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Abstract
The synthesis of secondary metabolites is a constantly functioning metabolic pathway in all living systems. Secondary 
metabolites can be broken down into numerous classes, including alkaloids, coumarins, flavonoids, lignans, saponins, ter-
penes, quinones, xanthones, and others. However, animals lack the routes of synthesis of these compounds, while plants, 
fungi, and bacteria all synthesize them. The primary function of bioactive metabolites (BM) synthesized from endophytic 
fungi (EF) is to make the host plants resistant to pathogens. EF is a group of fungal communities that colonize host tissues' 
intracellular or intercellular spaces. EF serves as a storehouse of the above-mentioned bioactive metabolites, providing 
beneficial effects to their hosts. BM of EF could be promising candidates for anti-cancer, anti-malarial, anti-tuberculosis, 
antiviral, anti-inflammatory, etc. because EF is regarded as an unexploited and untapped source of novel BM for effective 
drug candidates. Due to the emergence of drug resistance, there is an urgent need to search for new bioactive compounds that 
combat resistance. This article summarizes the production of BM from EF, high throughput methods for analysis, and their 
pharmaceutical application. The emphasis is on the diversity of metabolic products from EF, yield, method of purification/
characterization, and various functions/activities of EF. Discussed information led to the development of new drugs and 
food additives that were more effective in the treatment of disease. This review shed light on the pharmacological potential 
of the fungal bioactive metabolites and emphasizes to exploit them in the future for therapeutic purposes.
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1 Introduction

In recent years, the world population has faced many chal-
lenges in the field of healthcare. Its associated problem, 
including various diseases like cancer, diabetes, cardio-
vascular disorder, multiple drug resistance, etc. are major 
defiance for the human fraternity (Qadri et al. 2021; WHO 
2020). Even in the era of vaccines and drugs, infectious dis-
eases are responsible for the high mortality rate. Diseases 
like diarrhea cause the death of around 525 000 children 
under five years of age (Tesfaye et al. 2020). Around 33 
million populations are infected with HIV and reported to 
be two million deaths last decade (Laga et al. 2015). Myco-
bacterium tuberculosis is recorded to infect around one-third 

of the world's population. In tropical and subtropical areas, 
underprivileged populations are infected with malaria, 
accounting for about one million deaths (Cárdenas et al. 
2021). Similarly, COVID-19 (Pokhrel and Chhetri 2021) and 
other pandemics as monkeypox (Bhattacharya et al. 2022), 
immunosuppressive disorders, and the appearance of highly 
virulent viruses open a new discussion for future treatment 
and remedies to address those problems (Chatelain 2015). 
An international health agency prioritizes the conservation 
of natural resources to create novel therapeutics. Plants are 
major natural resources and have therapeutic potential that 
has been tracked down thousand years ago and utilized for 
the treatment of many diseases (Abel 2013). Today around 
40% of modern medicines are plant-derived because of fewer 
side effects. Plants generate various secondary metabolites, 
which may be broken down into the chemical categories of 
phenolics, terpenes, and alkaloids (Sharma and Singh 2021). 
Secondary metabolites secreted by the plant during different 
stress and developmental stages make them competitive in 
their inhabitant (Pang et al. 2021). These small molecules 
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exert a significant impact on plants themselves and also on 
humans and other organisms (Teoh 2016).

Plants are the natural inhabitant of microorganisms as 
they form a symbiotic association with them to accomplish 
one and all requirements. Endophytes (endosymbiotic 
microbes colonize in plants) and microbes and their bioactive 
metabolites are important natural sources for promising 
therapeutic agents. The therapeutic potential of endophytes 
and their metabolites as biotherapeutic agents has garnered 
a lot of interest (Xia et al. 2022). Endophytes are associated 
with the healthy tissue of the plant (Sadrati et al. 2013) and 
reside in the interior sections of the plant, such as the root, 
the stem, the petiole, and other components that are referred 
to as endophytes (Ma et al. 2013; Deepthi et al. 2018). In 
1898, Vogl was the first person who reported that endophytic 
mycelium was present in the grass seeds of Latium teinutentuin 
(Waghunde et al. 2021). Around 300,000 plant species, each 
individual having one or more endophytes and having one to 
hundred strains of endophytes varying according to the host 
system (Gao et al. 2018). They got much attention when it 
became apparent that entophytes can produce bioactive 
secondary metabolites with varied molecular structures, which 
are barely impersonated by synthetic chemistry (Mengistu 
2020). Endophytes play a crucial role in plant development, 
and survival, and regulate some defense mechanisms. They 
are formed to be a composite equilibrium to achieve the 
host boundary and build a mutualistic association with the 
host (Alam et al. 2021; Nanda et al. 2019). During stressed 
conditions in the plant, endophytes secreted a range of 
secondary metabolites in plant cells and incorporated them 
into the stressed pathways (Nanda et al. 2019). Secretion of 
stress-controlled molecules like gibberellins (GB), cytokinin 
(CIS), salicylic acid (SA), and indole-3-acetic acid (IAA) 
enhance plant growth and development and is responsible 
for many physiological changes in the plant (Shekhawat et al. 
2021; Duc et al. 2018; Shaffique et al 2022).

