
Vol.:(0123456789)1 3

Int J Syst Assur Eng Manag
https://doi.org/10.1007/s13198-024-02331-w

ORIGINAL ARTICLE

Cohesion measurements between variables and methods using
component‑based software systems

Shipra1

Received: 31 August 2022 / Revised: 14 March 2024 / Accepted: 30 March 2024
© The Author(s) 2024

Abstract The practice of leveraging previously created
software components to progress new software is identified
as component-based software engineering (CBSE). Good
software engineering design is the foundation of CBSE
principles. The black box approach that underpins CBSE
hides the execution of components in nature, and the com-
ponents communicate with one another using strictly delin-
eated interfaces. Component platforms are shared, which
lowers the price of creation. To ascertain a system’s com-
plexity, various software metrics are employed. For supe-
riority in software intricacy, coupling would be minimal,
and cohesiveness must be high. It is predetermined that
coupling should be low and cohesion should be increased
for refinement in software complexity. We are identifying
the combination of different software systems and improv-
ing the methods for doing so with our approach. Proposed:
Cohm (cohesion of methods) and Cohv (cohesion of vari-
ables) are two cohesion metrics that have been proposed.
The cohesiveness metrics in this study have been analyti-
cally and empirically evaluated, and a comparison has been
made between them. Additionally, an effort was made to
give the outcomes of an empirical estimation based on the
case study. The T-test is used to determine the consequences
of the metrics, and Python is used to validate the metrics.
Python or R programming and the Matlab tool are used to
determine the relationship between various variables and
metrics. Findings: The consequence of the current investiga-
tion is very encouraging and might be used to estimate the
involvedness of the parts. The proportional analysis of the

proposed metrics and various cohesion metrics reveals that
the suggested metrics are more cohesive than the present
metrics, increasing the likelihood that they can be reused
when creating new applications.

Keywords Cohesion · Cohm (cohesion of methods) ·
Cohv (cohesion of variables) · CBSE metrics · Black box ·
Testing

1 Introduction

Software components are preconfigured building elements
with predetermined functions that can connect through
industry-standard message interfaces. In contrast to soft-
ware substances, mechanisms are larger units that indicate
a better task or process level. A section can be used as a
black box and has an outward description that is separate
from its internal workings. Software development employ-
ing pre-built or existent software machines based on the
definition of those apparatuses is known as CBSE. Meas-
urements and their metrics are crucial for managing the
software engineering process. Software metrics are meas-
urable measurements employed to assess various traits and
aspects of a software life cycle or the software organisation
itself. Programme metrics are essential for evaluating and
forecasting a variety of software qualities and complex-
ity, including maintainability, testability, reusability, etc.
Between all of these characteristics, the complexity aspect
impacts every other part of the software, according to Gill
and Balkishan (Weyuker 1988). Software metrics are cru-
cial for forecasting, planning, carrying out, overseeing,
controlling, and evaluating procedures and goods. Because
technologies change over time, it is necessary to leverage
ideas like constituent reusability, constituent interaction,

 * Shipra
 shipra.frames@gmail.com

1 Department of Mathematics, Pt. NRS Govt. College, Rohtak,
India

http://crossmark.crossref.org/dialog/?doi=10.1007/s13198-024-02331-w&domain=pdf
http://orcid.org/0000-0003-3153-8981

 Int J Syst Assur Eng Manag

1 3

and disappointment rate to create a novel product quickly.
CBSE is a subset of software engineering that relies heav-
ily on its constituent parts’ dependencies, exchanges, and
reuse. In CBSE, the capacity of the reusable component
to provide fresh output with few errors and satisfy client
needs depends on reliability (Biemen and Kang 1995).
When assessing reusability in CBSE, component com-
patibility and reliability are crucial. CBS is a modern
approach in software engineering that emphasises com-
bining parts into sophisticated software organisations with
the rapid growth of section technology. This method has
various benefits, including quicker delivery, quality, lower
maintenance costs, reusability, and productivity speed to
market. Reliability may be anticipated by considering the
dependability of each form of a part and the interconnec-
tion methodology among elements (Chen and Zhou 2011).
Reusing existing mechanisms takes less time than creat-
ing a novel component. As a consequence, employing the
component-based software engineering technique allows
organisations to be constructed more quickly. Through low-
ering software expansion costs and raising software effi-
ciency, businesses may become more competitive. Prior
to making adjustments or developing the organisation, it
offers an accurate view of the existing setup. Finished the
dependency relationship, it unveils software configuration
issues and reveals the implementation’s difficulties without
forcing us to study every line of code. The failure fore-
casting approaches used in CBS’s reliability forecasting
incorporate a quantitative evaluation of system depend-
ability. The main goals of software metrics are cost reduc-
tion, quality improvement, control and keeping an eye on
the timetable, minimising testing initiatives, and efficiently
utilising reusable building blocks or pieces. The paper is
divided into several parts; Sect. 2 reviews relevant research
on a few fundamental cohesion metrics in the literature.
Section 3 Limitations, Sect. 4 delivers a description of the
scenario, Sect. 5 Materials and Methods, Sect. 6 discusses
the problem at hand. Results and discussion are accessible
in Sect. 6, and Sect. 7 concludes with a discussion of future
instructions.

