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Abstract
Toxic contaminants from intense industrial operations are entering wetlands, harming human health and biodiversity. Mac-
rophytes serve as principal producers in aquatic environments including natural wetlands, providing shelter, food, and, most 
crucially, intricate relationships with the surrounding microbial assemblage for support and microorganisms attachment. 
Wetlands have been nature's kidneys, for filtering water. Recent research has examined macrophytes' phytoremediation abili-
ties. With recent improvements focused on engineered wetland technology, microbiological characterization, and genetic 
engineering, phytoremediation strategies have also benefited. However, little research has examined the role surrounding 
microbial population play on macrophyte efficiency in pollutant degradation, the extent and even mechanisms of these 
interactions, and their potential utility in wastewater treatment of diverse industrial effluents. Our bid for greener solutions 
implies that macrophyte-microorganisms’ interspecific interactions for in situ treatment of effluents should be optimised to 
remove contaminants before discharge in natural waterbodies or for recycle water usage. This review provides for the varied 
types of plants and microbial interspecific interactions beneficial to effective phytoremediation processes in artificial wetland 
design as well as considerations and modifications in constructed wetland designs necessary to improve the bioremediation 
processes. Additionally, the review discusses the latest advancements in genetic engineering techniques that can enhance 
the effectiveness of phyto-assisted wastewater treatment. We will also explore the potential utilisation of invasive species 
for their demonstrated ability to remove pollutants in the controlled setting of constructed wetlands.
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1 Introduction

As we face the challenges of environmental pollution, there 
is a need to develop sustainable remediation approaches and 
effective strategies for the treatment of industrial effluents 

brought about by economic developments. Constructed 
wetlands have emerged as favorable option for bioreme-
diation due to their ecological significance, one major 
support framework present in all wetlands are the plants 
(macrophytes) enabled by the interplay of endophytic and 
rhizospheric dwelling microorganisms that participate in 
the degradation of compounds including pollutants within 
the area covered by these plants (Supreeth 2022; Borgulat 
et al. 2022). Aquatic plants (macrophytes) provide a struc-
ture that enhances flocculation and sedimentation, and the 
conditions for microbial activities to stabilize and degrade 
pollutants (Kochi et al. 2020). This is possible because the 
stems, leaves, and roots provide surfaces for microbial adhe-
sion between the soil/silt interphase and the water column 
(tidal currents). These surfaces provide protection and an 
environment for the development of microbial communities 
(Srivastava et al. 2017; Onaebi et al. 2020).
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Although found abundantly in aquatic environments, free-
living microorganisms are less efficient at sourcing and pro-
cessing nutrients, than consortia dwelling microorganisms, 
especially those that live in close proximity to these aquatic 
plants. This is because concerted enzymes from consortium 
cooperation are necessary to degrade complex substrates, 
as such, it is beneficial to reside within groups. Addition-
ally, the type and composition of nutrients present modi-
fies microbial species composition and changes ecological 
communities as they attempt to adapt to these chemical 
compounds, which in turn affects ecological system perfor-
mance. Other environmental pressures that affect microbial 
fluxes also change microbial communities. Microorganisms 
need carbon to proliferate and increase enzyme levels (meta-
bolic activities) in any given environment (Gupta et al. 2017; 
Huang et al. 2020). Studies in bioprospecting have shown 
that the assimilation of carbon and other essential nutri-
ents necessary for metabolic activities and biomass growth 
induces cooperation amongst microorganisms, inadvertently 
leading to the production of important biological products 
used in industries such as food, medicine, agriculture, water, 
and energy recovery (Abbas et al. 2021).

Pertinently, these macrophyte-microbe interactions can 
be found in root organic deposits, in stems and leaves (endo-
phytic), enhanced by varied nutrient contents and the type 
of fortuitous stem/root-associated microbial communities 
(Shaikh et al. 2018). The rhizosphere is a narrow zone of 
soil surrounding aquatic plant roots where root exudates 
cause biological activity (Clairmont et al. 2019). The rhizo-
sphere attracts bacteria and other microorganisms that feed 
on decaying root material from sloughed off border cells and 
mucilage (thick, viscous, high molecular weight, insoluble, 
polysaccharide-rich material that lubricates roots against 
desiccation) (Zhalnina et al. 2018). Rhizo-deposition enables 
microorganisms to grow on roots (Yadav et al. 2015). Root 
exudates contain sugars, nucleotides, amino acids, organic 
acids, phenolic compounds, enzymes, phytohormones, and 
vitamins that can attract or inhibit microorganisms, act as 
signal molecules in the rhizosphere, and sequester hazardous 
toxic elements (e.g. cadmium, chromium VI, and others). 
Chemical components of root exudates may facilitate sym-
biotic or mutualistic associations, such as  N2 fixation and 
mycorrhizal associations, or deter microorganisms via neg-
ative associations, such as competition, pathogenesis, and 
parasitism among plants (Pathan et al. 2020). Rhizosphere 
sediment, plants, and microorganisms regulate microbial 
diversity and dynamics (Olanrewaju et al. 2019). In addi-
tion, compounds that are absorbed by the plants, interact 
with endophytic micoroganisms found within the stem as 
well as the leaves.

Apart from the macrophyte selection and enhancement 
of microbial diversity, the removal of industrial pollutants 
in constructed wetlands involves a combination of physical, 

chemical, and biological processes. This involves incorpo-
rating other strategies such as the constructed wetland design 
to allow for sufficient contact time between the pollutants 
and biota and promoting effective biological and chemical 
processes for the removal of pollutants (Hassan et al. 2021). 
Considering sedimentation traps and filtrations strips will 
ensure a consistent flow velocity within the constructed 
wetland to enable sedimentation of unwanted particles and 
pollutants and allowing the capture and filtration runoffs to 
prevent transport of the pollutants further in the wetlands 
(Mangangka 2013). These strategies, when integrated 
together will contribute to the effectiveness of constructed 
wetlands in removing industrial pollutants.

As we progressively look for sustainable approaches 
to wastewater treatment, our understanding of the phyto-
degradation process and the application to phyto-assisted 
bioremediation must integrate optimization processes to 
improve the removal of pollutants from contaminated water, 
with emphasis and consideration placed on ensuring special-
ized treatments for various industrial wastewaters. Thus, this 
review intends to present various approaches to consider 
in integrating phytoremediation within an artificial wetland 
construction that considers the importance of macrophyte-
microorganisms’ interactions in pollutants removal. Further, 
the review will highlight the broader implications of this 
approach for environmental management and pioneering 
the development of innovative and eco-friendly strategies 
to reduce the challenges posed by industrial pollution.

2  The macrophyte as a micro‑ecological 
system

The rhizosphere food web can be divided into three distinct 
channels, each with its own energy source: detritus-depend-
ent fungi and bacterial species, and root energy-dependent 
invertebrates, symbiotic species, and some arthropods. 
Because the amount of detritus available and the role of 
root sloughing change as roots grow and age, the food web 
is constantly in a state of flux. This bacterial channel is con-
sidered a faster channel because species can focus on more 
accessible resources in the rhizosphere and have a faster 
reproduction rate than fungal channels. The size and dis-
tribution of microbial assemblages in this zone are directly 
related to the system's nutrient resources' quality and quan-
tity. Due to the introduction of exudates and the relationships 
that they maintain, aquatic plants have an impact on which 
microbial species in the rhizosphere are selected against. 
The amount of root exudates that plants can produce has an 
impact on the rhizosphere's microbial communities (Zhu and 
Sikora 1995). Cell counts in the root zone are several orders 
of magnitude higher than in plant-free soil. The microbial 
community in rhizosphere roots is more diverse, active, and 
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synergistic implying that microbial genes outnumber plant 
genes in the rhizosphere (Mendes et al. 2013). Most micro-
bial communities adapt quickly to natural perturbations or 
external nutrition loading (Reddy et al. 2002). This rhizo-
sphere connection is found in semi-arid soils and wetland 
habitats (Aguirre-Garrido et al. 2012; Hong et al. 2015).

The occurrence of sedimentation stores inorganic and 
organic nutrients before releasing them back into the water 
column. Microbial communities in sediments are critical 
to wetland functions because they play important roles in 
substance export, regeneration, and biogeochemical cycling 
(carbon, nitrogen, sulphur, and iron) (Cheung et al. 2018). 
Plants can grow in water-saturated sediments, making 
wetlands ecosystems unique. This allows plants to have 
adventitious roots/rhizomes with aerenchymatous tissues, 
which improves oxygen transfer via air pressure gradients 
and passive mechanisms such as diffusion, and creates an 
oxygenated aqueous layer around root hairs (Allen 1997). 
Wetlands' perennial or periodic flooding and plant roots 
create a dual oxic and anoxic environment that encourages 
aerobic and anaerobic microbial assemblages (De Mandal 
et al. 2020). Aerobic bacteria thrive in an oxygen-rich envi-
ronment provided by roots.

An oxygen-deficient environment promotes anaerobic 
microbes farthest from the roots (Sand-Jensen et al. 1982). 
Microorganisms in the anoxic hydric zone produce an oxic 
surface layer, and redox stratification occurs in the oxygen-
deficient zone (De Mandal et al. 2020). Oxygen levels at root 
respiration sites are regulated by open lacunars in stems, 
roots, and rhizomes. This gaseous space serves as an oxygen 
conduit from photosynthetic shoot tissue to subsurface tis-
sue, where aerobic processes keep roots absorptive for nutri-
ent uptake (Bedford et al. 1991). The space between the root 
hairs is populated by anaerobic microorganisms (which grow 
at a slower rate). The plant rhizosphere is home to significant 
quantities of culturable microbes that can benefit humanity 
due to the presence of aerobes and anaerobes that promote 
fast cycling (rapid use of carbon sources) (Ghermandi et al. 
2010). Individual microbes can benefit plants, but when 
two or more interact, additive and synergistic effects are 
expected.