The biochemical and pharmaceutical industries rely on 
endophytic fungi as a source of new therapeutic biomol-
ecules that could be immune-suppressant compounds, 
anti-cancer drugs, plant growth promoters, anti-microbial 
volatiles, insecticides, anti-oxidants, and antibiotics, offer 
significant potential for application in medicine. Further-
more, endophytic microorganisms can lessen a plant's capac-
ity to endure nutritional deficiency, high temperatures, salt, 
trace metals, and water scarcity (Eid et al. 2021). Amylase, 
cellulase, lyase, and laccase are important enzymes that have 
significant industrial applications and endophytes play a role 
in their synthesis (Sharma et al. 2021). Research suggested 
that the fungal endophytes found to be heterotrophic organ-
isms with various life cycles in natural ecosystems form a 
symbiotic relationship with plants. The fossil record also 
reported that endophytic fungi and host plants were associ-
ated for 400 million years and intimately involved in the 

ecology, proliferation, fitness, and steer the evolution of their 
life (Krings et al. 2007). Plant systems change their habits 
from water to terrestrial atmosphere with many challenges 
like nutrient-deficient soil, high carbon dioxide varying 
temperature conditions, and water availability. Fungal endo-
phytes provided tolerance to the plant during adverse condi-
tions and fixed them in the soil. In the evolutionary period, 
fungal endophytes evolved themselves in the plant envi-
ronment through an alteration of genetic behavior, uptake 
of the DNA, and started producing secondary metabolites 
(Arora and Ramawat 2017). At least one plant harbour one 
or more fungal endophytes, especially woody plants contain-
ing hundreds of species of fungal endophytes. The fungal 
endophytes are found in different geographical and climate 
regions, fin-ray ubiquitously distributed, and rich in species 
diversity. The abundance of fungal endophytes with great 
extent, ubiquitous nature, diversity, and wide range of eco-
logical functions are shown to be greatly adapted for plants 
under worldwide distribution and selective pressure (Rod-
riguez et al 2009).

All these findings indicate that fungal endophytic popu-
lation colonization inside the host tissue confers tolerance 
under specific environmental stresses condition and is 
responsible for the survival of plants. Extensive research 
on fungal endophytes (FE) found their crucial role in abi-
otic and biotic stress tolerance, nutrient supply, growth, and 
plant development. When searching for natural products 
mediated by endophytes, researchers may explore EF. It 
is well established that many bioactive metabolites (BM) 
with potential pharmacological effects are produced by EF 
(Tiwari and Bae 2022). The bioactive compounds produced 
by EF albeit receiving much less attention. The development 
and production of biomass need a thorough understanding 
of endophyte ecology, bioactive components, and the bio-
transformation of substrates. Considering the information 
available on EF, the article is aimed to review the sampling, 
optimization, production, and extraction of the secondary 
metabolites from EF and the pharmacological relevance of 
the different bioactive metabolites produced by endophytic 
fungi associated with plants (Fig. 1).

2  Sampling and optimization of media 
for the production of BM from EF

The first steps in sampling and isolation of bioactive 
molecules from EF are collecting plant material having 
EF from different geographical areas and pre-processing 
the plant material, which may involve surface cleaning, 
slicing, and selecting media. Surface sterilizing agents 
like mercuric chloride  (HgCl2), ethanol, etc., are used to 
wash and surface sterilize the plant components (leaves, 
stems, seeds, etc.) (Bisht et al. 2016). They are subsequently 
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diced and cultured in LB media on a PDA (potato dextrose 
agar) plate. Hyphal tips are harvested from the fungus and 
then transferred to PDA slants, where they are tested for 
bioactive secondary metabolites after an extended period of 
incubation (Sharma et al 2016). It is vital to build a suitable 
cultivation system for commercial use because EF can 
produce many biologically active metabolites. Endophytes 
can be grown through liquid-submerged or solid-state 
fermentation (SSF). EF fermentation is fruitful, continuous, 
and environmentally beneficial. Submerged culture 
produces mycelial biomass and bioactive metabolites 
faster. It needs less time and has fewer contamination risks. 
Extensive research has been done on bioactive compounds 
produced by endophytic fungus in submerged fermentation. 
In liquid fermentation, temperature, pH, aeration, and 
agitation affect secondary metabolite production. In 
addition, each of these different characteristics has been 
optimized, which has led to an increase in the overall 
production of BM (Debbab et al. 2013; Brader et al 2014). 
Various researchers used liquid-submerged fermentation 

to manufacture myriads of BM. These include antibiotics, 
anti-oxidants, pigments, enzymes, etc. (Mrudula and 
Murugammal 2011; Patil et al. 2016). Similarly, cellulase 
enzyme production from Pestalotiopsis  sp (Chen et  al. 
2011) and glucoamylase from Aspergillus flavus (Karim 
et  al 2017) has been performed previously. Vimal and 
Kumar 2022 reported optimized production of medically 
important L-asparaginase enzyme under solid-state 
and submerged fermentation from agricultural wastes. 
Similarly, microorganisms are cultured on Wheat bran, 
Cajanuscajan (red gram), Phaseolus mungo (mung bean), 
and Glycine max (soybean) bran in solid-state fermentation 
(SSF). Chitosan production by A. terreus was reported by 
submerged fermentation in the optimized condition (Abo 
Elsoud et al. 2023). SSF from fungal cultures provides 
various advantages over submerged fermentation to 
manufacture bioactive chemicals in the food, agricultural, 
and pharmaceutical industries. Furthermore, this includes 
comparatively improved productivity, greater product 
concentrations, and simple equipment requirements for the 

Fig. 1  Entry and Colonization of the fungal endophytes in response 
to biotic (herbivores and pathogens) and abiotic (drought, salin-
ity, heavy metals, and others) stresses and production of secondary 

metabolites to modulate plant defense, plant growth, and functional 
role in the pharmacology
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fermentation process of BM (Patil et al 2016). Lovastatin, 
a potent medication for decreasing blood cholesterol, was 
extracted from the healthy tissues of Taxusbaccata by an 
endophytic fungus, A. niger PN2, using SSF with wheat 
bran as the substrate (Raghunath et al. 2012). Further, we 
discuss the production and extraction of the SM from EF.

