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GMDH algorithms applied to turbidity forecasting
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Abstract By applying the group method of data handling

algorithm to self-organization networks, we design a tur-

bidity prediction model based on simple input/output

observations of daily hydrological data (rainfall, discharge,

and turbidity). The data are from a field test site at the

Chiahsien Weir and its upper stream in Taiwan, and were

recorded from May 2000 to December 2008. The model

has a regressive mode that can assess the estimated error,

i.e., whether a threshold has been exceeded, and can be

adjusted by updating the field input data. Consequently, the

model can achieve accurate estimations over long-term

periods. Test results demonstrate that the 2006 turbidity

prediction model was selected as the best predictive model

(RMSE = 5.787 and CC = 0.975) because of its ability to

predict turbidity within the acceptable error range and

90 % required confidence interval (50NTU). 70(3,1,1) is

the optimum modeling data length and variable

combinations.

Keywords GMDH � Turbidity forecast � Nanhua
Reservoir � Chiahsien Weir � Over-basin diversion

Introduction

Water consumption in Taiwan has increased significantly

in recent years. The Water Resources Agency and the

Taiwan Water Corporation have raised certain issues

regarding the quantity and quality of water. According to

statistical data, the island’s average annual rainfall is

approximately 2515 mm. Despite its abundance, rainfall is

unevenly distributed in terms of both time and space.

Because of the island’s steep natural terrain, short river

flows, and geological weaknesses, the majority of rainwater

flows out to sea before it can be harnessed for public use.

Thus, reservoirs are an essential means of realizing effec-

tive water usage. From the viewpoint of water resource

management, both the availability and quality of water are

a concern.

One of the water resources of the Nanhua Reservoir is

the discharge of the Cishan River, which is diverted

through a tunnel from the Chiahsien Weir. The majority of

water diversion occurs during the annual wet period, from

June to October, which is also the typhoon season. Because

of the adverse effect of soil degradation in the upstream

catchment area, heavy rainstorms rapidly and significantly

increase the Cishan River discharge; they also increase the

sand content and turbidity. If this flow is allowed to persist

and enter the Nanhua Reservoir, the level of reservoir

sediment will undoubtedly increase, potentially shortening

the lifespan of the reservoir and creating problems for the

operation of the Nanhua water-treatment plant.

This study examines the relevant hydrological data

variables that influence water turbidity in the Chiahsien

Weir. A unique group method of data handling (GMDH)

multilayer algorithm is used to deduce the relationship

between groups of input variables and output functions. The

result is combined into a suitable set of higher-order
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nonlinear equations that engender a simple turbidity-fore-

castingmodel. This enables the prediction of water turbidity,

and provides pertinent reference turbidity information for

the Chiahsien Weir water diversion operation.

Methodology

The GMDH algorithm introduced by Ivakhnenko (1968) is

a heuristic self-organization process that establishes an

input–output relationship within a complex system. It uti-

lizes a multilayered conceptual structure, similar to a feed-

forward multilayer neural network. Ikeda et al. (1976)

added a recursive procedure to the GMDH algorithm to

utilize updated observation data and to modify parameters

within the nodes of each layer, enabling time-variable

modeling. They subsequently applied the enhanced model

to the prediction of daily river flows. Tamura and Kondo

(1980) utilized the prediction of sum-of-squares or Akai-

kes’s information criterion as parameter selection indica-

tors. Because the algorithm can easily generate high-level

nonlinear terms, this nonlinear dynamic system can be well

defined; however, its practicality would be seriously

reduced. In response, Yoshimura et al. (1982) improved the

model with a stepwise regressive procedure, returning the

complex final system to a low-level nonlinear system,

thereby increasing its applicability.

The GMDH algorithm enables the automatic selection

of input variables during model construction, as well as a

hierarchical polynomial regression of necessary complexity

(Farlow 1984). Specific functional dependence between the

input and output variables is unnecessary, as the depen-

dence has been incorporated into the modeling structure.

The GMDH algorithm has been applied in various fields,

e.g., weather modeling, pattern recognition, physiological

experiments, cybernetics, medical science, education,

ecology, safety science, economics, and hydraulic field

engineering systems (Lebow et al. 1984; Ivakhnenko et al.