Multiple species can play various roles in a rhizosphere 
ecosystem. Many rhizosphere microorganisms, for exam-
ple, provide transformed compounds like nitrates for plant 
absorption and assimilation, which aids crop production  (N2 
fixation) by increasing soil/silt fertility. Others offer defence 
against infections and illnesses. The microbes at this site 
tend to produce pharmaceutical-grade antibodies. Because 
of root exudates and metabolic products of symbiotic and 
pathogenic bacteria, much of the nutrient cycling and dis-
ease suppression by plant antibodies occurs near the roots. 
Due to rhizosphere effects, enriched microorganisms near 
plant roots improve biodegradation of harmful contaminants 

(Xiong et al. 2021). These contaminants in the root zone 
are biodegraded by rhizospheric inhabitants. Plants boost 
bioremediation by increasing microbial populations and soil 
metabolism. In wetlands, plant microbiota improves plant 
uptake of mineral and organic substances from substrates, 
similar to the role played by land plant microbiome (Alegria-
Terrazas et al. 2016). Biodegradable peroxidases and lac-
cases are secreted by root tissues and bacteria. Microbial 
enzymes and biodegradation are activated by root exudates. 
The presence of oxygen in the rhizosphere promotes oxida-
tive biodegradation by oxygenases. Plants are super-organ-
isms that rely on their microbiome for specialised functions 
and characteristics. Macrophytes can influence sediment pol-
lutant removal efficiency due to differences in plant and sedi-
ment composition and favourable radial oxygen loss (ROL).

It has been observed that Arabidopsis and agricultural 
crops influence and benefit from the connected rhizosphere 
microbial community in the terrestrial landscape (Pérez-Jar-
amillo et al. 2018; Schmidt et al. 2019). Freshwater hydro-
phyte rhizospheres also have these metabolic interactions. 
Most studies focus on specific functional groups, such as 
ammonia-oxidisers (Huang et al. 2016), dentrifiers (Yin 
et al. 2020), and anammox bacteria (Zhang et al. 2021). In 
the past, Collins, and colleagues (2004) demonstrated that, 
while microbes can grow on any surface, the presence of 
plants affects microbial composition and abundance. Other 
studies have shown that plant species influence microbial 
frequency (Qin et al. 2017; Pietrangelo et al. 2018; Fang 
et al. 2021). This suggests that specific interactions between 
plants and their host microorganisms have helped them 
adapt to new environments and dominate various ecosys-
tems. Vymazal (2007) discovered significant differences 
in microbial diversity in Phragmitis australis and Phala-
ris arundinacea rhizospheres. Similarly, Kyambadde et al. 
(2004) proposed that plant morphology influences microbial 
frequency, citing the instance of Cyperus papyrus which has 
a larger root surface and microbial density than Miscanth-
idium violacuum.

Wetland microbial organisation differs from terrestrial 
microbial organisation due to oxygen diffusion and soil 
physicochemical changes (De Mandal et al. 2020). Micro-
bial communities increase biomass and enzyme activity 
in response to nutrient fluxes, influencing biogeochemical 
processes and nutrient cycles such as carbon, sulphur, nitro-
gen, and lead, which affect water quality and productivity 
(Cheung et al. 2018). It is undeniable that anthropogenic 
activities have permanently altered the hydrosphere, pos-
ing a threat to these microbial communities. Lamers et al. 
(2012) investigated the impact of microbial communities on 
aquatic plant growth and performance. The findings show 
that microbe-catalyzed biogeochemical conversions regu-
late the composition and distribution of wetland vegetation. 
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The nitrogen, sulphur, and iron cycles are among the most 
notable conversions.

Amongst the various types of macrophytes, emergent 
macrophytes are the most productive because they can 
absorb resources from the hydrosphere, and atmosphere 
(Westlake 1965) as shown in Fig. 1. Their stems and leaves 
extend above the water's surface enabling carbon fixation 
and photosynthesis. Macrophytes, unlike terrestrial plants, 
anchor in submerged, anoxic sediments. Macrophytes pro-
vide an additional oxygen source for microorganisms in the 
rhizoplane (area directly in contact with the root surface) 
and the rhizosphere (sediment area loosely attached but 
influenced by the root), promoting aerobic micro-niches in 
an otherwise anaerobic environment, such as wetland sedi-
ment. Interestingly, the sulphate-rich silt found in wetlands, 
provides anaerobic microorganisms with an enabling envi-
ronment. These group of microorganisms are very important 
in elements (including pollutants) removal from the envi-
ronment. They use varied strategies such as bioabsorption, 
bioadsorption, bioaccumulation, and biodegradation. These 
processes are integrated into the cellular machinery and/or 
biochemical pathways of these microorganisms (Goud et al. 
2020).

Furthermore, strong, fibrous stems improve tissue present 
in macrophytes, which aids in aeration. For example, mac-
rophytes such as Zizania latifolio and Phragmites australis 

have this structure, allowing them to translocate oxygen and 
other primary, secondary, and bioactive compounds into the 
rhizosphere for plant growth (Toyama et al. 2011), thereby 
establishing an oxygen-rich sediment microenvironment. By 
regulating N and P fluxes, emerging macrophytes can help to 
prevent eutrophication of the mainland and coastal regions. 
Wetland nitrification and denitrification may account for up 
to 80% of total N removal (Jahangir et al. 2016). Nitrification 
(the oxidation of ammonia to nitrate) is primarily an aerobic 
autotrophic process, whereas denitrification (the step-wise 
conversion of nitrate to nitrogen gas) is primarily an anaero-
bic process. At the root surface of emergent macrophytes, 
two opposing conditions for nitrification and denitrification 
can co-occur, with radical oxygen loss (ROL) providing oxic 
microniches for nitrification in an anaerobic environment.

3  Macrophytes involvement in interspecific 
interactions within wetlands

De Mandal et al. (2020), espouse that despite the great 
strides made in studying the functional and structural com-
ponents and dynamics of microbial communities in natural 
wetlands, further research is needed to unravel the microbial 
"dark matter" and metabolic potential and their functional 
properties in these rare ecosystems. Compared to terrestrial 

Fig. 1  Microbe-plant interactions in pollutant degradation in (1). Water, (2). Soil and (3). Air
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and aquatic ecosystems, wetland microbial assemblages are 
understudied. Thus, a more comprehensive understanding 
of microbial structures and ecological principles governing 
community organisation is needed. Additionally, Cheung 
et al. (2018) states that elucidating the complex commu-
nity structure and kinetics is essential to understanding the 
microbial diversity that governs wetlands, considering it is 
a reservoir of untapped secondary bioactive compounds that 
can be used for bioremediation of pernicious compounds 
that threaten the ecosystem.

To this end, microbial network analysis conducted by 
various researchers over the years have helped our under-
standing by revealing the complex microbial biomes and the 
functional roles of the various inhabitants of these unique 
environmental niches. Current wetland co-occurrence net-
works tend to focus on bacterial and fungal assemblages in 
salt marshes (Du et al. 2020; Gao et al. 2021; Wang et al. 
2023; Zhang et al. 2023). Table 1 shows some of the inter-
specific relationships within macrophytes’ rhozosphere that 
have been identified in wetland and aquatic environments.

4  The importance of phyto‑assisted 
degradation of organic pollutants

Organic molecules released into the environment as a result 
of numerous human actions pose a serious threat to the eco-
system due to their toxicity, hydrophobicity, and resistance 
to degradation. Organic chemicals like hydrocarbons, pol-
yaromatic hydrocarbons (PAHs), polychlorinated biphenyls, 
chlorophenols, toluene, benzene, phenols, trinitrotoluene, 
herbicides, and pesticides impede soil-associated microbial 
development and metabolic processes even at low concen-
trations (Sun et al. 2013). These dangerous chemicals are 
made up of organic chemical compounds (carbon bases) 
and mixtures that are primarily products or byproducts of 
industrial operations, chemical manufacturing, and wastes 
that are resistant to external degradation via biological meth-
ods. Humans are extremely vulnerable to these pollutants 
(Karaś et al. 2021). The pollution of aquatic environments 
by organic compounds is regarded as a critical issue because 
it affects biodiversity, depletes aquatic systems and devas-
tates the environment. Furthermore, due to their toxicity, 
they can enter the food chain and cause genotoxicity and 
carcinogenic effects in both animals and humans (Nanseu-
Njiki et al. 2010).

Conventional physiochemical approaches to cleaning up 
organic contaminants from water can be difficult, expensive, 
and environmentally damaging (Marques et al. 2011). Phy-
toremediation, or the use of plants to decontaminate polluted 
water, has gained popularity and is regarded as an effective, 
inexpensive, and environmentally friendly technique. None-
theless, plants suited for phytoremediation must become 

acclimated to contaminated surroundings. However,  the 
existence of organic contaminants tends to inhibit plant 
growth and, ultimately, the performance of phytoremedia-
tion (Thion et al. 2013). The implication is that optimisa-
tion and strategies need to be employed for effective biore-
mediation to be achieved using plants. Recent advances in 
environmental protection have shown that a combination 
system of microbes and plants can effectively clean up pol-
lutants. When appropriate plants and microorganisms are 
introduced into a nutritionally deficient but contaminant-rich 
ecosystem ( as shown in Fig. 1), the plants interact through 
the rhizosphere and the roots, the microorganisms form a 
symbiotic relationship necessary for survival in such adverse 
conditions. Plants emit compounds that invite microbes to 
interact. This association causes increased germination and 
root elongation, resulting in increased pollutant degrada-
tion in both the rhizosphere and the phyllosphere (Supreeth 
2022). Plant-associated bacteria can alter these compounds 
through metabolic and enzymatic processes, enhancing 
the efficacy of phytoremediation (Zhu et al. 2016). Plant-
associated bacteria include endophytic, phyllospheric, and 
rhizospheric bacteria. Although, endophytic bacteria appear 
to be the best option for improving phytoremediation (Karaś 
et al. 2021). This is due to their ability to stimulate growth, 
activate defence system, and boost plant tolerance to organic 
pollutants (Ma et al. 2015).