3  Production and extraction 
of the secondary metabolites (SM) 
from endophytic fungi (EF)

Biomolecules like polysaccharides, polypeptides, 
unsaturated fatty acids, and glycoproteins are commonly 
known as elicitors. EF produces the elicitors or signaling 
molecules stimulated by the bioactive phytochemical 
accumulation in plants. Some of them provide defense 
to plants against disease-causing organisms. They also 
stimulate the production of several phytochemicals, 
including alkaloids, flavonoids, terpenoids, saponins, 
and phenols (Chandran et al. 2020). The oligosaccharide 
components of  Colletotrichum gloeosporioides'  crude 
endophytic mycelium have been demonstrated to 
stimulate artemisinin synthesis in hairy root cultures 
of Artemannua (Hussain et al. 2015). The bacterial culture 
was incubated at 32 °C in broth for 36 h, whereas fungal 
cultures were incubated at 28 °C for two weeks with 150 rpm 
shaking. Several solvents were employed alone or in 
combination to extract metabolites. Ethyl acetate, methanol, 
dichloromethane, hexane, and ethanol are routinely used to 
extract metabolites from the culture broth. The solubility of 
the desired component determines the extraction solvent. 
Equal amounts of solvents were added to the filtrate and 
agitated for 10 min until two transparent immiscible layers 
appeared. The extracted compounds were separated from 
the solvent using a funnel. The solvent was evaporated and 
the compound was dried in a rotator vacuum evaporator to 
produce the crude metabolite (Bhardwaj et al. 2015). The 
crude extract was diluted with dimethyl sulphoxide and kept 
at 4 °C. Phytochemical screening was conducted to look 
for alkaloids, saponins, tannins, flavonoids, steroids, sugars, 
and cardiac glycosides (Mathew et al. 2012). The isolation 
and characterization methods of secondary metabolites 
isolated from fungal endophytes are discussed in Table 1 and 
in this section; we discuss some high throughput methods 
precisely used for analysis of SM from EF. Chromatographic 
methods such as TLC and HPLC were employed to get 
the secondary metabolite extract as pure as feasible. The 
recovered fractions are usually analyzed by the use of gas 
chromatography-mass spectrometry (GC–MS), Fourier 
transform infrared (FTIR), and nuclear magnetic resonance 
(NMR). NMR and MS are the principal techniques exploited 

in the structural characterization of BM. According to 
Madhusudhan et al. (2015), X-ray diffraction (XRD) is also 
promising for crystalline biomolecules.

3.1  TLC

TLC analysis was used to extract the bioactive components 
of Pestalotiopsis neglecta BAB-5510, a fungal endophyte 
that was isolated from the leaves of Cupressus torulosa D. 
Don. Two distinct fractions were observed on the silica gel 
TLC plates after being developed in dichloromethane and 
methanol at a ratio of 90:10, with the second fraction hav-
ing an  Rf value of 0.79. TLC was employed to separate the 
extracted secondary metabolites synthesized by fungal endo-
phytes, which have been isolated from Mentha piperita. The 
 Rf values of the metabolites that were isolated from bacterial 
endophytes were found to be quite comparable to those that 
were obtained by the TLC chromatogram.

3.2  GC–MS

According to the findings of gas chromatography performed 
on Pestalotiopsis neglecta BAB-5510, the most important 
active compounds of Pestalotiopsis sp. BAB-5510 are 
nonadecane (19.74%), 1,2,3-propanetriol, 1-acetate (17.21%), 
bis (2-Ethylhexyl) phthalate (14.41%), and 4 Hpyran-4-one, 
2,3-dihydro-3,5-d (Bunaciu et al. 2015). The GC–MS spectra 
revealed that these metabolites were terpenes, more notably 
cinnamaldehyde, cinnamyl alcohol, and eugenol (Kumar et al. 
2017) and GC–MS is particularly suitable to identify volatile 
organic compounds.

3.3  HPLC & LC–MS

Silica gel column chromatography and high-performance liquid 
chromatography were used to purify BMs. The Taxus cuspi-
date culture media was treated with di-chloromethane to extract 
taxol, which was then purified and quantified by employing 
HPLC. Finally, the structure of taxol was confirmed by utilizing 
LC–MS and H-NMR spectroscopy (Sharma et al. 2016). Ethyl 
acetate was used to extract vinblastine and vincristine from the 
fungus endophyte Fusarium oxysporum.

