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Abstract The removal efficiencies for chemical oxygen

demand (COD), ammoniacal nitrogen (NH3–N), and color,

as well as ozone consumption (OC) from the Malaysian

semi-aerobic landfill stabilized leachate using ozone reac-

tor, were investigated. Central composite design with

response surface methodology was applied to evaluate the

interaction and relationship between operating variables

(i.e., ozone dosage, COD concentration, and reaction time)

and to develop the optimum operating condition. Based on

statistical analysis, Quadratic models for the four responses

(COD, NH3–N, color, and OC) proved to be significant

with very low probability values (\0.0001). The obtained

optimum conditions were 70 g/m3 ozone, 250 mg/l COD,

and 60 min reaction time. The results obtained by the

predicted model were 26.7, 7.1, and 92 % removal for

COD, NH3–N, and color, respectively, with 9.42 (kgO3/kg

COD) OC. The predicted results fitted well with the results

of the laboratory experiment.

Keywords Stabilized leachate � Ozonation � Optimization

process � Response surface methodology (RSM)

Introduction

Sanitary landfill is recognized as the most common and

desirable method for eliminating urban solid waste. It is

also considered as the most economical and environmen-

tally acceptable method for eliminating and disposing of

municipal and industrial solid wastes (Tengrui et al. 2007).

However, sanitary landfill generates a large amount of

heavily polluted leachate (Zazouil and Yousefi 2008). The

generation of leachate is mainly caused by a release from

waste due to successive biological, chemical, and physical

processes of waste deposited in a landfill. The quality and

quantity of the water formed at landfills depend on several

factors, including seasonal weather variations, land filling

technique, phase sequencing, piling, and compaction

method (Amonkrane et al. 1997; Trebouet et al. 2001).

Landfill leachate is a high-strength wastewater that is very

difficult to deal with. Leachate generated from mature landfills

(age[10 years) is typically characterized by large amounts of

organic contaminants measured as chemical oxygen demand

(COD), biochemical oxygen demand (BOD5), ammonia,

halogenated hydrocarbons suspended solid, significant con-

centration of heavy metals, and many other hazardous

chemicals identified as potential sources of ground and surface

water contamination (Schrab et al. 1993; Christensen et al.

2001; Renou et al. 2008; Aziz et al. 2009; Foul et al. 2009).

Moreover, the sequent migration of leachate away from

landfill and its release into the environment are serious envi-

ronmental pollution concerns, threatening public health and

safety (Read et al. 2001). Accordingly, many environmental

specialists are determined to find efficient treatments for large

quantities of polluted leachate.

A number of leachate treatment techniques have been

applied, which include biological, physical, and chemical

processes (Baig and Liechti 2001; Goi et al. 2009). Given the
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oxidation efficiency, ozone has been suggested as one of the

chemical processes used for the treatment of stabilized landfill

leachate to reduce the risk of strength and un-biodegradable

organics (Beaman et al. 1998). Ozonation processes are

effective means for the treatment of landfill leachates due to

the high oxidative power of ozone (Huang et al. 1993; Rice

1997; Haapea et al. 2002; Wu et al. 2004). During ozonation,

the biodegradability of leachate will be enhanced due to the

fragmentation of organic compounds with long chains to

lower chains degraded to carbon dioxide (Geenens et al.

2001). The performance of ozone for removing COD and

color from mature landfill leachate has been demonstrated in

the literature (Rivas et al. 2003; Chaturapruek et al. 2005;

Hagman et al. 2008; Goi et al. 2009; Cortez et al. 2011).

However, none of these reports have evaluated the effects of

different O3 dosages for different concentrations of leachate

during different reaction times.

In the present study, the statistical relationships among

three independent factors (ozone dosage, COD concentra-

tion, and reaction time) for the treatment of semi-aerobic

stabilized leachate were assessed through RSM. The RSM

is a mathematical and statistical technique that is useful for

the optimization of chemical reactions and industrial

processes and is commonly used for experimental designs.

The main objectives of the present study include the

following:

1. To investigate the efficiency of ozone for treating

semi-aerobic stabilized leachate with different con-

centration levels.

2. To build up the equations of COD, ammoniacal

nitrogen, and color removal efficiency from stabilized

leachate and ozone consumption with respect to

operational conditions [i.e., ozone dosage, reaction

time, and COD concentration using RSM and central

composite design (CCD)].

3. To determine the optimum operational condition of the

studied application.

