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Abstract This study investigated the sorption of Pb(II) in

aqueous solution onto hydroxyapatite (HA) surfaces. Batch

experiments were carried out using synthetic HA. The

effect of contact time, HA dosage, and initial pH on

removal efficiency were also investigated. The adsorption

equilibrium and kinetics of Pb(II) on this adsorbent were

then examined at 25 �C. Kinetic data were analyzed by

pseudo first, second, and intra-particle diffusion models.

The sorption data were then correlated with the Langmuir,

Freundlich, Halsey, and Harkins–Jura adsorption isotherm

models. The optimum dose of HA for Pb(II) removal is

found to be 0.12 g/l with the removal efficiency of 97.3 %

at an equilibrium contact time of 1 h. It is found that the

adsorption kinetics of the Pb(II) on HA follow the pseudo

second-order reaction. All the isotherms fitted well for

experimental data. Capacity of HA is found as 357.14 mg

Pb(II)/g of HA. The Pb(II) immobilization mechanism was

studied. The results indicated that HA can be used as an

effective adsorbent for removal of Pb(II) from aqueous

solution.

Keywords Hydroxyapatite � Adsorption � Isotherm �
Kinetics � Lead removal

Introduction

Heavy metals are generally recognized to be a threat

toward humans and ecosystems because of their high-

potential toxicity. They could not be biologically decom-

posed into harmless materials and, to matters worse, were

accumulated in the organisms (Adewunmi et al. 1996). In

particular, Pb(II) has been classified as a serious hazardous

heavy metal with high priority in the context of environ-

mental risk (Volesky 2001). This metal is extremely toxic

and can damage the kidney, liver, brain, nervous, and

reproductive systems; among other adverse effects to

humans (Godwin 2001). Drinking water containing Pb(II)

ions for a long term, even if in a very low concentration,

cause a wide range of spectrum health problems, such as

renal failure, coma, nausea, cancer, convulsions and subtle

effects on metabolism and intelligence (Rashed 2001;

Li et al. 2005). It can cause mental retardation and semi-

permanent brain damage in young children (Mohammad

and Najar 1997). Pb(II) has the ability to replace calcium in

the bone to form sites for long-term release (King et al.

2007).

At present, Pb(II) pollution is considered a worldwide

problem because this metal is commonly detected in

several industrial wastewaters (Davydova 2005). Examples

of these wastewaters are those produced by processes,

such as mining, smelting, printing, metal plating, explosive
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manufacture, and dying. In this context, local legislations

have established rigorous standards for Pb(II) concentra-

tions in industrial effluents. Therefore, special attention has

been given to develop proper methods for removal of

Pb(II) from water (De la Rosa et al. 2008).

Among the various water-treatment techniques descri-

bed, adsorption is generally preferred for the removal of

heavy metal ions due to its high efficiency, easy handling,

availability of different adsorbents, and cost effectiveness

(Beauvais and Alexandratos 1998). The most widely

studied adsorbent is activated carbon, while the application

of other adsorbent materials for metal-ion removal is now

receiving considerable attention (Corami et al. 2007).

The present study focuses on the removal Pb(II) from

aqueous solution by hydroxyapatite (HA) [Ca10(PO4)6

(OH)2]. HA is a major inorganic constituent of bone and

teeth, which belongs to the family of apatite’s (Elayaraja

et al. 2012). It is one such material with excellent biocom-

patibility, osteointegrity, and osseous inductivity (Gopi et al.

2012). HA is the most commonly used ceramics in dentistry

and bone-repair applications since they show a very good

performance due to its similarity with the inorganic com-

ponent of the bone (Vila et al. 2012). In addition, HA has

been used as an adsorbent for removing heavy metals

(Ramesh et al. 2012; Corami et al. 2007; Lee et al. 2005),

fluoride (Sairam Sundaram et al. 2008), nicotinic acid

(Dancu et al. 2011) and phenol (Lin et al. 2009). The study

includes an evaluation of the effects of various operational

parameters, such as contact time, dose of HA, and pH on the

Pb(II) adsorption process. The adsorption kinetic models and

equilibrium isotherm models related with the process were

also investigated.