5  Endophytes assisted phytoremediation 
of hydrocarbons

Many endophytic bacteria not only aid in plant develop-
ment but also improve the elimination of organic contami-
nants, lowering plant toxicity. Horizontal genes transfer 
(HGT) has been determined to be the primary mechanism 
by which bacteria acquire novel capabilities, allowing them 
to respond quickly to environmental changes (Wang et al. 
2010). Once the native population of endophytes acquire 
these new genes, they are able to tolerate and even prolifer-
ate with the new ability to degrade these organic pollutants 
(Afzal et al. 2014). Moreover, HGT enables the formation 
of endophytes with heterologous gene expression and novel 
catabolic pathways, particularly with interconnected spe-
cies donors and recipients (Hardoim et al. 2008). Azadi and 
Shojaei (2020) discovered that Pseudomonas sp. has genes 
that enable it to degrade nearly all PAHs with fewer than 
four aromatic rings. Zhu and colleagues (2016) used two 
endophytes (Pseudomonas sp. P-3 and Stenotrophomonas 
sp. P-1) to degrade PAHs into simpler molecules.

Previously, Burkholderia phytofirmans PSJN, was dis-
covered as an endophytic bacterial strain that colonises a 
wide range of plants, enhancing their growth. The genome 
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of this bacterium is made up of two chromosomes and one 
plasmid, which contain genes that encode breakdown pro-
cesses for a wide range of complex organic substances. This 
bacterium contains genes that code for aliphatic chemical 
degrading enzymes such as alkane monooxygenase (alkB) 
and cytochrome P450 hydroxylase. B. phytofirmans PSJN's 
genome also contains 15 genes that encode for dioxygenases 
enzymes. These enzymes are involved in the aromatic ring 
fission process. Furthermore, this strain's genome contains 
an astonishing number of GST genes (24 copies). These 
genes are components of the operons responsible for the 
breakdown of aromatic chemicals (Mitter et al. 2013). Sim-
ilarly, Burkholderia cepacia FX2 is a toluene-degrading 
endophyte that carries a plasmid containing a gene encod-
ing catechol 2,3-dioxygenase, an enzyme important in the 
degradation of monocyclic aromatic hydrocarbons (Wang 
et al. 2010).

Endophytic fungi can also be used to manage organic pol-
lutants in the environment. There has been some significant 
research on the elimination of specific homologous group-
ings or chemical types in this field (Garnica-Vergara et al. 
2016). Endophytic fungi can improve host health and com-
petitiveness by increasing germination and growth rates and 
improving nutritional element absorption (Aly et al. 2011). 
In comparison to endophytic bacteria, fungi endophytes are 
incapable of being primary organic contaminant degraders 
(Etesami 2018). For example, endophytic Phomopsis liquid-
ambari cannot survive on phenolic 4- hydroxybenzoic acid 
as its sole source of carbon and energy, but it can efficiently 
degrade polycyclic aromatic hydrocarbons. This endophytic 
fungus can also degrade N-heterocyclic chemicals such as 
indole (Chen et al. 2013). Table 2 shows some endophyte 
assisted phytoremediation of organic pollutants.

6  Rhizobacteria assisted phytoremediation 
of hydrocarbons

Rhizoremediation has gained acceptance among scientists 
because plant roots provide a rich environment for bacte-
ria to thrive at the expense of root exudates; bacteria then 
act as biocatalysts, removing contaminants, particularly 
around surrounding sediments (Correa-Garcia et al. 2018). 
Pollutant-degrading rhizobacteria are regarded as plant-
growth promoting rhizobacteria (PGPR), in their absence 
such pollutants would have inhibited plant development. 
The removal of these inhibitory compounds would help the 
plant grow (Kanaly and Harayama 2010). Several effective 
methods for increasing bacterial breakdown efficiency and 
resistance to pollutants have been developed. PGPR has been 
demonstrated to increase organic pollutants removal leading 
to plant germination improvement and survival in severely 

polluted areas and accelerating root growth and root biomass 
accumulation (Huang et al. 2004).

Although, ethylene is required for plant growth, but 
excessive ethylene caused by stress may inhibit growth 
(Deikman 1997). Remarkably, PGPR stimulate plant devel-
opment by consuming amino-cyclopropane carboxylic acid 
(ACC), an immediate precursor to ethylene, and produc-
ing 1-aminocyclopropane-1-carboxylate (ACC) deaminase 
to reduce ethylene secretions in stressed plant (Safronova 
et al. 2006). Table 3 provides examples of PGPR that have 
demonstrated abilities to assist and promote organic pollut-
ant degradation.

7  The importance of phyto‑assisted 
degradation of inorganic pollutants

The most prevalent types of pollutants in wetlands are 
inorganic (toxic elements). These various inorganic con-
taminants can persist in nature for longer periods of time 
and travel over long distances with more effectiveness par-
ticularly in aquatic environments. Industries have routinely 
used several aquatic ecological systems as a discharge point 
for their wastes. Agricultural and domestic pollution are also 
significant contributors to the production of inorganic con-
taminants. These toxic elements pollute both surface and 
groundwater. Inorganic contaminants can accumulate to 
lethal levels for humans and biological ecological systems. 
Toxic elements such as chromium, arsenic, zinc, mercury, 
lead, and nickel are extremely hazardous to humans, plants, 
and animals, as well as soil fertility. According to Akram 
et al. (2018), these toxic elements are common in wetlands 
and their concentrations are quite high due to bioaccumula-
tion. These metal contaminants concentrations tend to rise in 
living systems because their retention rates are higher than 
their discharge rates.

Many inorganic pollutants exist in smaller quantities than 
other pollutants but garner a lot of attention due to their 
extremely harmful nature. Such trace element emissions 
pose serious health risks to humans, and these pollutants 
enter our bodies via the food chain. Inorganic contaminants 
continue to pique the interest of environmental chemists. 
They are typically found in minute concentrations in natural 
waterways, but some are extremely dangerous even at very 
low concentrations (Hamelink et al. 1994). Metals such as 
arsenic (As), lead (Pb), cadmium (Cd), nickel (Ni), mercury 
(Hg), chromium (Cr), cobalt (Co), zinc (Zn), and selenium 
(Se) are extremely toxic even in trace amounts. Carcino-
gens will usually contain some forms of toxic elements and 
dyes; endocrine disruptors containing these varied inorganic 
elements in different concentrations can also be found hor-
mones, medications, cosmetics, and personal care products. 
They are discharged either in active forms or as wastes into 
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aquatic environments. Consequently, the direct discharge of 
metal-containing effluents into water sources, toxic elements 
is prevalent in the environment. Humans consume these met-
als through their food and drinking water. Although, some 
toxic elements, such as cobalt, copper, iron, manganese, 
vanadium, and zinc, are essential elements that the body 
requires in trace amounts for various biochemical systems. 
Most of these toxic elements have serious health conse-
quences on a wide range of human organs, including eye, 
nose, skin, and internal organs where they cause headaches, 
irritations, discomfort, diarrhoea, hematemesis, vomiting, 
cirrhosis, necrosis, low blood pressure, hypertension, and 
gastrointestinal distress (Verma et al. 2017).

Arsenic poisoning from contaminated water causes lung, 
liver, and bladder cancer. Cadmium contamination in water 
can harm the kidneys and lungs and cause bone fragility. 
Lead consumption, in particular, has a devastating effect. It 

has the potential to cause brain and kidney damage. A small 
amount of lead can disrupt children's learning by causing 
memory loss, impaired reaction functions, and aggressive 
behaviour (Sun et al. 2017). Pregnant women may experi-
ence miscarriage as a result of increased lead consumption, 
and it also inhibits sperm production in males. Mercury is 
also considered a global pollutant because it is widely used 
for a variety of purposes, and as a result, it has a wide range 
of negative health effects. Mercury enters the body through 
blood vessels and exits through urination and scat. It causes 
a variety of side effects, including loss of peripheral vision, 
impaired movement coordination, muscle weakness, and 
speech and hearing impairment (Marques et al. 2011).