Materials and methods

Leachate sampling and characteristics

The leachate samples used in the current study were col-

lected from the aeration pond of a semi-aerobic stabilized

leachate of the Pulau Burung landfill site (PBLS) in Nibong

Tebal, Penang, Malaysia. The total landfill site area is

62.4 ha; however, only 33 ha are currently utilized to

receive about 2,200 tons of solid waste daily (Bashir et al.

2011). This landfill produces a dark-colored liquid with pH

level of more than 7.0, and is classified as stabilized

leachate with high concentration of COD, NH3–N, and low

BOD/COD ratio (Aziz et al. 2007). All samples were

collected manually in 20 l plastic containers, and then

transferred, characterized, and refrigerated immediately in

accordance with the Standard Methods for the Examination

Table 1 Characteristics of semi

aerobic landfill leachate from

PBLS

Parameters Value

COD (mg/l) 2,000

NH3–N (mg/l) 960

Color (PT Co.) 3,670

pH 8.5

Suspended solids

(mg/l)

197

Conductivity (lS/cm) 16,650

65 cm

16.5 cm

Ozone 
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Water bath

O2 
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Sample out
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O3 Generator 

O3 analyzer

Gas flow meter

Activated 
Carbon
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cartridge

Cooling 
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(< 150C)

O2

O3

O3Fig. 1 Schematic diagram of

ozone equipment
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of Water and Wastewater (APHA 2005). Table 1 shows

some characteristics of the leachate sample.

Experimental procedures

All experiments were carried out in a 2-L volume of

sample using an ozone reactor with a height of 65 cm and

an inner diameter of 16.5 cm and supported by a cross-

column ozone chamber for enhancing ozone gas diffusion

(Fig. 1). Ozone was produced by a BMT 803 generator

(BMT Messtechnik, Germany) fed with pure dry oxygen

with recommended Gas flow rate of 100–1,000 ml/min

under 1 bar pressure. Gas ozone concentration (in g/m3

NTP) was measured by an ultraviolet gas ozone analyzer

(BMT 964). The water bath and cooling system supported

the ozone reactor to keep the internal reaction temperature

at \15 �C. The process variables include ozone dosage,

reaction time, and varied COD concentrations of leachate.

Concentrations of COD, color, and ammonia were tested

before and after each ozonation process, and the removal

efficiency was then conducted. All tests were conducted

according to the standard methods for the examination of

water and wastewater (American Public Health Association

(APHA) 2005). Ozone consumption (OC) in removing a

certain amount of COD during ozonation under experi-

mental conditions is given in the following Eq. (1):

OC ¼ OC ¼ QG

V
�

R t

0
1 � CAG

CAG0

� �
dt

COD0 � CODð Þ ; ð1Þ

where QG is the gas flow rate (ml/min); V is the sample

volume (ml); CAG is the off-gas ozone concentration (g/

m3); CAG0 is the input ozone concentration (g/m3); t is the

time (min); and COD0 and COD correspond to the initial

and final COD (mg/l).

Experimental design and analysis

The Design Expert Software (version 6.0.7) was used for the

statistical design of experiments and data analysis. In the

present study, the CCD and response surface methodology

(RSM) were applied to optimize and assess the relationship

among three significant independent variables: (1) ozone

Table 2 Independent variables of the CCD design

Level of

value

Ozone dosage

(g/m3)

COD concentration

(mg/l)

Reaction time

(min)

-1 30 250 10

0 55 1,125 35

?1 80 2,000 60

Table 3 Response values for different experimental conditions

Run no. Factor A Factor B Factor C Response 1 Response 2 Response 3 Response 4

Ozone dosage

(g/m3)

COD concentration

(mg/l)

Reaction time

(min)

COD removal

(%)

NH3–N removal

(%)

Color removal

(%)

OC (kgO3/kg

COD)

1 80 250 60 27.2 8.5 90 19.40

2 55 1,125 35 18.8 1.1 31.8 3.62

3 30 250 10 16 0.0 25 3.44

4 55 2,000 35 21 0.0 24 1.80

5 80 2,000 10 10 0.0 18.5 2.04

6 55 250 35 24 6.5 72 7.72

7 55 1,125 35 17.5 1.2 32.5 3.41

8 80 2,000 60 15 0.0 27.3 6.96

9 55 1,125 35 18 1.1 33 3.33

10 55 1,125 35 18.5 1.2 32 3.41

11 30 2,000 10 4 0.0 11 1.80

12 55 1,125 35 17 0.9 31 3.70

13 30 2,000 60 11 0.0 23 2.09

14 55 1,125 10 15.5 0.0 16 1.60

15 30 1,125 35 12.5 1.0 38 5.15

16 80 250 10 15 4.7 45 9.47

17 55 1,125 35 17.5 1.2 33.6 4.50

18 30 250 60 20.8 2.0 88 4.72

19 55 1,125 60 22 1.4 58 3.18

20 80 1,125 35 19 2.2 31 6.09
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dosage, (2) reaction time, and (3) COD concentrations in

leachate as presented in Table 2. COD, color, and NH3–N

removal were considered as the dependent factors (response).