1994; Kondo et al. 1999; Chang and Hwang 1999; Sar-

ycheva 2003; Pavel and Miroslav 2003; Hwang et al. 2009;

Tsai et al. 2009; Najafzadeh et al. 2013, 2014, 2015;

Najafzadeh 2015). Nevertheless, few studies have explored

turbidity modeling.

GMDH algorithm

The GMDH algorithm is a kind of feed-forward network,

normally classified as a special type of neutral network.

The model’s underlying concept resembles animal evolu-

tion or plant breeding, as it adheres to the principle of

natural selection. The multilayer criteria preserve superior

networks for successive generations, eventually yielding an

optimal network. This network (equation) more closely

describes the physical phenomena that the model is inten-

ded to simulate. The self-organization algorithm can be

classified as GMDH, SGMDH (stepwise regressive

GMDH), and recursive/sequential GMDH. These model

types are described below.

In the GMDH algorithm, the general connection

between input and output variables is expressed by the

Volterra functional series of the Kolmogorov–Gabor

polynomial (Madala and Ivakhnenko 1994):

yðtÞ ¼ a0 þ
Xm

i¼1

aixi þ
Xm

i¼1

Xm

j¼1

aijxixj

þ
Xm

i¼1

Xm

j¼1

Xm

k¼1

aijkxixjxk þ ::; ð1Þ

where y(t) is the output variable, X(x1,x2,…,xm) is the

vector of input variables, and A(a1,a2,…,am) gives the

vector coefficients or weights.

The GMDH model based on heuristic self-organization

was developed to overcome the complexity of large-di-

mensional problems. It first pairs variables that might affect

the system, and sets a default threshold to eliminate vari-

ables that cannot achieve a certain level of performance.

This procedure describes a self-organization algorithm; it is

a fundamental concept of derivative hierarchical multilevel

models. The GMDH was built according to the following

steps:

Step 1: Divide the original data into training and test sets

The original data are separated into training and test sets.

The training data are used to estimate certain characteris-

tics of the nonlinear system, and the test data are then

applied to determine the complete set of characteristics.

Step 2: Generate combinations of input variables in each

layer

All combinations of r input variables are generated for each

layer. The number of combinations is given by:

Cm
r ¼ m!

r! m� rð Þ! ; ð2Þ

where m is the number of input variables and r is usually

set to two (Ivakhnenko 1971).

Step 3: Optimization principle for elements in each layer

Optimum partial descriptions of the nonlinear system are

calculated by applying regression analysis to the training

data. The optimum standard uses the root mean square

(RMS) as an index to screen out underperforming elements

in each layer. RMS is defined as:
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ri ¼
Pn

t¼1 yðtÞ � Zk
i ðtÞ

� �2
Pn

t¼1 yðtÞð Þ2

" #1=2
; ð3Þ

where ri is the RMS, t = 1, 2,…n, n represents the length of

the measurement data, y(t) is the measured value at moment

t; and Zi
k(t) is the output value of element i in layer k.

Step 4: Stopping rule for multilayer structure generation

By comparing the index value of the current (competent)

layer with that of the next layer to be generated, further

layers are prevented from being developed if the index

value does not improve or falls below a certain objective

default value; otherwise, Steps 2 and 3 are repeated until

the value matches the limited condition set above.

After the above steps have been completed, all compe-

tent elements in each layer are recombined as an optimum

high-level nonlinear equation. This is utilized as the final

model for turbidity forecasting.

Stepwise regressive GMDH algorithm

The process of the stepwise regressive GMDH algorithm is

very similar to that of the original GMDH algorithm. The

key difference is that the least-squares method is replaced

by a stepwise regressive procedure in Step 2. This proce-

dure evaluates the optimum forward state, and determines

whether it is more accurate than the next variable to be

introduced. If so, it is incorporated into the model; other-

wise, it is deleted to ensure the most precise simplified

system equation. The assessment method employs the F-

test for statistical analysis.