However, it is possible to remove these toxic elements 
from water using a variety of phytoremediation techniques. 
Aquatic macrophytes like Hydrilla verticillata and Elodea 
canadensis have been shown to accumulate large amounts 

Table 3  PGPR with abilities of phytoremediation promotion and organic pollutant biodegradation

PGPR Host plant(s) Beneficial features Pollutant(s) References

Pseudomonas putida PD1 Poplus tremula L Phytoprotection Phenan-
threne degradation

Phenanthrene Khan et al. 2014

Streptomyces griseoru-
biginosus strains DS24 
and DS4

Miscanthus giganteus (roots) Siderophore, IAA produc-
tion

Diclofenac and sulfameth-
oxazole

Sauvêtre et al. 2020

Enterobacter sp. strain 
PDN3

Poplar (hybrid) TCE degradation Trichloroethylene (TCE) Kang et al. 2012

Burkholderia cepacia strain 
FX2

Zea mays Triticum durum Toluene degradation Toluene Wang et al. 2010

Staphylococcus sp. BJ106 Alopecurus aequalis Plant growth regulation and 
enhanced degradation

Pyrene Sun et al. 2014

Enterobacter sp. PDN3 Populus deltoides Populus 
nigra

TCE degradation TCE Kang et al. 2012

Enterobacter ludwigii Lolium multiflorum var. 
Taurus Lotus corniculatus 
Medicago sativa

Hydrocarbon degradation 
and ACC deaminase 
abilities

Diesel Yousaf et al. 2011

Pseudomonas sp. 1FWK Oenothera biennis Plant growth regulation Diesel Pawlik et al. 2017
Bacillus sp. SBER3 Populus deltoides Plant growth regulation Anthracene, naphthalene, 

benzene, toluene, xylene
Bisht et al. 2014

Bacillus cereus NI Dracaena sanderiana Pan-
toea dispersa

High TDS tolerance and 
alkalinity

Bisphenol A Suyamud et al. 2020

Bacillus mojavensis 
ATHE13 Bacillus licheni-
formis ATHE9 (F1)

Festuca arundinacea PAH degradation Increased 
biomass

Naphthalene, Acenaph-
thene, Acenaphthylene, 
Phenanthrene, Chrysene, 
Anthracene, Benzo[a]
anthracene, Benzo[a]
pyrene, Dibenzo[a,h]
anthracene, Benzo[ghi]
perylene

Eskandary et al. 2017

Enterobacter sp. PDN3 Populus deltoides Populus 
nigra

Plant growth regulation Trichloroethylene (TCE) Doty et al. 2017

Bacillus safensis ZY16 Chloris vigrata Sw Increased plant biomass and 
plant growth regulation 
and significant improve-
ment on hydrocarbon 
degradation

Diesel and PAHs (n-unde-
cane, n-hexadecane, 
n-octacosane, naphthalene, 
phenanthrene and pyrene

Wu et al. 2019
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of Cd in their tissues from contaminated sediments (Sood 
et al. 2011). Although, due to three major constraints: low 
macrophyte biomass, restricted root development, and lim-
ited metal extraction, the effectiveness of phytoremedia-
tion is insufficient to be commercially viable (Muehe et al. 
2015). Therefore, rhizosphere bacteria, particularly those 
with metal resistance and plant growth-promoting abilities, 
have received a lot of attention for their ability to improve 
the efficacy of phytoremediation (Rezania et al. 2016).

8  Endophytes assisted phytoremediation 
of toxic elements

Currently, the majority of putative endophytic bacteria with 
hazardous metal resistance have mostly been identified in 
plant roots. Endophytes like Bacillus sp. Pseudomonas sp. 
and Achromobacter sp. can help plants extract mixed heavy 
metal contaminants, as Babu et al. (2013) demonstrated 
when they isolated a Bacillus thuringiensis strain from the 
roots of Pinus sylvestris. This strain, known as GSB-1, pro-
duced phytohormones that stimulate plant growth while 
also hastening the removal of potentially hazardous met-
als from mining tailings. For example, chlorophyll content, 
biomass output, and heavy metal abstraction (e.g. Cu, As, 
Ni, Zn, and Pb) in plant seedlings increased after GSB-1 co-
cultivation. Arthrobacter and Microbacterium strains colo-
nised the intercellular gaps of root and leaf epidermal tissues 
extensively, according to Visioli et al. (2015). Furthermore, 
when compared to other isolates, these endophytes showed 
excellent plant growth promoting properties. Inoculation 
using a consortium seemingly improved phytoextraction, 
translocation, and removal of mixed metals (Fe, Ni, Cu, and 
Co) from soil. Moreover, endophytic fungi have been exten-
sively studied for their ability to reduce metal toxicity and 
increase phytoremediation efficiency (Deng and Cao 2017). 
Some examples of endophytes-assisted phytoremediation for 
inorganic contaminants is shown in Table 4.

9  Rhizobacteria assisted phytoremediation 
of toxic elements

The microbial population of the rhizosphere may directly 
drive root development, promoting plant growth, heavy 
metal tolerance, and plant fitness (Fasani et al. 2018). Plant 
growth-promoting rhizobacteria (PGPR) have been discov-
ered to have a high potential for improving the efficacy of 
phytoremediation. Plant growth and fitness can be enhanced 
by PGPR, which can also protect plants from infections, 
increase plant tolerance to toxic elements, improve plant 
nutrient and heavy metal absorption, as well as aid in trans-
location. This is accomplished through the production of 

various chemicals, such as organic acids, siderophores, anti-
biotics, enzymes, and phytohormones (Ma et al. 2011).

PGPR can synthesise the enzyme 1-aminocyclopro-
pane-1-carboxylate (ACC) deaminase, which degrades the 
ethylene precursor ACC. PGPR can help plants grow by 
producing ACC deaminase, which reduces ethylene syn-
thesis (Glick 2014). Plants inoculated with PGPR contain-
ing ACC deaminase produced more biomass, as evidenced 
by increased root, and shoot densities, resulting in greater 
heavy metal absorption and phytoremediation effectiveness 
(Arshad et al. 2007). Furthermore, PGPR can produce bacte-
rial auxin, indole-3-acetic acid (IAA) to promote lateral root 
initiation and root hair production, thereby increasing plant 
growth and assisting in phytoremediation (DalCorso et al. 
2019). Arbuscular mycorrhizal fungus (AMF) is another 
important microbial community that may aid plants in phy-
toremediation. AMF in rhizospheres increases water and 
nutrient absorption as well as heavy metal bioavailability 
by increasing the absorptive surface area of plant roots via 
the large hyphal network (Göhre and Paszkowski 2006). 
Arbuscular mycorrhizal fungi secrete phytohormones that 
stimulate plant growth and aid in phytoremediation (Vam-
erali et al. 2010).

The phyto-bacteria system has been shown to be more 
efficient than its components at removing toxic elements. 
Many different microbial communities, according to 
Dell'Amico et al. (2005), can withstand high heavy metal 
concentrations when living in rhizosphere soils and rhizo-
planes. As molecular biology advances, genetically modi-
fied rhizobacteria with pollution degradation genes are 
being developed to carry out rhizospheric bioremediation. 
Mercury is considered the most dangerous heavy metal in 
the environment. Mercury biotransformation by bacteria 
is reliant on the expression of mer genes cloned from mer-
cury-resistant bacteria. Caprivoidis metallidurans NSR33 
is a candidate broad-spectrum mercury resistant recombi-
nant bacterial strain that has been touted for its ability to 
degrade mercury in wastewater. Researchers were able to 
create a bacterial strain with two large plasmids (pMOL28 
and Pmol30) housed in a meR7ADLF operon using recom-
binant DNA technology. The plasmids exhibit lower levels 
of resistance to mercury when isolated; however, when 
fused together, broad-spectrum mercury resistance is 
achieved (Rojas et al. 2011). Similarly, recent efforts to 
eliminate arsenic from the environment have focused on 
developing genetically modified organisms (GMOs) capa-
ble of degrading arsenic at maximum levels in the shortest 
amount of time. Recent studies show that microbial flora 
removed 2.2 – 4.5 percent of volatile arsenic after 30 days 
of treatment; thus, genetic engineering (GE) can be used 
to improve arsenic volatilization and removal efficiency. 
Cloning an arsM gene isolated from Sphingomonas des-
iccabilis and Bacillus idriensis into Escherichia coli in 
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comparison to the wild microbial strain results in a ten-
fold increase in volatile methylated arsenic gas extrusion 
(Chen et al. 2013). Huang et al. (2016) recently modified 
a strain of bacteria, Pseudomonas aureginosa strain Pse-
W, which has high  Cd2+ resistance and  Cd2+ remediation 
ability. Following the adsorption of metallothioneins to the 
cell surface of the bacterial strain to attract Cd, the engi-
neered strain demonstrated a significant ability to mobilise 
Cd. The results showed that inoculating the strain Pse-W 
increased Cd uptake in plant organs. The study demon-
strated that Cd-contaminated fields can be realistically 
bioremediated more easily by the GE Pseudomonas strain 
than by wild strains. Table 5 shows examples of integrated 
PGPR bioremediation of toxic elements.

10  Considerations to improve 
phytoremediation efficiency in artificial 
wetlands

In the preceding sections of this review, a variety of plants, 
endophytes, plant-growth promoting rhizobacteria were 
presented. It is acknowledged that constructed wetland 
environments necessitate a diverse range of plant species. 
The choice of vegetation is predicated on the effluent type 
and composition that are to be treated. Additionally, when 
designing constructed wetlands, the efficiency of the biore-
mediation program may be impacted by the following fac-
tors that must be taken into account when determining the 
suitable plants and phytodegradation activity.