Performance of the process was evaluated by analyzing the

COD, color, and NH3–N removal efficiencies. Each inde-

pendent variable was varied over three levels between -1 and

?1 at the determined ranges based on a set of preliminary

experiments. The total number of experiments obtained for the

three factors was 20 (=2k ? 2k ? 6), where k is the number of

factors (k = 3). Fourteen experiments were enhanced with 6

replications to assess the pure error. Considering that there are

only three levels for each factor, the appropriate model is the

quadratic model Eq. (2).

Y ¼ b0 þ
Xk

j¼1

bjXj þ
Xk

j¼1

bjjX
2
j þ

X

i

Xk

\j¼2

bijXiXj þ ei;

ð2Þ

where Y is the response; Xi and Xj are the variables; b is the

regression coefficient; k is the number of factors studied

and optimized in the experiment; and e is the random error.

Analysis of variance (ANOVA) was used for graphical

analyses of the data to obtain the interaction between the

process variables and the responses. The quality of the fit

polynomial model was expressed by the value of correla-

tion coefficient (R2), and its statistical significance was

checked by the F test in the same program. Model terms

Table 4 ANOVA for analysis

of variance and adequacy of the

quadratic model for COD, NH3–

N, and Color removal and OC

COD: SD = 2.27,

PRESS = 148.07, R2 = 0.8468,

Adj R2 = 0.8060, Adeq

precision = 17.508

NH3–N: SD = 0.69,

PRESS = 24.12, R2 = 0.9439,

Adj R2 = 0.9111, Adeq

precision = 19.710

Color: SD = 5.38,

PRESS = 1,053.30,

R2 = 0.9536, Adj R2 = 0.9412,

Adeq Precision = 28.772

OC: SD = 2.91,

PRESS = 236.61, R2 = 0.5289,

Adj R2 = 0.4735, Adeq

Precision = 10.072

Source Sum of squares Degree of freedom Mean square F value Prob [ F

COD Model 427.61 4 106.90 20.73 \0.0001

A 47.96 1 47.96 9.30 0.0081

B 176.40 1 176.40 34.21 \0.0001

C 126.03 1 126.03 24.44 0.0002

A2 77.22 1 77.22 14.97 0.0015

Residual 77.35 15 5.16

Lack of fit 75.05 10 7.50 16.26 0.0033

Pure error 2.31 5 0.46

NH3–N Model 95.79 7 13.68 28.82 \0.0001

A 15.38 1 15.38 32.38 0.0001

B 47.09 1 47.09 99.17 \0.0001

C 5.18 1 5.18 10.92 0.0063

B2 8.26 1 8.26 17.39 0.0013

C2 2.85 1 2.85 6.00 0.0306

AB 15.68 1 15.68 33.02 \0.0001

BC 4.20 1 4.20 8.86 0.0116

Residual 5.70 12 0.47

Lack of fit 5.63 7 0.80 58.85 0.0002

Pure error 0.068 5 0.014

Model 95.79 7 13.68 28.82 \0.0001

Color Model 8,919.57 4 2,229.89 77.04 \0.0001

B 4,674.24 1 4,674.24 161.48 \0.0001

C 2,917.26 1 2,917.26 100.78 \0.0001

B2 377.58 1 377.58 13.04 0.0026

BC 950.48 1 950.48 32.84 \0.0001

Residual 434.20 15 28.95

Lack of fit 429.95 10 42.99 50.60 0.0002

Pure error 4.25 5 0.85

OC Model 161.97 2 80.99 9.54 \0.0017

A 71.61 1 71.61 8.44 0.0099

B 90.36 1 90.36 10.65 0.0046

Residual 144.27 17 8.49

Lack of fit 143.33 12 11.94 63.35 \0.0001

Pure error 0.94 5 0.19
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Table 5 Final equations in terms of coded and actual factors for parameters

Final equation in terms of coded factors Final equation in terms of actual factors

COD

removal

(%)