Recursive/sequential GMDH algorithm

Because of real-world time-variable characteristics, the

system should respond to situations in real time. If the

measured input data conceal the errors, or if the system is

affected by human or natural factors, model parameters

may no longer be applicable to the circumstances. The

model forecasts will deviate and affect the overall precision

of the model. To resolve this, the forecast model is revised

using a recursive structure, thus allowing the system

parameters to be modified in real time. This procedure can

improve the forecast accuracy. In the GMDH algorithm,

each progressive output element is composed of two prior

elements with six parameters in a two-dimensional second-

order equation. Thus, the system has an n-set of data, and

the parameters (h) of the newly composed equations of

each layer are forecast as Yn ¼ Xn � h. When the n ? 1

data point is added, the system parameter h can be updated

to h� according to:

h�nþ1 ¼ ðXt
nþ1Xnþ1Þ�1

Xt
nþ1Ynþ1: ð4Þ

Upon completion of the recursive procedure, the system

parameters can be adjusted to ensure model optimality.

Establishment and assessment of the turbidity
forecast model

Establishment of a turbidity-forecasting model

We now apply self-organizing nonlinear models for

GMDH and SGMDH. The GMDH turbidity forecast model

is developed according to the procedure described below.

Figure 1 presents a flowchart of turbidity forecasting.

1. Obtain turbidity-related historical data, such as turbid-

ity, rainfall, and discharge, at specific stations.

2. Select the input variables.

Fig. 1 Flowchart of GMDH/SGMDH turbidity-forecasting model

construction
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(1) Assume the output variable is Y, which represents

the forecast turbidity.

(2) Assume the input variables are X1, X2, X3,…, Xm,

which represent turbidity, rainfall, discharge,

and so on.

(3) Establish a nonlinear equation Y = f (X1, X2,…, Xm).

3. Determine the optimum number of modeling data and

variable combinations to establish a forecast model

through trial-and-error.

4. Establish an input–output relationship with both the

GMDH and SGMDH algorithms; derive the model

layer-by-layer until optimality is achieved, and then

return, layer-by-layer, to the inertial input layer to

establish a GMDH or SGMDH forecast equation.

5. Input the variables and begin model forecasting.

6. Output the forecast results.

7. Consider whether there is a temporal impact. If so, a

recursive/sequential structure is necessary.

8. Generate a final optimum turbidity-forecasting model.

Based on the previous step, the output variable of the

forecasting model is the turbidity MUD(t) at time t, where t

represents the time period. The input variables are the daily

turbidity T(t-1) * T(t-m) for the period 1 * m, daily

rainfall R(t-1) * R(t-n) for the period 1 * n, and daily

discharge of the Cishan River Q(t-1) * Q(t-k) for the

period 1 * k. The forecast relation is presented below:

MUDðtÞ ¼ FðTðt � 1Þ; Tðt � 2Þ; . . .; Tðt � mÞ;Rðt � 1Þ;
Rðt � 2Þ; . . .;Rðt � nÞ;Qðt � 1Þ;
Qðt � 2Þ; . . .;Qðt � kÞÞ:

ð5Þ

Model efficiency evaluation

The model can be evaluated by comparing its predictions to

the measured values. The efficiency of the model is eval-

uated using the root mean square error (RMSE) and the

coefficient of correlation (CC):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
T¼1 XT � X̂T

� �2

N

s

ð6Þ

CC ¼
PN

T¼1 XT � �Xð Þ X̂T � �̂X
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

T¼1 XT � �Xð Þ2
PN

T¼1 X̂T � �̂
X

� �2
r ; ð7Þ

where XT is the observed value, X̂T is the predicted value,

�X is the mean observed value, �̂X is the mean predicted

value, and N represents the total number of observations in

the data set. RMSE values approaching 0 and CC values

approaching 1 signify better forecast performance.

Case studies

In this section, we compare the results given by our fore-

cast model with real-world data. We first describe the study

area and the data set used for comparison; then, we present

the forecast results and evaluate the model’s performance.

Study area description

Nanhua Reservoir is located 40 km northeast of Tainan,

Taiwan, and approximately 15 km south of the Tseng-Wen

Reservoir. Its catchment area is approximately 104 km2.

Figure 2 illustrates the reservoir location.

Chiahsien Weir is located in Kaohsiung County, near

the Cishan River in Jiashian Township, approximately

450 m upstream of the Jiashian Bridge. The weir is part of

the over-basin diversion project of Nanhua Reservoir.