Table 4  Endophytes with abilities of phytoremediation promotion and inorganic pollutant biodegradation

Endophytes Host plant(s) Beneficial Features Pollutant(s) References

Enterobacter sp. Cannabis sativa L
Arundo donasx L

Plant growth regulation Toxic elements (Cr, Ni 
and Cu)

Ferrarini et al. 2021

Pseudomonas fluorescens 
(PF01)

Bacillus subtilis (BS01)

Vigna radiata, L Plant growth regulation
Increased biomass

Cadmium (Cd) Rajendran and Sundaram 
2020

Bacillus thuringiensis 
(PZ-1)

Brassica juncea Plant growth regulation and 
siderophore production

As, Cu, Pb, Ni, and Zn Yu et al. 2017

Consortia of bacteria Lupinus luteus Biodegradation Toxic elements Leroy et al. 2017
Fusarium sp. CBRF44, 

Penicillium sp. CBRF65, 
and Alternaria sp. 
CBSF68

Brassica napus Plant growth regulation Cd and Pb Chen et al. 2016

Genetically engineered 
Enterobacter sp. CBSB1

Brassica juncea SA Plant growth regulation Cd and Pb Peršoh 2015

Bacillus thuringiensis 
(GDB-1)

Alnus firma Plant growth regulation Pb, Zn, Cu, Cr and As Babu et al. 2013

Mucor sp. MHR-7 Brassica campestris L Plant growth regulation, 
Biodegradation, Metal 
extraction

Zn2+,  Mn2+,  Cr6+,  Cu2+, 
 Co2+

Lemaire et al. 2012

Mucor sp. selffusant 
CBRF59T3

Brassica napus Plant growth regulation, 
Metal extraction

Cd and Pb

Pantoea stewartii ASI11, 
Enterobacter sp. HU38, 
and Microbacterium 
arborescens HU33

Leptochloa fusca (L.) 
Kunth

Plant growth regulation U and Pb Xie and Dai 2015

Phialocephala fortinii, 
Rhizodermea veluwensis, 
and Rhizoscyphus sp.

Clethra barbinervis Plant growth regulation Cu, Ni, Zn, Cd, and Pb Chen et al. 2013

Pseudomonas azotoformans 
ASS1

Trifolium arvense Stress alleviation Cu, Zn, and Ni Toju et al. 2018

Serratia marcescens PRE01 Pteris vittata Stress alleviation Cd(II), Cr(VI), and V(V) Kaul, et al. 2012
Variovorax sp. Micrococ-

cus sp. Microbacterium 
sp. Pseudomonas sp. 
Microbacterium sp. and 
Microbacterium sp.

Noccaea caerulescens and 
Rumex acetosa

Plant growth regulation Mixed toxic elements
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10.1  Bioavailability and element mobility

Chemical composition and sorption characteristics of soil/
sediments affect metal mobility and bioavailability (Kos 
et al. 2012). Toxic metal bioavailability affects phytoex-
traction's efficacy. For example, low bioavailability limits 
Pb phytoextraction (Ali et al. 2013). Due to toxic metals' 
strong binding to soil/sediment particles or precipitation, 
a large percentage of them are non-bioavailable and inac-
cessible to phytoremediating plants (Sheoran et al. 2011). 
Consequently, they remain persistent in the affected soil. 
Toxic metals in soils can be divided into three bioavailability 
groups: readily bioavailable (Cd, Ni, Zn, As, Se, and Cu); 
moderately bioavailable (Co, Mn, and Fe); and least bio-
available (Pb, Cr, and U) (Prasad 2003).

Interestingly, plants like Poaceae species secrete metal-
mobilizing "phytosiderophores" into the rhizosphere (Reich-
man and Parker 2005) to solubilize toxic elements in soil. 
Natural and induced phytoextraction depend on plant bio-
accumulation. Natural phytoextraction uses natural hyper-
accumulators with a high metal-accumulating capacity and 
metal-tolerance (Baker et al. 2000). Induced phytoextraction 
involves adding a chelator or other chemical to the soil to 
promote metal solubility or mobilisation, allowing plants to 
absorb more metals. Metal phytoextraction's low bioavail-
ability is mitigated by the discovery that chelate can increase 

metal translocation from soil to plants (Blaylock et al. 1999). 
Soil parameters and chelate type determine bioavailable 
metals in the soil matrix (Shen and Shi 2005). Increasing 
heavy metal bioavailability improves phytoextraction with 
the implication that toxic elements cannot bioaccumulate 
in such soil. Only a small percentage of soil toxic elements 
are soluble and absorbable by plants (Blaylock et al. 1999). 
Zinc and copper are plant-bioavailable toxic elements (Lasat 
1999). Low bioavailability of toxic elements like Pb makes 
phytoextraction less effective (Wang et al. 2006). It is also 
possible to introduce organisms such as Aspergillus, Peni-
cillium, Gliocladium sp. and Candida sp. into artificial wet-
lands to produce citric and gluconic acids which are known 
chelating agents (RoyChowdhury et al. 2018) which will 
increase bioavailability for phytoextraction.

A plant can increase metal bioavailability in many ways. 
Root exudates reduce soil pH, which encourages heavy 
metal desorption from insoluble complexes to generate free 
ions, raising soil heavy metal concentrations (Thangavel and 
Subbhuraam 2004). Plants can produce metal-mobilizing 
chemicals in the rhizosphere, such as phytosiderophores, 
carboxylates, and organic acids, which alter soil physico-
chemical characteristics and allow heavy metal chelation, 
enhancing solubility, mobility, and bioavailability (Pad-
mavathiamma and Li 2012). Rhizosphere microorganisms 
increase plant heavy metal availability and absorption 

Table 5  PGPR with abilities of phytoremediation promotion and inorganic pollutant biodegradation

PGPR Host plant(s) Beneficial Features Pollutant(s) References

Burkholderia sp. HU001
Pseudomonas sp. HU002

Salix babylonica Plant growth regulation and 
increased cadmium tolerance

Cd Weyens et al. 2013

Paenibacillus sp. RM Tridax procumbens (roots) Broad-spectrum heavy metal 
resistance

As, Cu, Zn and Pb Govarthanan et al. 2016

Pseudomonas koreensis 
AGB-1

Miscanthus sinensis Increased plant biomass, 
increased expression of 
chlorophyll and enzymes

Cd, Pb, Cu, ZN and As Babu et al. 2015

B. pumilus E2S2
Bacillus sp. E1S2
Achromobactera sp. E4L5
Stenotrophomonas sp. E1L

Sedum plumbizincicola Plant growth regulation, 
increase in biomass and 
metal uptake

Cd, Zn and Pb Ma et al. 2015

Rahnella sp. JN6 Polygonum pubescens Plant growth regulation and 
metal tolerance and accu-
mulation

Cd, Pb and Zn He et al. 2013

Arthrobacter sp. Glycine max Heavy metal resistance and 
accumulation

Cd

Pseudomonas sp. Medicago sativa Plant growth regulation, 
increased chlorophyll con-
tent, metal tolerance

Cr (VI) Tirry et al. 2021

Microbacterium arborescens Leptochloa fusca Plant growth regulation and 
improved HM accumulation

Uranium (U) and Pb Ahsan et al. 2017

Simplicillium chinense Phragmites communis Improved metal tolerance and 
accumulation

Cd and Pb Jing et al. 2019

Pseudomonas lurida E0026 Heilanthus annus (roots) Plant growth regulation and 
enhanced metal uptake

Cu Kumar et al. 2021
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(Vamerali et al. 2010; Sheoran et al. 2011). These microbes 
release enzymes and chelates into the rhizosphere, improv-
ing heavy metal absorption and translocation (Clemens 
et al. 2002). PGPR and plant growth promoting endophytes 
(PGPE) can improve the solubility of water-insoluble Zn, 
Ni, and Cu by secreting protons or organic anions (Becerra-
Castro et al. 2011). PGPR release biosurfactants and sidero-
phores to mobilise toxic elements. Siderophores, which 
chelate  Fe3+, also bind Cd, Ni, As, and Pb (Schalk et al. 
2011). Chelating with toxic elements improves siderophore 
bioavailability to rhizobacteria and plants. In general, rhizo-
bacteria are effective at making heavy metal ions accessible.

Endophytes aid plant  Fe2+ uptake by producing low-
molecular-weight (500–1500 Da) polar molecules. Endo-
phytic siderophores bind  Fe2+ and other bivalent metal ions. 
They help plants extract additional metal ions from soil and 
alleviate stress from excessive metal enrichment. They 
also help plants absorb  Fe2+ in  Fe2+ deficiency situations, 
improving plant health and growth.

10.2  Biostimulation (Nutrient supplementation)

Industrial effluents characteristically contain toxic elements 
and are devoid of growth nutrients and other essential ele-
ments. Diluting effluents to levels that living cells can toler-
ate promotes assimilation, but this strategy does not address 
the lack of nutrients needed to increase biomass and boost 
bioremediation efficiency. Apart from adding the major 
nutrients such C, H, N, O, S, and P; it is also important to 
encourage certain microbial interactions to provide for some 
of the essential nutrients or improve the bioassimilation from 
the environment. In situ bioremediation of metal-polluted 
effluents may benefit from the introduction and selected 
mixture of organic wastewater to improve nutrient content 
and promote growth. Plant-associated microbes boost plant 
growth in metal-polluted areas, regulate metal absorption 
and translocation, and increase metal bioavailability by 
secreting ligands and organic acids (Ma et al. 2016). Few 
studies have examined the bacterial communities associated 
with wetland plants, and even fewer have explained their 
reactions to mixed and contaminated settings (Syranidou 
et al. 2018). There are few data on how contaminants affect 
wetland plants' endophytic bacteria. Pollution type and quan-
tity, plant species, biostimulating bacteria administration, 
or a multifactor combination may affect phytoremediation 
capacity and underlying endophytic assemblages. Previous 
research found that inoculating Juncus acutus with an endo-
phytic bacterial consortium eliminated emerging pollutants 
and metals faster and more effectively than non-inoculated 
plants (Syranidou et al. 2016).