Materials and methods

Adsorbent characterization

The laboratory prepared hydroxyapatite (Ramesh et al.

2012) was characterized by using the X-ray diffraction

(XRD), transmission electron microscope (TEM) and

Fourier Transform Infrared (FTIR) analyzer.

The point of zero charge (PZC) was determined using

the solid addition method (Oladoja and Aliu 2009) viz: a

series of 100 mL conical flasks, 45 mL of 0.1 M KNO3

solution was transferred. The pH0 values of the solution

were roughly adjusted from 3.5 to 8.1 by adding either

0.1 N HNO3 or NaOH. The total volume of the solution in

each flask was made exactly to 50 mL by adding the KNO3

solution. The pH0 of the solutions were then accurately

noted. HA (1 g) was added to each flask and securely

capped, immediately. The suspension was then manually

agitated. The pH values of the supernatant liquid were

noted. The difference between the initial and final pH (pHf)

values (DpH = pH0 - pHf) was plotted against the pH0.

The point of intersection of the resulting curve at which

pH0 gave the PZC.

Sorption experiments

Metal salt of Pb(NO3)2 was used to prepare metal ion

(Pb(II)) solution. The stock solution (1,000 mg/L) was

prepared by dissolving appropriate amounts of metal salt in

double distilled water. The working solution (10 mg/L)

was prepared by diluting the stock solution to appropriate

volume.

Kinetic study was conducted with the known dosage of

HA (0.006 g) for the 100 mL of metal ion solution. The

samples were shaken at an agitation rate of 250 rpm.

The samples were taken out at different time intervals. The

sorbent solution mixtures were then centrifuged for 5 min

and the supernatant was analyzed for the Pb(II) concen-

tration. After the removal of Pb(II), the HA samples were

separated by filtering and dried at 120 �C in an oven.

The batch sorption studies were carried out by shaking a

series of bottles containing different amounts of HA dosage

between 0.002 and 0.2 g in 100 mL of metal ions solution

prepared in the laboratory. The samples were stirred at room

temperature at 250 rpm for 1 h (equilibrium time), and their

content was then centrifuged for 5 min and the supernatant

liquid was analyzed for Pb(II) concentration. Initial and

equilibrium metal ion concentration in the aqueous solution

was determined by using a Thermo Scientific S-series model

flame atomic absorption spectrometer.

The effect of the pH of the initial solution on the

adsorption process was analyzed by adjusting the pH the

aqueous solution between 2 and 10 with 0.5 N HCl or

0.5 N NaOH. An Orion EA 940 expandable ion analyzer

was used to adjust a desired pH value.

Results and discussion

Characterization of HA

XRD and TEM images of nano-sized HA have been given

in our previous work (Ramesh et al. 2012). The estimated

crystallite size was 28 nm for the HA sample. The HA

particles are found to be of nano-sized with needle-like

morphology, with width ranging from 15 to 20 nm and

length around 50–60 nm, the size comparable to that of

bone apatite (Ramesh et al. 2012). Figure 1 shows the

infrared spectra of HA before and after Pb(II) adsorption in

the 4,000–400 cm-1 region. The various bands of HA is

given in Table 1. The pH of PZC of the HA is shown in

Fig. 2. The PZC of HA was found to be 6.86. It was
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observed that at pH \6.86, the surface of the HA is pre-

dominated by positive charges while at pH [6.86, the

surface is predominated by negative charges.