3.4  NMR

To evaluate the molecular masses of the purified compounds, 
electrospray ionization mass spectrometry (ESI–MS) and 
tandem mass spectrometry (MS–MS) followed by nuclear 
magnetic resonance (NMR) analysis utilized by Kumar et al. 
2013. They performed isolation, purification, and charac-
terization of Vinblastine and Vincristine from EF Fusarium 
oxysporum isolated from Catharanthus roseus.
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4  Pharmaceutical application 
of the endophytic fungal secondary 
metabolites

EFs are eminent for their competence in synthesizing a dis-
tinct variety of pharmacologically significant chemicals with 
immense therapeutic promise, including antiviral, antifungal, 
antibacterial, antitumor, and anti-cancer activity. Various EFs 
are potential sources of plant growth factors and hormones. 
Some endophytes have been demonstrated to release a broad 
spectrum of extracellular enzymes, such as phosphatase 
enzyme, which converts insoluble phosphates to soluble forms 
for easier assimilation by plants. Secondary metabolites of 
EFs have been demonstrated to strengthen the host's immune 
system, reducing the severity of infections and the damage 
caused by pathogenic microorganisms (Sharma et al. 2021). 
The biocontrol systems of plants are responsible for the pro-
duction of various kinds of BMs, which shield plants against 
potentially lethal diseases and stimulate their development 
(Santos et al. 2018; Hardoim et al. 2015). Their pharmaceuti-
cal role was experienced against various diseases (Table 1) 
and they are discussed below.

4.1  Antibiotics

Antibiotic synthesis through metabolic pathways is widely 
regarded as an effective strategy for protecting plants 
against illness. Phytopathogens can be inhibited by vari-
ous bioactive substances and out of them few have been 
researched (Suryanarayanan 2013; Daguerre et al. 2017). 
Endophytes produced diverse metabolites, most of which 
have anti-microbial properties. These metabolites include 
alkaloids, flavonoids, peptides, phenols, polyketides, qui-
nones, steroids, and terpenoids (Lugtenberg et al. 2016; 
Fadiji and Babalola 2020). DAPG, also known as 2, 4-dia-
cetyl phloroglucinol, is a phenolic antibiotic with a broad 
spectrum of activity and has shown Pseudomonas spp. 
It contributes to the biological control of plant diseases, 
particularly soil-borne (Bonaterra et al. 2022). The novel 
alkaloid altersetin was isolated from the endophyte Alter-
naria spp. showing substantial antibacterial activity against 
various pathogenic gram-positive bacteria. Fungal endo-
phytes isolated from Artemisia annua have been shown to 
inhibit the development of most phytopathogenic organ-
isms in vitro by secreting n-butanol and ethylacetate (Fadiji 
and Babalola 2020). In addition, pseudomonads spp. gen-
erate cyclic lipopeptides (CLPs) amphiphilic molecules 
with chains of 7–25 amino acids that act as biosurfactants 
and are significant in biological control because of their 
favourable competitive capability with numerous groups of 
microorganisms (Flury et al. 2017; Bonaterra et al. 2022).

4.2  Siderophore

Micronutrient metals including nickel, copper, zinc, and iron 
are essential for soil plants and microorganisms, however, 
their bio-availability is often low due to environmental fac-
tors (Satapute et al. 2019). Reduced bioavailability of Fe(III) 
directly results from forming insoluble oxyhydroxide phases 
in response to harsh environmental conditions. Due to a lack 
of iron, plants develop chlorosis and have lessened metabolic 
activity and biomass. In response to various stresses, plants, 
and microbes have evolved a chelation strategy to increase 
metal availability (Chowdappa et  al. 2020). Endophytes 
secreted small molecules called siderophores capable of 
chelating iron and increasing the bioavailability of the iron 
molecule to the plant (Yadav 2018). The iron in the soil can 
be dissolved with the assistance of secreted siderophores, 
which have a strong affinity for the substrate and the poten-
tial to assimilate it. The bacterial iron-siderophore complex 
makes iron accessible for plant development while simulta-
neously reducing the acquisition of iron by phytopathogens, 
which restricts phytopathogen proliferation (Santos et al 
2018). Despite this, the chemical composition of different 
microorganisms' siderophores can be somewhat distinct. For 
instance, bacterial hydroxamates are composed of hydroxy-
lated and acylated alkylamines, whereas fungal hydroxamates 
are composed of hydroxylated and acylated ornithine groups. 
Chelating compounds can be obtained from endophytic fungi 
derived from Cymbidium aloifolium. This medicinal orchid 
can secrete exogenous siderophores and form stable com-
plexes with the metal ion  Fe3+. These metabolites have the 
great potential to act as antibacterial siderophores. In a similar 
vein, a hydroxamate-type siderophore obtained from P. cry-
sogenum was found to possess potent antibacterial activities 
against some of the most virulent phytopathogens, hence safe-
guarding peanuts and rice plants (Chowdappa et al. 2020). To 
evaluate the inhibitory efficacy of exogenous deferoxamine-B 
and siderophores-exochelin MS (a pentapeptide derivative) 
against methicillin-resistant Staphylococcus aureus, metallo-
lactamase producers Acinetobacter baumannii, and Pseu-
domonas aeruginosa, disc diffusion, micro broth dilution, 
and turbidimetric growth tests were utilized (Gokarn and Pal 
2018). The combination of siderophores and antibiotics was 
effective against the drug-resistant isolates. They can treat 
antibiotic-resistant bacteria and acute iron intoxications such 
as hemochromatosis by producing sideromycins. Evidence 
suggests they help to treat malaria (Chowdappa et al. 2020), 
bioremediating mercury (Pietro-Souza et al. 2020), and other 
plant diseases. According to some research, microorganisms' 
sensitivity to oxidative stress is lowered by siderophores. They 
can be used in cosmetics, cancer therapy, combat fish infec-
tions, and against bacterial/fungal phytopathogens (Chow-
dappa et al. 2020; Peralta et al. 2016).
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4.3  Hydrolyzing enzyme