Whiting et al. (2001) found rhizosphere bacteria may 
mobilise zinc for T. caerulescens hyperaccumulation. 
Rhizosphere microflora increases water-soluble zinc in soils, 

allowing T. caerulescens to accumulate more zinc. When 
Microbacterium saperdae, Pseudomonas monteilii, and 
Enterobacter cancerogens were added to surface-sterilized 
T. caerulescens seeds in autoclaved soil, the zinc content in 
the shoots doubled over the axenic control. Another find-
ing was that the concentration of selenium (Se) in sedi-
ment decreases as the flow channel in the wetland system 
descends. According to Zhang et al. (1997), carbon content 
is an essential factor controlling Se distribution in sediment, 
but dissolved Se input significantly affects this connection, 
showing that rhizosphere bacteria play an indirect role in 
metal bioaccumulation. PGP bacteria produce siderophores, 
which bind metals and increase their bioavailability in the 
rhizosphere (Gadd 2010). Siderophores are produced by a 
wide range of microorganisms, but they are more prevalent 
among PGP bacteria, which grow and produce siderophores 
best in harsh environmental conditions such as nutrient 
shortage or high heavy metal concentrations (Rajkumar et al. 
2010). P. aeruginosa siderophores increased the concentra-
tion of Pb and Cr in the rhizosphere, making them available 
for maize absorption.

Moreover, PGPR bacteria produce low molecular weight 
organic acids like gluconic, oxalic, and citric, which aid 
heavy metal mobilisation and solubility. These organic acids 
help complex toxic elements, allowing plants to absorb them 
more easily (Ullah et al. 2015). Gluconacetobacter diazo-
trophicus can produce 5-ketogluconic acid, a gluconic acid 
derivative that solubilizes Zn compounds. PGP bacteria 
produce biosurfactants that boost metal mobilisation and 
phytoremediation. Microbe-produced biosurfactants form 
complexes with toxic elements at the soil interface, des-
orbing metals and increasing solubility and bioavailability 
(Rajkumar et al. 2012). Juwarkar et al. (2007) mobilised Pb 
and Cd using Pseudomonas aeruginosa BS2 biosurfactants. 
Heavy metal stress activates phytochelatein (PC) synthase, 
produced by certain bacteria. These enzymes bind to toxic 
elements, especially Cd, via thiolate complexes, increasing 
metal mobility and availability (Kang et al. 2007).

Heavy metal detoxification must precede phytoremedia-
tion (Thakur et al. 2016). Plants often avoid or tolerate heavy 
metal toxicity. Plants use one of two strategies to keep heavy 
metal concentrations below toxicity levels (Hall 2002). 
Microorganisms influence metal mobility, toxicity, and bio-
availability. Although, there are significant research on the 
microbial detoxification processes, there remains aspects 
that are poorly understood. Understanding the microbial 
mechanisms that control metal removal in wetlands can 
improve their long-term efficacy (Kosolapov et al. 2004).

10.3  Bioaugmentation

Bioaugmentation improves an existing microbial population 
by adding cultivated, sometimes specialised microorganisms 
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(Kurniawan et al. 2022). Bioaugmentation is available in 
many forms. Current and historical information about con-
taminated places influences strategy selection. Some con-
taminants are recalcitrant, requiring two or more bioaug-
mentation approaches for complete removal. Nwankwegu 
et al. (2022) described some bioaugmentation types. For 
example, indigenous microorganisms or the use of exog-
enous microorganisms (either pure cultures of recognised 
microorganism species or strains or a collection of distinct 
microorganisms to build a high-density cell mass called a 
microbial consortium) to increase cell density, and the use 
of genetically altered microbes (recombinant microbes). 
Microorganisms are chosen based on their ability to break 
down contaminants and withstand various environmental 
conditions. It is known that bacteria, fungus, yeast, actino-
mycetes, and algae can survive in a variety of environments 
and remove toxic elements from polluted areas (Purwanti 
et al. 2018).

Bioaugmentation by introducing indigenous and exog-
enous microbes that can tolerate and minimise heavy metal 
effects is a well-known method of remediating heavy metal 
contamination (Purwanti et  al. 2020). Several studies 
showed that bioaugmentation is more suitable for treating 
heavy metal-containing wastewater because the formed sta-
ble metal can be quickly separated from the wastewater by 
accumulating it at the bottom of the treatment area, resulting 
in complete separation between phases (water and metal) 
(Shahid et al. 2020) allowing for the introduction of special-
ised microorganisms.

Additionally, some studies have demonstrated bioaug-
mentation's effectiveness in treating heavy metal-polluted 
soil, but its practicality in real-world applications is ques-
tioned (Kurniawan et al. 2022). Recent studies found that 
bioaugmentation degraded pollutants in > 90% of organically 
damaged environments (Dalecka et al. 2021; Muhamad et al. 
2021). However, most of the protocols were executed under 
controlled laboratory conditions using simulated organic 
pollutants. Concerns were raised about the application of 
these approaches in real-scale contaminated sites, specifi-
cally the separation of accumulated metal from soil, to cre-
ate a remediated clean medium free of hazardous toxic ele-
ments (Purwanti et al. 2019). These challenges can easily be 
addressed by constructing prototypes and monitoring trends 
over a period of time. However, the major obstacle remains 
cost, as ideal prototype test sizes are relatively expensive to 
construct.

Other pertinent issues that need consideration include 
the problem of exogenous microorganisms’ population 
decrease after being introduced, due to the rigorous adapta-
tion necessitated in the new environment. Environmental 
and biotic challenges can destroy imported species. Abi-
otic stressors include temperature, water, pH, nutrient, and 
pollutant variations (Steinle et al. 2000). Other challenges 

include competition for limited resources from native spe-
cies and antagonistic interactions like antibiotic synthesis 
by competitive organisms and predation by protozoa and 
bacteriophages. Getting inoculant to the right place can be 
difficult (Dong et al. 2002). Distribution of microorganisms 
often rely on mechanical processes. Fungi, proliferation and 
distribution are usually limited to surface applications, while 
bacteria can adapt to subsurface or surface uses (Nwank-
wegu et al. 2022). Therefore, upscale artificially constructed 
wetlands must consider these challenges within the design.

In summary, considerations to ensure successful bioaug-
mentation regimes must include prior comprehensive under-
standing of specific physico-chemical properties of the bio-
process that are linked to poor bioreactor performance, such 
as: (i) an understanding of the ecological foundation of the 
microorganisms; (ii) developing techniques for monitoring 
successional patterns and interspecific interactions within 
the consortia; (iii) developing a flexible selection criteria; 
(iv) developing an inoculation strategy; (vi) developing a 
strategy where necessary for specific gene transfers; and (v) 
evolving operational and plant management strategies to 
tackle various challenges as they arise.

10.4  Genetically modified plants and invasive 
species

Over the years, advances in genetic engineering practise 
have made it possible to transfer desirable genes to plant 
species for the phytoremediation process. One of the pri-
mary goals of transforming plants with exogenous DNA is 
to improve heavy metal tolerance and accumulation (Rascio 
and Navari-Izzo 2011). A candidate macrophyte for phy-
toremediation must have several characteristics, including 
a) high biomass production that is adapted to the local and 
target environment, b) rapid growth, and c) a well-defined 
transformation protocol.

Plant genetic modification aims to increase the expression 
of genes encoding uptake, translocation, heavy metal seques-
tration, and antioxidant activity (Das et al. 2016). According 
to research, the relationship between antioxidant activity and 
heavy metal tolerance is directly proportional, as the pres-
ence of toxic elements triggers the synthesis of ROS, which 
causes oxidative stress. Increasing heavy metal tolerance 
will thus necessitate a strategy to boost antioxidant activity, 
which can be accomplished by inserting genes that constitu-
tively express the antioxidant machinery (Kozminska et al. 
2018). It is technically preferable to modify fast-growing, 
high biomass plants to increase heavy metal tolerance and 
uptake rather than forcing hyperaccumulators to increase 
biomass production. Although hyperacumulators are excel-
lent candidates for phytoremediation, the vast majority are 
low biomass plants. It is now possible to insert the necessary 
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genes or hyperaccumulation traits into high biomass produc-
ing plants using genetic engineering methodologies.

Plant genes that encode heavy metal transporters are typi-
cally represented by large gene families. They are potential 
candidate genes for transformation toward improved phy-
toremediation potential. Manipulation entails increasing 
metal accumulation in either the roots or the shoots for phy-
tostabilization or phytoextraction. A plant's biomass produc-
tion and bioconcentration efficiency are two factors that con-
tribute to its efficiency as a phytoextractor (bioconcentration 
is the ratio between the concentration of the contaminant in 
the harvestable parts of the plant and its concentration in the 
soil). To improve heavy metal accumulation, genes encod-
ing heavy metal/metalloid transporters can be transferred 
and overexpressed in target plants. Metal ion transporters 
such as ZIP, MTP, MATE, and HMA family members can 
be engineered using metallothionein, phytochelatins, and 
metal chelators genes. These metal chelators function as 
metal-binding ligands, assisting in heavy metal uptake and 
root-to-shoot translocation, and controlling the intracellular 
movement of heavy metal ions in organelles. Heavy metal 
uptake and translocation can be improved by overexpression 
of genes encoding natural chelators (Wu et al. 2010). Cle-
mens et al (1999) conducted one of the first studies in this 
area, screening for plant genes involved in the mediation of 
metal tolerance, specifically finding the gene for cadmium 
tolerance, and then applying recombinant technologies to 
Arabidopsis and S. pombe genes to increase metal toler-
ance. This method has been replicated in several studies to 
date (Zhu et al. 2021; Kumar et al. 2019; Qiao et al. 2019).