?18.98 ? 2.19 A - 4.20 B ? 3.55 C - 3.93 A2 -4.42920 ? 0.77928 A - 4.80000E-003 B ? 0.14200 C ? 6.28800E - 003

A2

NH3–N

removal

(%)

?1.32 ? 1.24 A - 2.17 B ? 0.72C ? 1.61

B2 - 0.94C2 - 1.40 A B - 0.72 BC

-4.08677 ? 0.12160 A - 2.52041E-003 B ? 0.17179 C - 2.09796E-006

B2 - 1.51000E-003 C2 - 6.40000E-005 A B - 3.31429E-005 BC

Color

removal

(%)

?33.69 - 21.62 B ? 17.08 C ? 8.69 B2 -

10.90 BC

?32.32024 - 0.032807 B ? 1.24377 C ? 1.13502E-005 B2 - 4.98286E-

004 BC

OC (kgO3/

kg COD)

?4.87 ? 2.68 A 3.01 B ?2.84916 ? 0.10704 A 3.43543E-003 C
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Fig. 2 Design expert plot; normal probability plot of the standardized residual for a COD, b NH3–N, c color removal and d OC
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were evaluated by the P value (probability) with 95 %

confidence level.

Results and discussion

There were a total of 20 runs of the CCD experimental

design, and the results are shown in Table 3. The observed

percent removal efficiencies varied between 4 and 27.2 %

for COD, 0–8.5 % for NH3–N, and 11–90 % for color.

Several researchers have conducted studies on the treat-

ment of mature landfill leachate using ozone. Tizaoui et al.

(2007) obtained 27 and 87 % removal for COD and color,

respectively, after 60 min Ozonation of raw leachate. In the

same way, Hagman et al. (2008) obtained 22 % COD

reduction. Rivas et al. (2003) obtained a 30 % depletion of

COD. Accordingly, the efficiency of ozone technique for

solely removing organics and ammonia from leachate is

relatively weak; the technique is more efficient for color

removal, which may be attributed to the strength of organic

components in leachate, improving the removal efficiency

in lower initial COD concentration as shown in Table 3.

Thus, many researchers have employed several advanced

oxidation agents and techniques to improve the efficiency

of ozone for leachate treatment, such as hydrogen peroxide

(H2O2) and UV (Wu et al. 2004; Tizaoui et al. 2007). Other

experiments have used lower pH and adsorbent materials,

such as activated carbon, to enhance the removal of

ammonia from leachate during ozonation (Park and Jin

2005).

Ozone consumption was also calculated under condi-

tions of each run by following Eq. (1), and ranged from 1.6

to 19.40 (kgO3/kg COD). OC is defined as the amount of

ozone gas consumed for removing a certain amount of

COD during ozonation under experimental conditions. OC

value increased at minimum reaction time (10 min) and
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Fig. 3 Response surface (a) and contour plots (b) for COD removal

efficiency as a function of ozone dosage, (30 g/m3), COD concen-

tration, (250 mg/l) and reaction time, (60) min
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Fig. 4 Response surface (a) and contour plots (b) for NH3–N

removal efficiency as a function of ozone dosage, (30 g/m3), COD

concentration, (250 mg/l) and reaction time, (60) min
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maximum initial COD concentration (2,000 mg/l). This

result suggests that ozone running at maximum time

(60 min) will reduce the amount of OC compared with an

improved COD removal efficiency. Several experiments

with ozone consumption values have been conducted from

less than 1 kgO3/kg COD (Ho et al. 1974), 0.63 kgO3/kg

COD (Abu Amr and Aziz 2012) 3.5 kgO3/kg COD (Tiza-

oui et al. 2007), up to 16 kgO3/kg COD (Wang et al. 2003),

and between 2 and 3 for ozone alone systems (Geissen

2005).

Analysis of variance

Table 4 present the ANOVA of regression parameters of

the predicted response surface quadratic models and other

statistical parameters for COD, NH3–N, color removal, and

OC. Data given in these tables demonstrate that all the

models were significant at the 5 % confidence level, given

that P values were less than 0.05. The values of correlation

coefficient (R2 = 0.8468, 0.9439, 0.9536, and 0.8949)

obtained in the present study for COD, NH3–N, color

removal, and OC were higher than 0.80. For a good fit of

model, the correlation coefficient should be at a minimum

of 0.80. A high R2 value close to 1 illustrates good

agreement between the calculated and observed results

within the range of experiment and shows that a desirable

and reasonable agreement with adjusted R2 is necessary

(Joglekar and May 1987; Nordin et al. 2004). The ‘‘Ade-

quate Precision’’ ratio of the models varies between 16.214

and 28.772, which is an adequate signal for the model. AP

values higher than 4 are desirable and confirm that the

predicted models can be used to navigate the space defined

by the CCD.