Figure 3 presents the site layout. Excess water from the

Cishan River is mainly diverted into the Nanhua Reservoir

during the wet season. According to reports by the Water

Resources Agency and the Taiwan Water Corporation, the

Nanhua Reservoir is seriously sediment-impacted. Over-

basin diversion has been reported to be the most likely

cause of increases in the reservoir sediment level.

Selection of research data

This paper explores turbidity changes in the Nanhua

Reservoir prior to over-basin diversion (i.e., turbidity

changes at the diversion tunnel entrance of the Chiahsien

Weir). Numerous variables, such as storms, human activi-

ties, and complex natural processes, affect turbidity. These

influencing factors closely match the nonlinear structural

model of the GMDH algorithm.

Those factors that have the greatest impact on turbidity

were utilized as input parameters. Thus, turbidity, rainfall,

and discharge were chosen as the domain input parameters.

The turbidity at the entrance to the diversion tunnel of the

Chiahsien Weir was selected as the main parameter. Rain-

fall data from the Jiashian rainfall station (the only rainfall

station upstream of the diversion channel) and Cishan River

discharge data were used as secondary parameters. Using

the aforementioned nonlinear system, a predictive turbidity

model was built, calibrated, and verified.

GMDH and SGMDH calibrated result comparison

Selection of best algorithm

In the early stages of modeling, the GMDH and SGMDH

algorithms were subjected to a trial-and-error procedure.

This was intended to select the best algorithm and, finally,
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to obtain the optimum self-organizing nonlinear system for

turbidity forecasting. The best performance results were

analyzed by comparing the RMSE and CC given by dif-

ferent data sets and variable combinations. We used his-

torical data from 2000 to 2008, as presented in Table 1.

The SGMDH model gave better results in 2000, 2001,

2007, and 2008. The performance in the other years sub-

stantiates the assertion that the GMDH model generates

better results, and so, this became the preferred model. The

algorithm for all hierarchical regression parameters is

shown in Table 2. The model was built over four levels,

and the variable combinations differed between each level.

As can be seen from the table, GMDH remains the best

algorithm for computing the average RMSE over an 8-year

period. The turbidity data from early 2004 displayed some

abnormalities, which led to increased modeling errors.

Table 1 presents the modeling results for turbidity data

following these abnormal readings; these were not included

in the averaging procedure. Eventually, the GMDH algo-

rithm was selected as the most appropriate algorithm for

this research.

Z1
9 ¼ 16:62866þ0:5386Qðt�1Þ�0:00147Rðt�1Þþ0:31608Qðt�1Þ2�0:00088Rðt�1Þ2þ0:002Qðt�1ÞRðt�1Þ

Z1
10 ¼ 3:60373þ0:92624Tðt�4Þ�0:00036Tðt�3Þþ0:50314Tðt�4Þ2þ0:00275Tðt�3Þ2�0:00903Tðt�4ÞTðt�3Þ
Z1
5 ¼ 0:29692Qðt�1Þþ1:04566Qðt�1Þ2þ0:00148Tðt�4Þ2þ0:0117Qðt�1ÞTðt�4Þ

Z1
8 ¼ 24:90101þ0:08174Qðt�1Þ�0:00022Tðt�1Þþ0:42458Qðt�1Þ2�0:0026Tðt�1Þ2þ0:00479Qðt�1ÞTðt�1Þ