Endophytes make lytic enzymes like amylases, lipases, 
cellulases,  pectinases,  proteases,  phosphatases, 
hemicellulases, chitinases, and 1, 3-glucanases (Mishra 
et al. 2019), which help them form symbiotic relationships 
with host plants and control of plant pathogens. Cellulase 
produced by endophytic fungi such as Epicoccum nigrum, 
Trichoderma asperellum, and Alternaria longipes has 
been shown to suppress the development of Epicoccum 
sorghinum, Alternaria alternata, Fusarium thapsinum, 
and Curvularia lunata in vitro by hydrolyzing the cell 
wall (Fadiji and Babalola 2020). The biocontrol efficacy 
against tall fescue leafspot and sugar beet damping-off 
was reduced after mutations in the 1,3-glucanase genes 
of Lysobacteren zymogenes. The lytic enzymes produced 
by Streptomyces are also effective against cocoa witch 
broom (Gao et  al. 2018). Lytic enzymes produced by 
endophytes are often more robust and can function on a 
broader pH, temperature, and pressure range as compared 
to enzymes produced using traditional chemical catalysts 
(Tiwari 2015). These features also bode well for the 
commercial use of these enzymes in the food, detergent, 
paper, pharmaceutical, energy, and biofuel industry (Rana 
et al. 2019) because endophytic amylase hydrolyzes starch 
by accelerating the creation of 1,4 glycosidic bonds 
(Tiwari 2015). Bacterial pectinases, which depolymerize 
pectin linkages, are also widely utilized and have many 
applications in juice and food industries as well as in 
paper/pulp production, composting, recycling, etc. (Haile 
and Ayele 2022).

4.4  Growth‑promoting hormones

Plant growth stimulation is bolstered, and phytohormones 
produced by fungal endophytes alter the plant's shape 
and form. This quality of endophytes has helped them 
progress in sustainable agriculture (Fadiji and Babalola 
2020). Phytohormones or plant growth regulators are 
chemical substances that control, impede, or accelerate 
growth promotion and development of plants at low con-
centrations (Damam et al. 2016). Many phytohormones, 
including auxins, gibberellins, abscisic acid, cytokinins, 
ethylene, strigolactones, brassinosteroids, and jasmonates 
are produced by endophytic microorganisms (Santoyo 
et al 2016; Shahzad et al. 2016). The primary function 
of indole-3-acetic acid (IAA) in plants is to stimulate cell 
growth and division. The IAA generated by the bacteria 
in symbiosis facilitates nutrient availability, increases root 
exudation, and encourages the growth of adventitious and 
lateral roots. The bacteria of the genera Azospirillum, 
Herbaspirillum, Azotobacter, Alcaligenes, Pseudomonas, 

Enterobacter, Klebsiella, Burkholderia, Pantoea, Rhizo-
bium, Bacillus, Rhodococcus, Acetobacter, etc., are famil-
iar endophytic IAA producers (Eid et al. 2021). IAA syn-
thesis also increases the size of bacterial cell walls, speeds 
up the release of exudates, and makes more of the nutrients 
that help other beneficial bacteria thrive in the rhizosphere 
more accessible. As a result, IAA is the primary effector 
molecule of endophytic bacteria involved in phytostimu-
lation, pathogenicity, and plant–microbe interaction (Ete-
sami et al. 2015). A specific form of bacterial endophyte 
contains 1-aminocyclopropane-1-carboxylate deaminase, 
which allows it to convert the ethylene precursor ACC 
into ammonia and beta-ketobutyrate. (Eid et al. 2021). 
Due to the release of ACC deaminases, these bacterial 
endophytes can stimulate plant development in nitrogen-
limiting environments. Additional benefits include a more 
robust immune system and increased resistance to abiotic 
stress. In the case of sorghum plants, Pseudomonas bras-
sicacearum (SVB6R1) increases the expression of ACC 
deaminase, increasing the plant's resistance to salt stress 
(Gamalero et al. 2020).

4.5  Nutrients

The expansion of agricultural production is facilitated by 
biofortification, which simplifies the uptake of nutrients 
by plants. Fungal endophytes can colonize plant struc-
tures such as roots, stems, and leaves and they are less 
likely to be outcompeted than microbes that live in the 
soil, therefore, they can be utilized as a replacement to 
boost the plant's ability to fix nitrogen (Santos et al. 2018). 
The presence of many microorganisms in the soil allows 
for the breakdown of insoluble phosphate and thus phos-
phorus is made available to the plants (Alori et al. 2017). 
In addition to their involvement in the release of organic 
acids into the soil, endophytes are also involved in the 
solubilization of phosphate complexes and the conversion 
of these compounds into the ortho-phosphates that plants 
absorb more readily. Ca3(PO4)2 solubility was observed for 
poplar endophyte strains WP5 and WP42, and subsequent 
solubilization tests validated this observation (Kandel et al. 
2017; Khan et al. 2015; Varga et al. 2020). Selenobacteria 
is a plant endophyte that can draw selenium out of the soil 
and transmit it to the host plant, where it can be used to 
promote plant development. Selenium biofortification in 
Glycine max may be enhanced by the endophyte Parabur-
kholderia megapolitana (MGT9) during drought (Trivedi 
et al. 2020). Zn solubilizing endophytes (such as B. subtilis 
DS-178 and Arthrobacter sp. DS-179) improve the trans-
location and enrichment of Zn to grain in specific Wheat 
genotypes (Singh et al. 2018).
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4.6  Phytoremediation