In the current study, four quadratic models are signifi-

cant model terms (Table 4). Insignificant model terms,

which have limited influence, were excluded from the

study to improve the models. Based on the results, the

response surface models constructed for predicting COD,

NH3–N, color removal efficiency, and OC were considered

reasonable.
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The final regression models, in terms of their coded and

actual factors, are presented in Table 5. To confirm if the

selected model provides an adequate approximation of the

real system, the normal probability plots of the studentized

residuals and diagnostics are provided by the Design

Expert 6.0.7 software. The normal probability plots that

helped us judge the models (Fig. 2a–c) demonstrate the

normal probability plots of the standardized residuals for

COD, NH3–N, color removal, and OC. A normal proba-

bility plot indicates that if the residuals follow a normal

distribution, as shown in Fig. 1, the points will follow a

straight line for each case. However, some scattering is

expected even with the normal data. Accordingly, the data

can be possibly considered as normally distributed in the

responses of certain models.

Treatment efficiency

To assess the interactive relationships between independent

variables and the responses of certain models, the 3D

surface response and contour plots utilized the Design

Expert 6.0.7 software (Figs. 3, 4, 5, 6). As shown in

Figs. 3a and 4a, the maximum observed removal of COD

and NH3–N were 27 and 8.2 %, respectively, at ozone

dosage 80 g/m3 and COD concentration 2,000 mg/l. The

contour plots demonstrate that the improvement of removal

efficiencies for COD and NH3–N is attributed to the

decrease in COD concentration and increase in ozone

dosage (Figs. 3b, 4b). The maximum removal of color was

92 % at ozone dosage 80 g/m3 and 60 min reaction time

(Fig. 5a). The increase in reaction time and decrease in

COD are the two main factors for improving color removal

(Fig. 5b). Based on the target of OC as a minimum value,

Fig. 6 shows the response and contour plot for the amount

of ozone gas consumption for COD reduction-based cretin-

independent variables; a minimum value of OC will follow

the increase in reaction time and ozone dosage.

Optimization process

The optimization process was carried out to determine the

optimum value of COD, NH3–N, and color removal effi-

ciency, in addition to OC for COD removal using the

Design Expert 6.0.7 software. According to the software

optimization step, the desired goal for each operational

condition (ozone dosage, COD concentration, reaction

time) was chosen ‘‘within’’ the range. The responses (COD,

NH3–N, and color) were defined as maximum to achieve

the highest performance, whereas the OC response was

defined as the minimum to achieve the lowest value of

ozone Gas consumed for removing the highest amount of

COD. The program combines the individual desirabilities

into a single number and then searches to optimize this

function based on the response goal. Accordingly, the

optimum working conditions and respective percent

removal efficiencies were established, and the results are

presented in Table 6. As shown in Table 6, 26.7, 7.1, and

92 % removal of COD, NH3–N, and color are predicted,

respectively, whereas OC is presented as 9.40 (kgO3/kg

COD) based on the model under optimized operational

conditions (ozone dosage 70 g/m3; COD concentration

250 mg/l; and reaction time 60 min). The desirability

function value was found to be 0.823 for these optimum

conditions. An additional experiment was then performed

to confirm the optimum results. The laboratory experiment

agrees well with the predicted response value.

Conclusion

Using ozone, the optimization of semi-aerobic stabilized

landfill leachate treatment was investigated. The interac-

tion between operational variables for the treatment opti-

mization process, such as ozone dosage, COD

concentration, and reaction time, was applied using RSM

with CCD. Statistical analysis for the interaction of mod-

els’ responses (COD, NH3–N, color removal, and OC) was

significant at P value less than 0.05. The optimum opera-

tional condition obtained 80 g/m3 of ozone gas applied on

leachate with 250 mg/l COD concentration during 60 min

reaction time was required to achieve 26.7, 7.1, and 92 %

removal for COD, NH3–N, and color, respectively. OC

value (9.40 kgO3/kg COD) was also obtained.
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Table 6 Optimization results for COD, NH3–N Color maximum removal efficiency and minimum amount of OC

NO Ozone g/m3 COD mg/l RT min COD removal (%) Ammonia removal (%) Colour removal (%) OC (kgO3/kg COD) Desirability

1 70 250 60 26.7 7.1 92 9.42 0.823

Lab. experiment 24.7 6.4 90.8 9.5

RT reaction time
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