2 Related work

The asset of the relationship between elements and sub-
stances in a module is measured by cohesion. In other
terms, it refers to how closely each module’s instruc-
tions and components correspond to a certain purpose.
Suit Chidamber, e.l. Metrics are LCOM (Lack of Cohe-
sion in Methods) (Chidamber and Kemerer 1991). Later,
it was changed to LCOM2 Chidambere (Chidamber and
Kemerer 1994). LCOM2 is not employed in the observed
investigation since it cannot discriminate between two

software packages by giving them a cohesive score of zero.
LCOM and LCOM2 don’t take the invocation manner into
account. In 2000, Li proposed RLCOM (Li et al. 2001).
By separating the entire number of method pairs by the
number of non-similar technique pairs, LCOM is extended.
Cohesion measures were proposed by Hitz and Montazeri
(1995). (LCOM3). It is a more effective form of LCOM.
An unordered graph is used to illustrate how a class’s
functions are related to one another. A class’s methods are
its nodes. If two techniques share at least one parameter,
there should be an edge. COM, LCOM3, and LCOM are,
in reality, indicators of a lack of consistency; they really
should be highlighted. TCC, which measures tight class
cohesion, measures cohesion rather than lack of it. Bieman
and Kang proposed TCC (Tight Class Cohesion) (1995).
These measures take into account shared characteristics
that methods will employ, as well as inter-method activa-
tion. All variables used in technique n would also be used
by procedure m if procedure m is called procedure n. If two
techniques use similar properties by referencing or invok-
ing each other, they are said to be related. The similarity of
approaches is viewed as an infinitive relation through these
cohesion measures. LCOM3 and TCC take into account
tangential connections between techniques. LCOM3 and
TCC diagnose Similar to indirect and direct cohesiveness,
Gandhi and Guie (2012), Gui, and Scott (2008) discuss
the complexity factors of the component, techniques, and
aggregate components (Biemen and Kang 1995; Chen and
Zhou 2011; Chidamber and Kemerer 1991, 1994; Weyuker
1988; Gill and Balkishan 2008; Gandhi and Kumar 2012;
Gui, and Scott 2008; Hitz and Montazeri 1995; Jianguo
and Hui 2011). The author concludes that the sophisti-
cated constituent requires extra time to run and is chal-
lenging to preserve and reuse after validation. Michael
et al. (2015) have introduced BICM (Bounded Interface
Complexity Metrics), which is an expansion of ICM. It
is constrained; therefore, it might not always expand with
size. According to the analysis of this statistic, connection
size has no bearing on it (Tabrez et al. 2022; Singha et al.
2018a, 2018b, 2018c, d, 2022; Zubair and Singha 2021,
2020; Sultana et al. 2022; Arvind, & Ratan, R. 2020). The
BICM can be used to assess a component’s portability,
independence, and self-completion. For component-based
software systems, Kartika Yadav and Tomer (2014) (Sin-
gha et al. 2018c) introduced dual metrics: cohesion in class
(CIC) and cohesion between components (CBM). These
indicators are beneficial for raising the standard of CBSS
design. In CBS, these metrics are being used to identify
classes and components that are badly designed (Jianguo
and Hui 2011; Li et al. 2001; Kaur and Singh 2013; Rana
and Singh 2016; Singh and Chhillar, and Kajla, P. 2012;
Singh et al. 2012; Sengupta and Kanjilal 2011; Sharma
et al. 2009; Mittal and Bhatia 2013; Mwangi and Michael

Int J Syst Assur Eng Manag

1 3

2015; Tiwari and Kumar 2014). Two metrics—cohesion
of variables within a component (COVC) and cohesion of
methods in a component—were suggested by Rana and
Rajender Singh (2016). (COMC). These statistics dem-
onstrate the link between the variables utilised in various
methodologies (Arvind & Ratan 2020; Bhat et al. 2022;
Al-Taani and Al-Sayadi 2022; Kumar and Rath 2017;
Azadeh et al. 2017; Ubaid et al. 2020; Jain and Raj 2018;
Sreenivasula Reddy et al. 2022; Gadekar et al. 2022; Faiz
and Daniel 2022). According to the authors, the difficulty
of the component depends on the type and quantity of the
parameters (Chhillar and Bhasin 2011; Singha et al. 2018a)
(Din et al. 2023; Rostami et al. 2022; Zhang et al. 2019;
Wechsler 2023; Liu 2021; D’Aniello et al. 2018; Taimoor
et al. 2023; Samriya et al. 2023).