As the global economy has become more industrialized over 
the past century, various anthropogenic chemicals have been 
released into the environment. These include polycyclic 
aromatic hydrocarbons (PAHs), petroleum hydrocarbons 
(PHC), halogenated hydrocarbons, salt, solvents, pesticides, 
and heavy metals (Bisht et al. 2015). Microbe-assisted phy-
toremediation is a method that deals with these issues. Due 
to endophytes' closer relationship with their host plants, 
phytoremediation may be enhanced (Li et al. 2012). It has 
been discovered that many endophytes can withstand high 
concentrations of heavy metals and degrade organic pollut-
ants. Because of their prolonged exposure to the high metal 
concentrations stored in the hyperaccumulators of these 
plants, the endophytes associated with these plants may 
have become more resistant to the negative consequences 
of metal exposure (Aishwarya et al. 2014). Furthermore, it 
has been demonstrated that releasing low-molecular-mass 
organic acids by specific endophytes might boost heavy-
metal mobilization. For example, the organic acids produced 
by endophytes caused the pH of a solution to fall when the 
water-soluble Pb concentration increased. When the con-
centration of water-soluble Pb rose, the pH of the solution 
decreased because of the organic acids generated by endo-
phytes (Yongpisanphop et al. 2020).

4.7  Anti‑cancer activity

Cancer is the second largest cause of mortality worldwide 
due to its high incidence rate. Malignant cells kill 15 mil-
lion people annually, and the number is rising. Cancer can 
be treated with safe, biocompatible, less toxic, and more 
resistant natural chemicals from endophytic organisms. 
These natural chemicals are cancer treatment alternatives 
to chemotherapeutic medicines. These natural chemicals are 
anti-cancer and can control many malignancies. Due to their 
abundance, they can be employed to treat cancer. Endophytic 
fungi including Taxomyces andreanae, Seimatoantlerium 
nepalense, Alternaria alternate, and Chaetomellaraphigera 
have been linked to the production of the anti-cancer drug 
paclitaxel (Kousar et al. 2022). Paclitaxel treats Kaposi's 
sarcoma, prostate, lung, and ovarian cancer (Weaver 2014). 
It binds to tubulin and inhibits depolymerization during 
cell division (Leung and Cassimeris 2019). Taxol isolated 
from sick Chilli plant fruits has shown cytotoxic activity 
against human cell lines MCF-7, HLK-210, and HL-251. 
Endophytes Sinopodophyllum hexandrum  and Dysosma 
veitchii generate podophyllotoxin which is used to treat 
leukemia, testicular, prostate, lung, and ovarian cancer 
(Leung and Cassimeris 2019). Camptothecin is an effective 
cytotoxic compound for the treatment of solid tumors of 
the liver, bladder, lungs, and ovaries. A study found that 

camptothecin (extracted from A. niger) caused apoptosis 
when given to colon cancer cell lines, and cell death occurs 
at dosages as low as 7.8 mg/L and as high as 1000 mg/L 
with the highest and lowest cell viability occurring at con-
centrations of 11.85 and 65.13%, respectively (Aswani and 
Soundhari 2018). Fusarium oxysporum generates the anti-
cancer compound vinblastine in Cathranthus roseus, which 
is helpful against lymphoblastic leukemia and cancer cell 
lines HepG-2 at 7.48 g/mL (Kousar et al. 2022).

4.8  Immunosuppressive activity

An immediate quench strategy to overcome graft rejection 
and autoimmune diseases; researchers have been looking for 
a substance that might dampen the immune system (Raja-
manikyam et al. 2017). Fungal endophytes can synthesize 
some substances with immunosuppressive effects (Egbuta 
et al. 2017). Synthetic chemical immunosuppressive medi-
cations have serious side effects because of the time they 
took to treat diseases. Infection risks like hyperlipidemia, 
nephrotoxicity, hypertension, and neurotoxicity have side 
effects from long-term usage of chemical immunosuppres-
sive medications (Hošková et al. 2017). A recent study has 
revealed that immunosuppressive medicines produced from 
fungal endophytes are highly effective. Sydoxanthones A 
and B, 13-O-acetylsydowinin B, colutellin A, methyl peni-
phenone, dibenzofurane, xanthone derivatives, subglutinols 
A and B, peniphenone, lipopeptide, benzophenone deriva-
tives, (-) mycousnine, etc. are used in the treatments. There 
was speculation that cyclosporin A, an immunosuppressant 
medication, originated in the fungus Tolypocladiumin flatum 
(El-Gowelli and El-Mas 2015). cyclosporin A, an extract 
from the endophytic soil fungus Trichoderma polysporum, 
was discovered as a critical immunosuppressive agent. 
Endophytic fungus Fusarium subglutinan was discovered 
in Tripterygium wilfordii, where it produces noncytotoxic 
diterpene pyrenes and immunosuppressive Subglutinol A 
and B (Vasundhara et al. 2016; Adeleke et al. 2021).