Effect of contact time

The time-dependent behavior of Pb(II) adsorption was

measured by varying the contact time between adsorbate

and adsorbent in the range of 5–120 min. The percentage

adsorption of Pb(II) with different contact time is shown in

Fig. 3. From Fig. 3, it can be observed that the rate of

removal of Pb(II) ions was higher at the initial stage, due to

the availability of more active sites on the surface of HA

and became slower at the later stages of contact time, due

to the decreased or lesser number of active sites (Kannan

and Karrupasamy 1998). It is apparent from Fig. 3 that

until 1 h, the percentage removal of Pb(II) from aqueous

solution increases rapidly and reaches up to 89 %. A further

increase in contact time has a negligible effect on the

percentage removal. Therefore, a 1 h shaking time was

considered as equilibrium time for maximum adsorption.

The decrease in rate of removal of Pb(II) with time may also

be due to aggregation of Pb(II) around the HA particles. This

aggregation may hinder the migration of adsorbate, as the

adsorption sites become filled up, and also resistance to

diffusion of Pb(II) molecules in the adsorbents increases

(Mittal et al. 2010). The equilibrium time for Pb(II) removal

using various adsorbents reported by various researchers was

compared with present study (Table 2). From Table 2, it was

found that the contact time for Pb(II) removal using HA is

comparable to other adsorbents.

Effect of mass of adsorbent on Pb(II) removal

The effect of HA dosage on Pb(II) removal was analyzed

by varying the dosage of HA and the result is shown in

Fig. 4. It was observed that the removal efficiency

increases with the increase in HA dosage. This reveals that

the instantaneous and equilibrium sorption capacities of

Pb(II) are functions of the HA dosage. The percentage

removal of Pb(II) from aqueous solution by HA increases

rapidly up to 67.5 % for a dose of 0.01 g/L. This is mainly

due to increase in sportive surface area and availability of

more adsorption sites. After that the removal efficiency

increases slowly up to a value of 97.3 %. A further increase

in HA dose has a negligible effect on the percentage

removal. The decrease in the amount sorbed per unit mass

with increasing sorbent dosage is due to the split in the flux

or the concentration gradient between solute concentration

in solution and the solute in the surface of the adsorbent

(Vadivelan and Kumar 2005).

Effect of pH

The pH is a significant factor for determining the form of

the metallic species in aqueous media. It influences the

adsorption process of metal ions, as it determines the

magnitude and sign of the charge on ions (Gupta et al.

2011). The effect of solution pH on the sorption of Pb(II)

ions from the aqueous solution using HA was investigated

in the pH range of 2–10 with the initial Pb(II) concentration

of 10 mg/L. The result is shown in Fig. 5. It was found that

the adsorption capacity of HA increases with increase in

pH in acidic medium. But in alkaline conditions, the

removal efficiency remains constant. This is because at low

pH (\6), positively charged Pb(II) species are dominant

and adsorption on HA takes place in faster rate. But in case

of high pH values (pH = 7–11), there are several lead

species with different charges like Pb(OH)? and Pb(OH)2

and thus the removal of lead is possibly accomplished by

simultaneous precipitation of Pb(OH)2 and sorption of

Pb(OH)? (Gupta et al. 2011).

Adsorption kinetics

The kinetic studies of a sorption process are paramount

because the data obtained from such studies are necessary

to understand the variables that influence the sorption of

solutes. The results can also be used to determine the

equilibrium time and the rate of adsorption can be used

to develop predictive models for column experiments

(Oladoja et al. 2008a). For this purpose, Lagergren’s

pseudo first-order kinetic model, pseudo second-order
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Fig. 1 FTIR spectra for Hydroxyapatite before and after Pb(II)

adsorption

Appl Water Sci (2013) 3:105–113 107

123



kinetic model, and intra-particle diffusion model were

considered and fitted with the experimental data.

The pseudo first-order equation is generally expressed as

(Lagergren 1898),

log qe � qtð Þ ¼ log qeð Þ � k1

2:303
t ð1Þ

where qe and qt are the adsorption capacity at equilibrium and at

time t, respectively (mg/g), k1 is the rate constant of pseudo first-

order adsorption (1/min). The values of log (qe - qt) were lin-

early correlated with t. The plot of log (qe - qt) versus t should

give a linear relationship from which k1 and qe can be determined

from the slope and intercept of the plot, respectively.