Z2
2 ¼ �4:5464þ1:64904ðZ1

9 Þ�0:0072ðZ1
10Þ�0:8618ðZ1

9 Þ
2þ0:00757ðZ1

10Þ
2þ0:0028ðZ1

9ÞðZ1
10Þ

Z2
3 ¼ 6:8366þ1:20849ðZ1

9Þþ0:0015ðZ1
5Þ�0:78898ðZ1

9Þ
2þ0:01028ðZ1

5Þ
2�0:00896ðZ1

9ÞðZ1
5Þ

Z2
4 ¼ 20:20312þ0:22685ðZ1

8Þþ0:0034ðZ1
10Þ�0:22952ðZ1

8Þ
2þ0:00681ðZ1

10Þ
2�0:00292ðZ1

8ÞðZ1
10Þ

Z3
4 ¼ �4:75467þ2:95573ðZ2

4Þ�0:0161ðZ2
3Þ�1:83673ðZ2

4Þ
2þ0:00561ðZ2

3Þ
2þ0:01ðZ2

4 ÞðZ2
3Þ

Z3
2 ¼ 20:80679þ1:7062ðZ2

2Þ�0:00304ðZ2
3 Þ�1:54077ðZ2

2Þ
2þ0:01046ðZ2

3Þ
2�0:00323ðZ2

2ÞðZ2
3Þ

Z4
1 ¼ 16:08485�1:98537ðZ3

2Þþ0:03366ðZ3
4 Þþ2:35709ðZ3

2Þ
2þ0:0026ðZ3

4Þ
2�0:0336ðZ3

2ÞðZ3
4Þ�:

ð8Þ

Fig. 2 Position of the study

area (Nanhua Reservoir)
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Choices of modeling data length and variable

combinations

The modeling data length and variable combinations were

obtained through a trial-and-error procedure, with a series

of combinations of input variables. To develop the model, a

sequential data length of 20, 30, 40, 50, 60, and 70 (days)

was first introduced (taking into consideration simultane-

ous data integrity under no residual conditions). The opti-

mum modeling data length differed annually, as can be

determined from Table 3 by comparing the aforementioned

assessment indicators between the trial-and-error proce-

dures. The optimum data length is 70 in most cases,

although it is 60 in 2003 and 2008, and 40 in 2006.

According to the analysis results, a modeling data length of

70 is most appropriate for turbidity forecasting. Table 4

shows the results for the optimum modeling data lengths

and variable combinations.

Turbidity forecasting

Permissible errors

We adopted the safety concepts applied in general engi-

neering construction projects, allowing a maximum error

Table 1 Comparison of evaluation indicators of GMDH and SGMDH forecast efficiency

Modeling event GMDH forecast result SGMDH forecast result

Modeling data length

(variable combination)

RMSE (NTU) CC Modeling data length

(variable combination)

RMSE (NTU) CC

2000 70 (3, 0, 1) 57.920 0.211 70 (4, 3, 1) 52.905 0.126

2001 70 (2, 1, 0) 37.574 0.619 70 (4, 1, 2) 33.149 0.609

2002 70 (3, 1, 1)** 24.598 0.929 70 (3, 1, 1) 32.806 0.891

2003 60 (4, 1, 1) 22.750 0.939 70 (2, 1, 1) 39.962 0.518

2004* 70 (3, 0, 1) 36.395 0.615 70 (3, 1, 1) 67.892 0.107

2005 40 (5, 0, 0) 15.053 0.952 50 (5, 1, 1) 19.142 0.949

2006 70 (3, 1, 1) 5.787 0.975 70 (4, 1, 1) 13.477 0.956

2007 70 (3, 0, 0) 11.026 0.962 70 (3, 0, 0) 7.770 0.965

2008 60 (4, 1, 1) 60.892 0.209 70 (4, 1, 1) 54.773 0.121

Average – 29.450 0.724 – 31.748 0.642

* Not included in average

** (3,1,1) indicates T(t-3), T(t-2), T(t-1), R(t-1), Q(t-1)

Table 2 Regression parameters of all segments by GMDH method

Export module a0 a1 a2 a3 a4 a5

First layer Z1
9 ½Qðt � 1Þ;Rðt � 1Þ� 16.62866 0.53860 -0.00147 0.31608 -0.00088 0.00200