Although genetic engineering of wetland plants has 
promising prospects for improving plant performance in 
heavy metal phytoremediation, the technology has several 
drawbacks. Higher order organisms are frequently composed 
of many genes that encode one trait; similarly, mechanisms 
of heavy metal detoxification and accumulation involve a 
number of genes. Therefore, it becomes costly and time con-
suming to try and manipulate multiple genes to enhance the 
desired traits, with most studies failing. Furthermore, serious 
ethical concerns limit the use of G-E in phytoremediation 
research. As a result, field studies may be impractical, par-
ticularly for natural wetlands. The introduction of foreign 
(exogenous) DNA into a system can alter wetland dynam-
ics. Because of its genetic advantage, an invasive species 
with foreign DNA would compete for resources with native 
species and eventually take over. As a direct consequence, 
obtaining approval for field testing in some areas may be 
difficult, the legitimate concern being the cascading effect 
on the food chain and ecosystem safety. The same argument 
can be made for alien species, though their proliferation has 
increased in the last decade, and some authors have demon-
strated their capabilities in metal sequestration, as shown in 
Table 6. Although, the categorisation of plants as invasive 

is subjective and country-based, and it is often linked to the 
adjudged danger it poses to the natural biodiversity and the 
competitive advantage such alien species may pose to indig-
enous plants that could lead to possible extinction. Nonethe-
less, once these invasive species are present they tend to be 
very difficult to eradicate, thus some researchers have now 
investigated these alien species for possible utility within 
these new environments. Table 6 focuses on invasive species 
identified mainly in South Africa. We consider these species 
as useful for in situ bioremediation programs where they can 
be cultivated in a controlled environments and disposed-off 
using incineration or as feedstock in biogas digesters. This 
will prevent escape into natural water bodies.

10.5  Artificial wetland constructions

Constructed wetlands (CWs) are engineered systems that 
are designed and developed to mimic naturally occurring 
wetland processes (Stefanakis et al. 2014). CWs tend to 
have one major feature that differentiate them from conven-
tional wastewater treatment facilities: this is the addition of 
large wetland plants, which include angiosperms and ferns, 
aquatic mosses, and large algae with easily observable tis-
sues and are collectively known as macrophytes (Omandi 
and Navalia 2020). These macrophytes proliferate on beds 
filled with appropriate substrate, mostly in the form of natu-
ral media sand and gravel, allowing plants to develop an 
intricate root system that can penetrate and coalesce (Sehar 
and Nasser 2019) as shown in Fig. 2. The aquatic plants 
are grouped together based on their associated microbial 
assemblages (Hassani et al. 2018; Clairmont et al. 2019; 
Chowdhury et al. 2020; Deutsch et al. 2021).

It is possible at the storage area for untreated effluent to 
implement biostimulation (nutrient supplementation) to 
promote the growth of microorganisms that benefit from 
the essential nutrients addition when the untreated effluent 
is deficient in these nutrients. The sand and gravel act as 
stabilizers and adhesion surfaces. The choice of plant can 
factor the type and composition of effluent, where effluents 
is observed to contain metals that are not readily soluble 
of biologically available, chelating agents may be added or 
endophytic siderophores to enhance mobility and absorp-
tion leading to removal of metals. Plants may be removed 
in time, once, they have reached absorption capacity and 
can no longer uptake metals or have died due to the toxic-
ity. These plants can be destroyed and replaced with fresh 
plants. The same can be done with invasive and genetically 
modified plants as the space is confined and plant growth 
can be controlled.

Constructed wetlands were initially employed in the treat-
ment of domestic wastewater (Saleh et al. 2015); however, 
in recent years, the potential has been expanded to include 
industrial wastewater (Kaushal et al. 2018), storm-water 
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runoff (Guo et al. 2014), agricultural wastewaters (Wang 
et al. 2018), and landfill leachate (Madera-Parra and Ríos 
2017). Because of the higher concentration of pollutants in 
the influents, the use of CWs for industrial wastewater treat-
ment remains difficult (Stefanakis 2018). Through a series 
of processes and mechanisms, CWs with macrophyte plant 
roots, aquatic microbial communities, and supporting min-
eral matter are effective at removing various pollutants pre-
sent in wastewater such as nitrogen, phosphorus, and organic 
matter (Stefanakis et al. 2014). Advances in phytoremedia-
tion using CWs have focused on the remediation of vari-
ous organic micro-pollutants, such as phenolic compounds 
(Omandi and Navalia 2020), as well as inorganics from 
pharmaceuticals, such as endocrine disrupting chemicals 
(EDCs) and toxic elements (Daley and Kucera 2014). The 
adaptation of this treatment technology has gained interest 
around the world, particularly in economically underdevel-
oped countries with water scarcity challenges (Omandi and 
Navalia 2020). Kenya and Tanzania, for example, use large-
scale CWs to treat municipal and industrial wastewater. In 
Kenya, a hybrid wetland (horizontal subsurface and surface 
flow) is commonly used (Makopondo et al. 2020). However, 
more evidence on the development of wetland technologies 
in Africa is limited. Figures 3A-C shows the basic types of 
constructed wetland types.

Applying wetland hydrology, constructed wetlands are 
classified based on various parameters. Water flow regime 
(surface and subsurface) and macrophyte growth (emer-
gent, submerged, free-floating, and floating-leaved plants) 
are the most important factors (Lamori et al. 2019). These 
factors are thought to be important in the biodegradation 
and biochemical transformation of various carbon sources 
and pernicious compounds (Sehar and Nasser 2019). The 
quality of the system's effluent is known to improve as the 
system's complexity and modifications increase (Vymazal 

and Kröpfelová 2008). Wetlands of various types are pos-
sible during wastewater treatment using CWs, including free 
water surface flow (FWSF) wetlands, subsurface flow (SSF) 
wetlands, and hybrid systems (HS). SSF is further classified 
into two types: horizontal flow SSF (HSSF) and vertical 
flow SSF (VSSF) (Biswal and Balasubramanian 2022). At 
the same time, the vegetation species used is an important 
parameter that further divides CWs into three major types: 
1) emergent macrophyte CW, 2) submerged macrophyte 
CW, and 3) floating treatment wetland (FTW) systems, with 
rooted emergent macrophytes receiving the most attention 
(Stefanakis 2016). Table 7 provides some of the merits and 
draw backs of the various constructed wetlands designs. 
Table 8 summarises some of the removal efficiency observed 
with the use of different macrophytes in various constructed 
wetlands. It should be noted that temperature and climate 
conditions are important factors in plant development and 
growth (Raza et al. 2019).

11  Future perspectives

The current approach to enhancing the phytoremediation 
capabilities of macrophytes for the in-situ removal of indus-
trial pollutants in a CW remains an ongoing endeavour. As 
the likelihood of floods and droughts increases in specific 
regions, climate change has emerged as a crucial factor to 
contemplate in designing CWs. Therefore, the efficacy of 
remediation programs will be influenced by the choice of 
plants, the function of CWs, and their incorporation into 
design methodologies. The integration of artificial intel-
ligence and machine learning in conjunction with sensing 
technology that can simulate various conditions and poten-
tial adverse weather events is expected to optimize design 

Fig. 2  Constructed wetland
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parameters, enabling the system to respond appropriately 
(Singh et al. 2023).

At present, the process of bioremediating pollutants is 
predominantly conducted by microbial consortiums, which 
rely on the sequential production of enzymes by microor-
ganisms to degrade complex compounds. The prediction of 
microbial population shifts over time by microbial succes-
sion indicates that the degradation community is in a con-
stant state of flux. In contrast, the toxicity of polluted water 
is known to suppress the proliferation of microorganisms, 
often delaying the degradation process due to the neces-
sary adaptation and acclimation periods. This has frequently 
been regarded as an inadequacy of the biological process, 
given the need for rapid toxic element removal. Neverthe-
less, the consistent advancements in functional omics, as 
well as our ability to identify plant and microbial species and 
genes involved in toxic element removal processes through 

expanding organism databases, will reduce the time lag for 
biological processes. This will enable the implementation 
of more targeted bioremediation programs. Phytoremedia-
tion processes will be enhanced by the accelerated access 
to references of novel enzymes on these data bases and the 
potential for synthesis. Furthermore, this will facilitate the 
identification of a greater variety of plant species with spe-
cialized phytodegradation functions, thereby enhancing our 
capacity to select and optimize pollution remediation pro-
cesses (Wang et al. 2022).

The comprehension of plant responses to nanoparticles 
is a critical area of research as nanotechnology increasingly 
finds application in everyday life. It is imperative to recog-
nize that they will evolve into the contaminants of the future. 
Hence, a comprehensive assessment of plant participation in 
nanoparticles removal from the environment and the under-
lying processes of migration, absorption, transformation, 

Fig. 3  Basic types of con-
structed wetlands. A Vertical 
Flow (VF) constructed wetland; 
B horizontal flow (HF) con-
structed wetland; and C hybrid 
flow constructed wetland



343Exploring macrophytes’ microbial populations dynamics to enhance bioremediation in…

and accumulation capacities is crucial for proactive man-
agement of nanoparticles as waste. Thus, such insights will 
enhance our readiness to confront this possibility.