4.9  Anti‑diabetic activity

Recent research has suggested that endophytic fungus might 
be a source of substances with anti-diabetic properties. The 
endophytic fungus Nigrosporaoryzae in Combretum dolicho-
petalum leaves has been proven to lower fasting blood sugar 
in diabetic mice when its purified components are adminis-
tered (Uzor et al. 2017). These chemicals include abscisic 
acid, 70-hydroxy abscisic acid, and 4-des-hydroxyl alter-
solanol A. Indrianingsih and Tachibana (2017) showed that 
8-hydroxy-6,7-dimethoxy-3-methyl isocoumarins exhibit 
strong glucosidase inhibitory effect and are produced by the 
endophytic fungus Xylariaceae spp. in the stem of Quercus-
gilva Blume. Oral administration of glucose and alloxan to 
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Wistar albino rats accompanied with Salvadoraoleoides 
extracts of Phoma spp. and Aspergillus spp. induced anti-
diabetic and hypolipidemic effects (Ezekwesili and Ogbunu-
gafor 2015). Endophytic fungi isolated from medicinal 
plants such as Rauwolfia densiflora and Leucas ciliata have 
been tested as a potential therapeutics for diabetes through 
bioprospecting. There is evidence that compounds generated 
from Fusarium spp. and Alternaria spp. exhibit anti-diabetic 
action, suggesting that these fungal endophytes may serve as 
a source of multifunctional therapies (Adeleke et al. 2021).

4.9.1  Anti‑malarial activity

Due to the rapid spread of anti-drug resistance malaria para-
sites in recent years, there is an urgent need for novel malaria 
therapy drugs. It was shown that the anti-malarial activity 
of two endophytic fungi, munumbicins E-4 and E-5, was 
twice as potent as that of chloroquine (Fadiji and Babalola 
2020). The endophyte Diaporthemiriciae is responsible for 
producing the secondary metabolite epoxy cytochalasin H. 
This compound exhibits robust anti-malarial suppression 
against a strain of Plasmodium falciparum resistant to chlo-
roquine (Ferreira et al. 2017). Ateba et al. (2018) found that 
the endophyte species Paecilomyces lilcinus and Penicillium 
janthinellum are great resources for new compounds that are 
active against Plasmodium falciparum and show potential 
in the treatment of malaria. It has been proven that various 
endophytic fungi, in addition to Aspergillus niger, Fusarium 
spp., and Nigrospora spp. can produce bioactive compounds 
with an antiplasmodial effect against Plasmodium falcipa-
rum (Kaushik et al. 2014).

4.9.2  Antituberculosis

Tuberculosis (TB), an infection of the lungs caused by Myco-
bacterium tuberculosis, is a worldwide health concern. It has 
lasted for centuries and is one of the world's most devastating 
illnesses. The World Health Organization (WHO) estimates 
that 10 million individuals are currently living with TB. End-
ing the TB pandemic by 2030 is one of the health aims of 
the sustainable development goals of the United Nations. M. 
tuberculosis has been proven to acquire resistance to numer-
ous synthetic medications. To this end, it is crucial to keep 
looking for new, natural antimycobacterial medicines that may 
kill mycobacteria without causing resistance. Bioprospecting 
for fungal endophytes as a cure for TB is an exciting field of 
study since many fungal metabolites are naturally antimyco-
bacterial. Azadirachta indica and Parthenium hysterophorus 
fungal endophytes have been found to exhibit antibacterial 
effects against TB (Mane et al. 2017). Phomopsis spp., an 
endophytic fungus isolated from Garcinia spp. is responsible 
for the production of Phomoxanthone A and B, which have 
been shown to suppress the development of M. tuberculosis 

(Kumar et al. 2017). Alternaria alternate and Phomopsis spp., 
two fungal endophytes isolated from Thai medicinal plants, 
have been shown to generate 3-nitro propionic acid and tenu-
azonic acid, exhibit indecisive action against M. tuberculosis 
(H37Ra) (Kumar et al. 2017; Deshmukh et al. 2015). Endo-
phytic fungus Phomopsis spp. isolated from Garcinia adulcis 
generates bioactive metabolites with anti-tuberculosis poten-
tial (Kumar et al. 2017). These metabolites include phomoe-
namide and phomonitroester. Benzopyran, diaportheone A 
and B are bioactive chemicals produced by Diaporthe spp. 
They are associated with the leaves of Pandanus amaryllifo-
lius and suppress aggressive strains of M. tuberculosis (Chep-
kirui and Stadler 2017).