Z1
10½Tðt � 4Þ;Tðt � 3Þ� 3.60373 0.92624 -0.00036 0.50314 0.00275 -0.00903

Z1
5 ½Qðt � 1Þ; Tðt � 4Þ� 0.00000 0.29692 0.00000 1.04566 0.00148 0.01170

Z1
8 ½Qðt � 1Þ; Tðt � 1Þ� 24.90101 0.08174 -0.00022 0.42458 -0.00260 0.00479

Second layer Z2
2 Z1

9 ;Z
1
10

� �
-4.54640 1.64904 -0.00720 -0.86180 0.00757 0.00280

Z2
3 Z1

9 ;Z
1
5

� �
6.83660 1.20849 0.00150 -0.78898 0.01028 -0.00896

Z2
4 Z1

8 ;Z
1
10

� �
20.20312 0.22685 0.00340 -0.22952 0.00681 -0.00292

Third layer Z3
4 Z2

4 ;Z
2
3

� �
-4.75467 2.95573 -0.01610 -1.83673 0.00561 0.01000

Z3
2 Z2

2 ;Z
2
3

� �
20.80679 1.70620 -0.00304 -1.54077 0.01046 -0.00323

Fourth layer Z4
1 Z3

2 ;Z
3
4

� �
16.08485 -1.98537 0.03366 2.35709 0.00260 -0.03360

Fig. 3 Photograph of the Chiahsien Weir
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range of only 10 %. The Taiwan Water Corporation is able

to treat water with a turbidity of up to 500 NTU. As such,

50 NTU (10 % of 500 NTU) was chosen as the index of

turbidity prediction accuracy. According to standard nor-

mal distribution and confidence interval calculations, the

results for each year were between 51–66 NTU. An error of

only 50 NTU is more restrictive, and was, thus, used as the

study threshold.

Verification and analysis of forecast results

Errors between the forecast and actual observations were

verified using the best yearly forecast models. Figure 4

indicates that almost all errors were within the 50 NTU

threshold. The GMDH turbidity prediction model could

forecast levels for up to 10 days, after which the prediction

became too uncertain to be trusted for modeling data

lengths; so, only 20–70 days were selected.

Best forecast model

The best yearly forecast model could be utilized for the

overall turbidity forecasting of other years (e.g., the next

occurrence of the same type of storm event). Table 5

presents the RMSE range, revealing that the RMSE in

2006 was comparatively small. Thus, the 2006 model was

used to forecast water turbidity in 2007. This gave an

RMSE value of 93.137 NTU, a slightly higher error.

However, when the 2006 model was used to predict

Table 3 Calibration RMSE results (NTU) of the best annual forecast model given by trial-and-error

Algorithm Modeling data length 2000 2001 2002 2003 2005 2006 2007 2008

GMDH 20 – – – 112.172 241.589 – 63.565 –

30 –* 112.723 127.826 – 639.366 158.908 31.363 –

40 68.251 65.930 56.117 52.822 15.053 9.308 29.677 210.145

50 – 182.696 83.799 – 17.230 7.715 37.756 330.65

60 62.713 147.584 49.732 22.750 21.551 6.310 39.408 60.892

70 57.920 37.574 24.598 36.395 24.455 5.787 11.026 91.777

SGMDH 20 60.927 498.712 90.844 251.413 42.926 111.513 69.136 239.910

30 – 207.838 248.777 173.750 92.572 47.650 27.351 222.800

40 64.072 98.749 105.783 72.218 20.264 130.401 26.117 108.854

50 64.087 761.013 122.730 84.200 19.142 18.948 29.234 77.314

60 53.575 100.265 73.950 43.982 24.871 13.538 33.044 62.374

70 52.905 33.149 32.806 39.962 19.738 13.477 7.770 54.773

* Shown RMSE value was divergent

Table 4 The best annual input variables

Modeling event Input variables Modeling data length RMSE (NTU)

2000 T(t-3), T(t-2), T(t-1), Q(t-1) 70 57.920

2001 T(t-2), T(t-1), R(t-1) 70 37.574

2002 T(t-3), T(t-2), T(t-1), R(t-1), Q(t-1) 70 24.598

2003 T(t-4), T(t-3), T(t-2), T(t-1), R(t-1), Q(t-1) 60 22.750

2005 T(t-5), T(t-4), T(t-3), T(t-2), T(t-1) 40 15.053

2006 T(t-3), T(t-2), T(t-1), R(t-1), Q(t-1) 70 5.787

2007 T(t-3), T(t-2), T(t-1) 70 11.026

2008 T(t-4), T(t-3), T(t-2), T(t-1), R(t-1), Q(t-1) 60 60.892

Fig. 4 Predicted errors between observation and forecast values at

the Chiahsien Weir
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turbidity for other years, the results were generally within

the required confidence interval (Fig. 5). If the predicted

values were beyond the error range, a recursive algorithm

could be introduced to reduce the prediction error. The

2006 turbidity prediction model was selected as the best

predictive model because of its ability to predict turbidity

within the acceptable error range and required confidence

interval.

