average magni-

tude of the errors between the observed values and the

calculated results. MAE is the average of the absolute

errors and can be used to measure how close the simu-

lated values are to the observed values. The lower the

values of the RMSE and MAE, the more precise is the

prediction. R2 measures the degree of correlation among

the observed and simulated values. The best fit between

the observed and estimated values would reach R2 = 1.

Table 2 summarizes the accuracy degree of the forecast

models. It can be seen that the two models developed in

this paper have a good fitting precision and can be used to

predict the monthly groundwater level. However, the

RMSE values of the GM (1, 1) and the RBFNN models

are 0.30715 and 0.41941, and the MAE values are

0.24233 and 0.30560, respectively. These results indicate

that the RBFNN model has a better fit than GM (1, 1) for

this case study (Fig. 7).

Conclusions

In this paper, the radial basis function neural network

(RBFNN) and GM (1, 1) models are employed to pre-

dict the monthly groundwater level fluctuations and to

investigate the suitability of these two models. The

effectiveness and their capability of predicting ground-

water levels are assessed with RMSE, MAE and R2. The

results indicated that both models are accurate in

reproducing the groundwater levels. However, the

RMSE, MAE and R2 values indicate that the RBFNN
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Fig. 6 The observed and

forecasted groundwater level by

the GM (1, 1) model

Table 2 Model prediction accuracy results

Method RMSE MAE R2

GM (1, 1) 0.41941 0.30560 0.99999

RBFNN 0.30715 0.24233 0.99999
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model is more competent in forecasting groundwater

level as compared to the GM (1, 1) model. The RBFNN

model based on the history monitoring data of ground-

water level predicts the future of the groundwater sys-

tem according to the past rule and is applicable for the

areas with long-term monitoring data. The RBFNN

model has been wildly used for nonlinear systems

identification because of their simple topological struc-

ture and their ability to reveal how learning proceeds in

an explicit manner. The GM (1, 1) model is a multi-

disciplinary theory dealing with those systems that lack

information, which uses a black–grey–white colour

spectrum to describe a complex system whose charac-

teristics are only partially known or known with

uncertainty. However, in the GM (1, 1) model, elements

a and b are fixed once determined and, regardless of the

numbers of values, the elements will not change with

time, and this feature limiting GM (1, 1) is only suit-

able for short-term forecasts. Due to many factors will

enter the system with the development of the system

with time and its accuracy of the prediction model will

become increasingly weak with the time away from the

origin. Despite the higher reliability of the RBFNN

model, overfitting is a problem which needs to be

studied further.
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