The second-order Lagergren equation was given by (Ho

and McKay 1999). It is expressed as:

t

qt

� �
¼ l

k2q2
e

þ l

qe

tð Þ ð2Þ

where k2 is the rate constant of pseudo second-order

adsorption (g/mg/min). The plot of (t/qt) and t should give a

linear relationship from which qe and k2 can be determined

from the slope and intercept of the plot, respectively.

Table 1 FTIR spectra of HA before and after Pb(II) adsorption

Observed

peak

(cm-1)

%

transmittance

(Pb(II)

loaded)

Peak range

(cm-1)

Functional

group

References

3,464 Decreasing 3,200–3,600 –OH

stretching

vibration

Manjubala

et al. (2001)

1,608 Decreasing 1,300–1,650 CO3
2- Rehman and

Bonfield

(1997)

1,360 Decreasing 1,300–1,650 CO3
2- Rehman and

Bonfield

(1997)

1,314 Increasing 1,300–1,650 CO3
2- Rehman and

Bonfield

(1997)

1,479 Increasing 1,300–1,650 CO3
2- Rehman and

Bonfield

(1997)

1,056 No change 900–1,300 PO4
3- Rehman and

Bonfield

(1997)

571 Increasing 520–660 PO4
3- Rehman and

Bonfield

(1997)

y = 0.975x - 6.697
R² = 0.997
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Fig. 3 Effect of contact time on removal of Pb(II)

Table 2 Comparison of contact time for Pb(II) removal

No. Adsorbent Equilibrium time References

1 Activated

alumina-

supported iron

oxide

4, 8, 12 and 36 h,

corresponding to Pb(II)

initial concentrations of 0.1,

0.2, 0.4 and 0.8 mM,

respectively.

Huang et al.

(2007)

2 Rice husk, maize

cobs and

sawdust

90 min Abdel-Ghani

et al.

(2007)

3 Syzygium cumini
L.

10 min King et al.

(2007)

4 Bamboo dust

carbon

45 min Kannan and

Veemaraj

(2009)

5 Commercial

activated

carbon

35 min Kannan and

Veemaraj

(2009)

9 Calcite 10 min Yavuz et al.

(2007)

7 HA 60 min Present

study
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Though there is a high possibility for pore diffusion to

be the rate limiting step in a batch process, the adsorption

rate parameter, which controls the batch process for most

of the contact time, is the intraparticle diffusion (Weber

and Morris 1963; Allen et al. 1989). The most widely

applied intraparticle diffusion equation for sorption system

is given by Weber and Morris (1963) as follows:

qt ¼ kit
0:5 þ c ð3Þ

where ki is the intraparticle rate constant (mg/g mm0.5).

Figure 6 shows the plot of the kinetic model for

adsorption of Pb(II) on HA. Experimental and theoretically

calculated adsorption capacities (qe) at equilibrium and

coefficients related to kinetic plots are listed in Table 3. It

can be seen from Table 3 that the linear correlation coef-

ficients for first-order and second-order model are good and

based on the comparison between experimental and

theoretically calculated qe values, it was found that the

pseudo second-order model fitted better than pseudo first-

order model for removal of Pb(II) by HA.

Intraparticle diffusion plot (Fig. 6) shows multi-linearity

between t0.5 and qt for the removal of Pb(II) by HA. It was

also found that the intra-particle diffusion of Pb(II) within

HA occurred in two stages. The first straight portion is

attributed to the macro-pore diffusion and the second linear

portion to micro-pore diffusion (Allen et al. 1989).