Recursive/sequential turbidity forecast model

The recursive/sequential GMDH algorithm incorporates

temporal variability once the variance between the pre-

dicted and newly observed turbidity exceeds an accept-

able range at a certain time. This newly observed value is

then added to the model, with previous data being deleted

to maintain the same data length. The updated forecasting

model then retains its accuracy for later turbidity forecasts.

If the updated forecast model does not produce valid out-

put, the steps for adding newly observed values are repe-

ated to enable the system to auto-adjust. Using these

procedures, the actual turbidity trend can be observed over

any given time period.

In this example, the 2002 model was used to predict the

turbidity in 2003, as shown at the top of Fig. 6. Data from

the initial 70 days were used to begin model construction,

followed by 10-day predictions. However, the results for

day 71 already exhibited a large error. Using recursive

model calculations, the predicted value for day 71 was

discarded, and instead, the measured turbidity value was

included. Thus, the original 1st day datum was discarded,

the data set was kept at 70 days, and the model was rebuilt

to continue 10-day forecast predictions. As shown in the

middle of Fig. 6, the predicted values recovered their

original accuracy. However, 11 days after the prediction

model was rebuilt, the turbidity prediction error for day 81

was excessively large (beyond the acceptable threshold).

Thus, GMDH recursive computing was again used to

reduce the error. The measured turbidity datum for day 82

was then included for analysis, and its forecast value was

discarded. Meanwhile, the original data for the first

12 days were discarded, and the remaining 70 days’ data

set was utilized for model reconstruction. Again, a recur-

sive structure was applied. As illustrated in the bottom part

of Fig. 6, the accuracy of the predicted values was main-

tained. In principle, using the 10-day prediction as a guide,

when the prediction error was within the acceptable range,

the forecasts could continue. Whenever an updated tur-

bidity datum was added for recursive calculation, the

RMSE value of the prior model decreased, meaning that

the deletion of the earliest old datum is more significant

than adding the updated one, i.e., no specific recursive

computing procedure should be carried out in this step.

Conclusion

Turbidity is the most important index for public water

supply. High turbidity inflow causes harassment on treat-

ment of public water supply, even bringing the need to cut

off the water supply. To avoid high turbidity water inflow,

it is important to strengthen the catchment’s conservation,

Table 5 Comparison of RMSE (NTU) value of annual forecast

Year 2000 2001 2002 2003 2005 2006 2007 2008

2000 57.920 49.897 62.349 47.164 58.767 43.168 32.435 54.553

2001 32.161 37.574 20.959 22.114 10.090 2.365 19.161 77.564

2002 44.535 38.891 24.598 60.393 28.335 31.021 30.288 31.996

2003 39.588 14.628 27.213 22.749 13.014 14.163 24.257 20.253

2005 71.141 120.520 76.395 116.597 15.053 44.511 61.079 1064.024

2006 41.340 90.357 54.057 95.049 56.392 5.787 60.938 45.879

2007 565.116 114.259 84.570 180.731 42.723 93.137 11.026 72.055

2008 25.018 23.243 20.767 71.414 43.168 31.513 32.836 60.892

Average 109.602 61.171 46.364 77.026 33.442 33.208 34.003 178.402

Fig. 5 Predicted errors in the forecasted annual turbidity values using

the 2006 model
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protect the water resources territory, and predict the inflow

turbidity concentration before the treatment operation.

A local historical turbidity, rainfall, and discharge data-

base was constructed to develop a turbidity prediction

model based on the GMDH algorithm. The results from a

cross-validation revealed that GMDH was more appropriate

than SGMDH for this case study. The majority of predictive

turbidity values were within a confidence interval of 90 %

or approaching 90 %. Using the recursive GMDH algo-

rithm, the model can be modified to generate better pre-

dictions and improve forecast accuracy. The test results

indicate that this turbidity prediction model is feasible and

reliable for turbidity forecasting. Even with complex envi-

ronmental factors, the model remains applicable.
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