12  Conclusion

Macrophytes are considered an important component of the 
wetlands ecosystem not only as the habitat and energy source 
for aquatic life but, also for their capability to improve the 
quality of water by absorbing nutrients and inadvertently 
pollutants via their effective root systems and to function as 
powerful biofilters. The surge in industrial activities have 
resulted in the introduction of various organic and inorganic 
pollutants in aquatic systems, causing cascading effects 
on biodiversity and human health. Conventional remedial 
strategies have been implemented to eradicate these pollut-
ants from the environment; however, with varying degrees 

of success. Phytoremediation has gained acceptance as an 
environmentally sustainable practice for removing pollut-
ants from various wastewaters. Aquatic macrophytes when 
hosting endophytes benefit from their presence as they aid 
in plant growth as well as for the degradation of perni-
cious compounds via complex biochemical processes. Both 
endophytes and rhizospheric bacteria form these synergistic 
interspecific interactions that can be tailored to treat spe-
cific profile of industrial effluents. Such treatment regimens 
are best controlled in situ. Therefore, constructed wetlands 
can be readily applied. More recently, invasive macrophytes 
are being considered due to their numerous advantages 
obtained through evolution and adaptation. The prospect 
of such technology relies on optimising parameters such as 
finding out the best macrophyte-microbial assemblage to 
carry out pollutant degradation, broadening the investiga-
tion of hyperaccumulators for heavy metal remediation, as 
well as evolving strategies in retrofitting existing CWs with 

Table 7  The advantages and disadvantages of various constructed wetland systems (Gorgoglione and Torretta 2018; Biswal and Balasubrama-
nian 2022)

Constructed Wetland types Advantages Disadvantages

Surface flow On a cost per unit basis, it is cheap and construction 
designs are simple

Lower rates of contaminant removal per unit of land than 
SSF wetlands = more land to obtain same level of treat-
ment as SSF wetlands

Can be applied towards higher suspended solids waste-
waters

Needs more land than traditional treatment methods

Provides greater flow control than SSFW Threat of ecological and human exposure to surface flow-
ing wastewaters

Offers more diverse wildlife habitat Poor nitrification owning to anoxic environment
Less requirements on energy, mechanical equipment 

and skilled persons
Less tolerant to cold climates

Perfect integration into land scape Mosquito production due to large open area
Green space with the environment Exposure to odour and insects due to free/ open water 

surface
Subsurface flow Tolerant to cold climate Less attractive to wildlife

Higher assimilation rates Low denitrification (VF)
Good nitrification and denitrification Short flow distances (VF)
Longer life cycle Demand for high technical expertise (VF)
Hydraulics are simple Plugging due to high SS of wastewaters
Minimise land requirement More expensive to construct than SF on cost per acre 

basis
High treatment efficiency from start Higher lag requirement (HSF)

HSSF Long flowing distances possible; nutrient gradients can 
be established

Higher area demand

Nitrification and denitrification possible Equal wastewater supply is complicated
Formation of humic acids from N and P removal Careful calculation of hydraulics necessary for optimal 

 O2-supply
Longer life cycle

VSSF Smaller area demand Short flow distances
Simple hydraulics Poor nitrification
High purification performance from the start Higher technical demand

Loss of professional especially P removal (saturation)
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Table 8  Macrophytes and their degradation of various industrial pollutants using different CW systems

Macrophyte used Wetland system type Pollutant Removal efficiency References

Phragmites australis
Typha latifolia

Surface flow Cd, Cu, Pb and Zn 5%, 60%, 31%, and 86% Gill et al. 2017

Phragmites karka
Cyperus alternifolius
Typha domingensis
Borassus aethiopum

Horizontal subsurface flow Cr P. karka – 97.7%
C. alternifolius – 98%
T. domingensis – 99%
B. aesthiopum – 99.3%

Tadesse and Seyoum 2015

Eichhronia crassipes
Pistia stratiotes

Lab scale (surface flow) in 
plastic containers

Pb P. stratiotes (0.063 mg/L) 
has better metal removal 
efficiency > E. crassipes

Jamion et al. 2021

Typha domingenesis
Pistia stratiotes
Eichhornia crassipes

Horizontal subsurface flow Textile effluent T. domingensis – Good in 
undiluted effluent

P. stratiotes – Poor
E. crassipes – Poor

Shehzadi et al. 2016

Heliconia rostrata
Eichornia crassipes

Vertical subsurface flow
Surface flow

Ibuprofen
Caffeine

Ibuprofen – 95%
Caffeine – 83%

De Oliveira et al. 2019

Washingtonia robusta
Nerium oleander
Typha latifolia
Cyperus papyrus
Canna indica
Lolium perenne
Juncus eusus

Horizontal subsurface flow BOD, COD, TC and NH3, 
NH4, Pathogenic bacteria

BOD: 80–95%
COD: 94%
TSS: 60%
NH3 and NH4: 50%
Total coliform bacteria and 

Streptococci): 99%

Saggaï et al. 2017

Canna flaccida Surface flow Acetaminophen,
Carbamazepine

Acetaminophen – 100%
Carbamazepine – 

73–81.8%

Hwang et al. 2020

Phragmites australis Subsurface vertical flow Ag 78.53% Bao et al. 2019
Phragmitis australis Subsurface vertical flow Ce 17.9%
Eichhornia crasipes
Pstia stratiotes
Rhizophora mucronata
Bruguiera gymnorrhiza
Sargassum wightii
Kappaphycus alvarezii

Subsurface vertical flow Cu and Zn K. alvarezii:
Zn–76.06%
Cu–16.64%
S. wightii:
Zn–17.6%
Cu–1.96

Mahesh et al. 2020

Nymphaea amazonum
Eleocharis mutata

Surface flow Imidacloprid
Cyhalothrin

Imidacloprid:
N. amazonum: 75%
E. mutata: 15%
Cyhalothrin:
N. amazonum and
E. mutata: < 1%

Mahabali and Spanoghe 
2014

Eichhornia crassipes Surface flow (laboratory 
scale)

Hexavalent chromium (Cr 
IV)

- Saha et al. 2017

Eleocharis acicularis Floating and pot 
treatment(field experi-
ment)

Mine tailings (Mn, As, Cu, 
and Pb)

BCFw > 100 for Mn, As, 
Cu, and Pb

Sakakibara 2016

Lemna minor Lab scale (plastic contain-
ers)

Synthetic leachate and 
dumpsite leachate

Higher rates of reduction 
of COD and nutrients for 
dumpsite leachate

N and P removal from 
synthetic leachate was 
greater: 16% for N and 
35% foe P

Heliconea Zingiberales
Cyperus Haspan

Horizontal Flow Carbamazepine
Sildenafil
Methylparaben

95%
97%
97%

Vystavna et al. 2017
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appropriate types of macrophytes. Moreover, in controlled 
in situ environments, it is possible to investigate and apply 
novel candidate genes for insertion into hosts to improved 

various enzyme expression and in this way increase degrada-
tion efficiency. Such application should take ethical issues 
into consideration and plan to ensure confinement of these 

Table 8  (continued)

Macrophyte used Wetland system type Pollutant Removal efficiency References

Typha latifolia
Cantella asiatica
Impoea aquatica
Eichhornia crassipes
Bacapa mannieri

Lab scale (1L glass bottle) AMD I. aquatica
Neutralises AMD, pH 

increased by 81%

Osa and Apuan 2018

Trapa natans
Salvinia cuculata Roxb

Floating surface (batch 
cultures)

Industrial wastewater
BOD
COD
Nitrate
Ammonium
TP
BOD
COD
Nitrate
Ammonium
TP

55 mg/L
33.32 mg/L
50
31.25
77.27
43.02 mg/L
31.04 mg/L
Nitrate: 20
5.26
81.25

Alam and Hoque 2017

Salvinia molesta
Lemna minor
Ceratophyllum demersum
Elodea canadensis

Surface flow Diclofenac
Triclosan
Naproxen
Ibuprofen
Caffeine

99%
96–99%
45–53%
33–48%
81–99%

Nivala et al. 2019

Phragmites australis
Typha latifolia
Scirpus
sylvaticus L

Vertical flow Naproxen
Propranolol
Paracetamol
Caffeine

80%
80%
50%
50%

Chen et al. 2016

Eichornia crassipes Surface flow Ibuprofen 97% Hwang et al. 2020
Myriophyllum verticillatum
Pontederia cordata

Hybrid System Steroid hormones
biocides

97%
92%

Matamoros et al. 2017

Carex. cuprina (Sandor 
ex Heuff.) Nendtv. ex A. 
Kern

Alisma lanceolatum
Epilobium. hirsutum L
Iris pseudacorus L
Juncus. inflexus L

Horizontal flow (micro-
cosm)

Metallic pollutant cocktail: 
Al, Cd, Cr, Fe, Mn, Ni, 
Pb, Sn, Zn, PHE, PYR, 
THC, Anionic

Detergent LAS

Results are extensive (5 
plants with 12 elements 
each)

Guittonny-Philippe et al. 
2015

Eichhornia crassipes
Pistia stratiotes
Hydrocotyle umbellate

Lab scale
(Plastic tubes)

Battery industry effluent)
Cu
Cr
Pb
Cd
Cu
Cr
Pb
Cd
Cu
Cr
Pb
Cd

93%
100%
100%
86%
100%
100%
98%
100%
85%
100%
85%
100%

Rashid et al. 2020

Typha latifolia
Eichhornia crassipes
Lemna gibba
Pistia stratiotes

Hybrid System Cd
Cu
Pb

60–96%
82–90%
78- 97%

Engida et al. 2020

Pistia stratiotes Lab scale (glass containers) AMD (Cu) COD: 5 mg/L = 92.45%
COD: 7 mg/L = 88%

Novita et al. 2019
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alien species and novel genes and/or transformed plants and 
organisms to avoid their introduction to natural wetlands or 
other environments.
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