Adsorption isotherms

Equilibrium isotherm is described by a sorption isotherm,

characterized by certain constants whose values express the

surface properties and affinity of the sorbent sorption

equilibrium is established when the concentration of sor-

bate in the bulk solution is in dynamic balance with that at

the sorbent interface (Oladoja et al. 2008b). The adsorption

isotherm study is carried out on well-known isotherms,
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such as Langmuir, Freundlich, Halsey, and Harkins–Jura

adsorption isotherm models. The linear form of Langmuir

isotherm is expressed as (Langmuir 1915):

1

X=M
¼ 1

qmax

þ 1

qmaxb

1

Ce

ð4Þ

where b is the constant that increases with increasing

molecular size, qmax is the amount adsorbed to form a

complete monolayer on the surface (mg/g), X is weight of

substance adsorbed (mg), M is weight of adsorbent (g), and

Ce is the concentration remaining in solution (mg/L).

The essential features of the Langmuir isotherm may be

expressed in terms of equilibrium parameter RL, which is a

dimensionless constant referred to as separation factor or

equilibrium parameter (Weber and Chakkravorti 1974):

RL ¼ 1

1 þ bC0

ð5Þ

The value of RL indicates the type of the isotherm to be

either unfavorable (RL [ 1), linear (RL = 1), favorable

(0 \ RL \ 1) or irreversible (RL = 0).

The Freundlich isotherm is expressed as (Freundlich

1906).

log qe ¼ log K þ 1

n
� log C ð6Þ

where K and n are the constants depending on temperature.

The Harkin–Jura (Harkins and Jura 1944) adsorption

isotherm can be expressed as:

1

q2
e

¼ B

A
� log Ce

A
ð7Þ

where B and A are the isotherm constants. The isotherm

equation accounts for multilayer adsorption and can be

explained by the existence of a heterogeneous pore distri-

bution (Venckatesh et al. 2010). The plot between log Ce

and 1/qe
2 gives a straight line with slope of 1/A and intercept

of B/A.

The Halsey (1948) adsorption isotherm can be given as:

lnCe ¼
lnk

nH

� lnCe

nH

ð8Þ

where nH and k are Halsey isotherm constants. This

equation is suitable for multilayer adsorption and the fitting

of the experimental data to this equation attest to the

heteroporous nature of the adsorbent. The Halsey isotherm

parameters are obtained from the plot of ln (qe) versus ln

(Ce).

An isotherm plot for sorption of Pb(II) by HA is shown

in Fig. 7. The intercept and slope of each straight line were

used to obtain the isotherm constants and given in Table 4.

The value of ‘n’ indicates that the Freundlich isotherm is

favorable for removal of Pb(II) by HA. The value of RL

also indicates that Langmuir isotherm is favorable. From

Fig. 7, it can be concluded that Langmuir isotherm is the

best fit among other isotherms. The adsorption capacity of

HA was 357.14 mg Pb(II)/g of HA. The adsorption

capacity of HA for Pb(II) is compared with other adsor-

bents (Table 5). The value of Pb(II) uptake by HA found in

this work is significantly higher than that of other adsor-

bents. From the Table 5, it can be seen that HA is an

efficient biosorbent for the uptake of Pb(II) from aqueous

solution.

Mechanism

Three types of reactions may control Pb(II) immobilization

by HA: surface adsorption, cation substitution or

Table 3 Adsorption kinetic model rate constants for Pb(II) removal

qe (Exp)

(mg/g)

Pseudo first-order Pseudo second-order

qe (cal)

(mg/g)

k1

(min-1)

R2 qe (cal)

(mg/g)

k2 (g/mg/

min)

R2

7.07 9.77 0.0513 0.9898 9.01 7.86 9 10-3 0.991
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Halsey Isotherm Harkins-Jura adsorption isotherm
Experimental

Fig. 7 Isotherm plots for sorption of Pb(II) by HA

Table 4 Isotherm parameters for sorption of Pb(II) by HA

Isotherm model Parameters Value R2

Langmuir b 1.079 0.84

qmax (mg/g) 357.14

RL 0.085

Freundlich n 1.343 0.83

K (mg/g) 189.89

Halsey nH 1.343 0.83

k (mg/g) 1,149.32

Harkins– Jura A 10,000 0.88

B 0.5
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precipitation. The first mechanism is the adsorption of