4.9.3  Antiviral

Evidence suggests that endophytic fungi can create antivi-
ral drugs that are effective against a wide range of viruses, 
including HIV (Farooq et al. 2016), human CMV (Raekian-
syah et al. 2017), Dengue virus (Liu et al. 2019), and influ-
enza A (HINI) virus (Ambele et al. 2020). Antiviral activity 
has been found in two novel substances, cytonic acid A and 
cytonic acid B, which are isolated from Cytonaema spp. 
With the use of mass spectrometry and nuclear magnetic res-
onance, the structures of ptrideside isomers were conferred, 
leading to the identification of novel inhibitors of the pro-
tease activity of human cytomegalovirus. Fungal endophytes 
in the phyllosphere (leaves) of an oak tree (Quercuscoccif-
era) generate the antiviral chemical Hinnuliquinone, which 
has been linked to the inhibition of HIV-1 protease activity 
(Adeleke et al. 2021). Alternaria tenuissima QUE1Se is an 
endophytic fungus that generates altertoxins, a substance 
with potent anti-HIV-1 action. In addition to emerimidine 
(A, B), dehydroaustin, austinol, aspernidine (A, B), austin, 
emeriphenolicins (A, D), and acetoxydehydroaustin, many 
other compounds isolated from Emericella spp. (HKZJ) have 
been found to have antiviral activity against the influenza A 
virus (H1N1) (Raekiansyah et al. 2017). The antiviral activ-
ity of most medicinal plant mixtures is relatively high, even 
in their crudest forms. Antiviral activity in certain actinomy-
cetes has been demonstrated (Fadiji and Babalola 2020). The 
antiviral chemical 2-(furan-2-yl)-6-(2S, 3S, 4-trihydroxybu-
tyl) pyrazine was initially isolated from the plant species 
Jishengella endophytica 161,111. This chemical is adequate 
to combat the spread of the influenza A (H1N1) virus (Fadiji 
and Babalola 2020; Raekiansyah et al. 2017).

4.9.4  Other pharmacological potentials of the endophytic 
fungal secondary metabolites

In addition to their potential uses in food, agriculture, 
medicine, and cosmetics, the bioactive metabolites found 
in endophytes are excellent pharmaceutical sources for 
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treating various disease conditions (Shukla et al. 2014). The 
metabolites generated by fungal endophytes contain a wide 
variety of functional groups including alkaloids, flavonoids, 
terpenoids, phenolic acids, quinones, steroids, benzopyra-
nones, tannins, tetralones, and chinones (Gouda et al. 2016). 
Half of all deaths worldwide are attributable to infectious 
and parasitic disorders. It has been established that endo-
phytes are the origin of a wide variety of commercially 
accessible bioactive chemicals and secondary metabolites. 
New compounds produced by endophytic microbes have 
shown promise as antibiotics, anti-inflammatory agents, 
cancer treatments, immunosuppressants, anti-diabetic activ-
ity, anti-malarial activity, and even insecticides (Fadiji and 
Babalola 2020).

5  Conclusion

The purpose of this article is to gather updated knowledge 
on secondary metabolites of endophytic fungi, their pro-
duction, methods of analysis, pharmaceutical potential, and 
application. Microorganisms that are endophytic to a plant 
provide benefits to the host plant and stimulate plant growth 
via several direct and indirect mechanisms of action. Fungal 
endophytes represent an inexhaustible reservoir of pharma-
cologically essential compounds. Endophytic fungi are an 
essential component for the production of novel biomolecules 
for the biochemical and pharmaceutical industries. The fun-
gal endophytes are in a pivotal position in producing certain 
enzymes, such as amylase, cellulase, laccase, lyase, etc., that 
have significant commercial and pharmaceutical applications. 
Several promising pharmaceutical lead molecules have been 
reported and derived from endophytic fungi. Because they 
produce physiologically active metabolites that are immune 
suppressants, anti-cancer agents, promote plant growth, anti-
microbial volatiles, anti-oxidants, and antibiotics. Future 
insights are necessary to understand more about dynamic 
fungal endophytes, host interactions, and molecular players 
of fungal endophytes involved in producing biopharmaceu-
ticals of human interest. Finally, the use of metagenomics in 
combination with next-generation sequencing technologies is 
anticipated to unlock Endophytes have the potential to offer 
at least partial, if not total, answers to critical concerns such 
as rising strain on the global food supply, climate change, 
environmental degradation, and therapeutics. As a result, the 
biology of endophytes has to be investigated more if we are 
going to reap the advantages of these organisms in the fields 
of agriculture, industry, and medicine. Information on bioac-
tive natural compounds found in endophytic fungi has not 
been explored effectively. The reservoir of pharmacologi-
cally important chemicals that may be found in fungal endo-
phytes is almost endless. To get a better understanding of the 
dynamic fungal endophytes, the host relationships, and the 

molecular actors of fungal endophytes that are engaged in 
the production of biopharmaceuticals of human interest, more 
research is required. In conclusion, the use of metagenomics 
in conjunction with next-generation sequencing technologies 
is projected to open a wide variety of hitherto undiscovered 
pools of antimicrobials that are released by endophytic micro-
organisms that have not yet been farmed. Endophytes have 
just come to be seen as an important contributor to the overall 
pool of biological variety and numerous bioactive molecules 
secreted by as-yet-uncultivated endophytic microbes are not 
explored. The resources that endophytes give may be used 
for a variety of purposes, including formulations and bio-
prospecting. Because of this, further research into the biology 
of endophytes is required if we want to benefit from the pres-
ence of these organisms in the sectors of agriculture, industry, 
and medicine. The discovery of bioactive natural chemicals 
discovered in endophytic fungus has had an indelible impact 
on the treatment of a variety of diseases, including cancer, 
diabetes, and neurological conditions. With the use of cutting-
edge biotechnology like genetic engineering and the microbial 
fermentation process, these microbial resources may be better 
utilized for human benefit.
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