Pb(II) ions on the HA surfaces and following ion exchange

reaction between Pb(II) ions adsorbed and Ca2? ions of HA

(Suzuki et al. 1984). This ion exchange reaction mecha-

nism is expressed as:

Ca10 PO4ð Þ6 OHð Þ2þxPb2þ ! xCa2þ

þ Ca10�xPbx PO4ð Þ6 OHð Þ2

ð9Þ

Ma et al. (1994) showed that HA dissolution and

hydroxypyromorphite (HP) precipitation were the main

mechanisms for Pb(II) immobilization by HA in the

absence of other metals. These chemical reactions can be

described as follows:

Ca10 PO4ð Þ6 OHð Þ2þ14H2þ ! 10Ca2þ þ 6H2PO�
4

þ 2H2O Dissolutionð Þ
ð10Þ

10Pb2þ þ 6H2PO�
4 þ 2H2O ! 14H2þ

þ Pb10 PO4ð Þ6 OHð Þ2 Percipitationð Þ ð11Þ

Information about the sorption mechanisms have been

inferred by the values of molar ratios (Qs) of cations bound

by HA to Ca desorbed from HA (Aklil et al. 2004). The Ca

desorbed from HA with Pb(II) adsorption is shown in

Fig. 8. The values of metal disappearance, solution Ca and

molar ratio were found as 8.79 (mg/L), 10 (mg/L) and

0.879, respectively. Since the value of molar ratio is less

than 1, dissolution and precipitation are the main

mechanisms for Pb(II) adsorption by HA (Corami et al.

2007).

Conclusions

The capability of HA for Pb(II) adsorption was examined

using equilibrium and kinetic analysis. The result shows

that HA is a powerful adsorbent for removing Pb(II) from

aqueous solution. The optimum dose of HA for Pb(II)

removal is found to be 0.12 g/L with the removal efficiency

of 97.3 %. It is found that the adsorption kinetics of the

Pb(II) on HA follow the pseudo second-order reaction.

Langmuir isotherm had best fit than Freundlich, Halsey,

and Harkins–Jura isotherms for experimental data. The

adsorption capacity of HA was found to be 357.14 mg/g.

Table 5 Comparison of Pb(II) adsorption capacities of different

adsorbents

No. Adsorbent Adsorption

capacity

(mg/g)

References

1 Activated alumina-supported

iron oxide

35.45 Huang et al.

(2007)

2 Chicken feathers 8.63 De La Rosa et al.

(2008)

3 Kaolinite clay 2.35 Jiang et al.

(2010)

4 Moringa oleifera Bark 34.6 Reddy et al.

(2010)

5 Trichoderma viride 49.74 Singh et al.

(2010)

6 Powder activated carbon 20.7 Matheickal and

Yu (1996)

7 Granulated activated carbon 31.1 Muraleeddharan

et al. (1995)

8 Grape stalks 49.7 Martı́nez et al.

(2006)

9 Carbon nanotube sheets 117.64 Tofighy and

Mohammadi

(2011)

10 Commercial activated carbon,

bamboo dust carbon

5.95, 2.15 Kannan and

Veemaraj

(2009)

11 Gelidium algae 64 Wehrheim And

Wettern (1994)

12 Crab shell, arca shell 19.83, 18.33 Dahiya et al.

(2007)

13 HA 357.14 Present Study

14 HA (50 wt.%)/polyurethane

composite foam

150 Jang et al.

(2008)

15 Dithiocarbamate-anchored

polymer/organosmectite

composites

170.7 Say et al. (2006)

16 Activated phosphate 155 Mouflih et al.

(2005)
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HA dissolution and hydroxypyromorphite precipitation

were the main mechanisms for Pb(II) immobilization by

HA.
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Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.
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