3 Limitations

• Most of the intrinsic metrics discussed above take into
account direct connection, cohesion among classes, and
explicit similarity among methods. Incorporating indirect
linkages between procedures has been proposed as an
addition by one of the cohesion metrics, LCOM3. It does
not allow for a numerical specification of, directly or
indirectly, cohesiveness and considers both in the same
manner.

• The complexity of a module will grow with its size,
given that ICM expands with the size of the component
interface. This indicates that even if the new, enhanced
component has substantially more identity, it will be
graded poorly due to its increased complexity. The
examination of BICM shows that it is self-governing in
terms of boundary size. Still, it is necessary to assess it
based on the entire system rather than just one element.

• Utilising metrics and tools that quantify them is one
technique to assess the cohesiveness and coupling of a
code base. LCOM4 (Lack of Cohesion of Methods) and
CBO (Coupling Between Objects) are two examples of
tests that may be used for the same thing. However, these
metrics are ambiguous as to whether the computation
should take into account only exiting dependencies or
both incoming and outgoing dependents.

4 Problem description

The purpose of software engineering is to make high-
quality software that is very inexpensive to maintain. At
various phases of software development, the quality of
the software is evaluated. Additionally, the design level
can be assessed. The design of a component in a system
that uses components has two views: internal and outward.

Building customs is more of a concern for component
developers. The component’s value will automatically rise
if the build quality of the component is poor. The number
of lines of code must be raised, and more work must be
put into updating the component to make it usable. High
component reuse and low component reliance are results
of good design. Metrics and their dimensions are crucial
for managing the software engineering procedure. Software
metrics are measurable measurements employed to assess
various traits and aspects of a software expansion cycle
or the software organisation itself. Programme metrics
are essential for evaluating and forecasting a variety of
software qualities, including maintainability, testability,
complexity, etc. Out of all these, the complexity factor
impacts every additional software attribute, according to
Gill and Balkishan (2008). Software quality is crucial for
forecasting, planning, carrying out, overseeing, controlling,
and evaluating procedures and goods. Software metrics’
main goals are to lower costs, advance quality, regulate
and monitor the schedule, minimise testing requirements,
and support efficient usage of reusable construction blocks.
Cohesion metrics have been suggested throughout this
research to evaluate the component’s effectiveness. Our
primary attention is on parameters and variables, such as its
procedures, components’ internal characteristics, etc.

5 Materials and methods

The intensity of a relationship between components inside a
component is measured by cohesion. All of the commands
in a cohesive component are directed towards carrying out
a single, common goal. All the cohesive constituent needs
to do is accept the statistics sent to it, process them, and
then send the results to its superordinate component. The
resemblance of a component’s methods is described by
cohesion. It measures the degree to which a component’s
multiple functions are connected.

5.1 Cohesion metrics

The cohesion of a component demonstrates how several
properties relate to one another. The component’s strength
is shown. The cohesiveness component is an autonomous
component that can be reused. If the component is very
coherent, the likelihood of reuse rises.

5.2 Cohesion of variables (CoV)

A component’s cohesion of factors refers to the regular-
ity of its variables. The constituent is cohesive if the set of
specified variables is focused on carrying out a particular
purpose. The term "cohesion of variables" relates to how

 Int J Syst Assur Eng Manag

1 3

frequently variables are used in a component relative to the
overall set of variables.

CoV =
∑n

i=1
f (Bi)

U
 , where U is called the Number of variables

overall in the component.
f
(

Bi

)

 Is the frequency of use for each attribute in the
component.

5.3 Cohesion of methods (CoM)

The term "cohesion of techniques" describes how closely
variables are employed in procedures related to each
other. This measure considers how different techniques
communicate with one another inside a component to
determine the component’s strength. By counting the ways
using the same sort of variables and separating by the
number of approaches, this measurement determines the
cohesiveness of methods in a component.

CoM =
∑n

i=1
f (Ai)

n2+n+1
 , here f (Ai) = number of techniques using

the same kind of variables.
V = n2 + n + 1 = a component’s overall methods count.

6 Results and discussion

Experimentation is run on component-based software that
is built in Java by Python to validate proposed complexity
measures. Numerous Python components with varying
numbers of object instances and methods can be found in
this product.

6.1 Cohesion of variables

The occurrence of variables used in the element divided
by the total number of variables is known as the cohesion
of variables. There are ten (10) mechanisms in the sample,

numbered B1 to B10. There are a few instance variables
and methods within every element. The incidence of the
variables is shown in Table 1. Some components’ variable
frequencies are the same, while others are different. Those
frequencies are used to compute the CohV value.

6.2 Cohesion of methods (CoM)

The connectedness of a component’s procedures and local
variables is referred to as the cohesion of its methods. This
metric takes into account the interplay of the techniques in
a component. There are ten (10) elements in the illustration
from B1 to B10. Every element has examples of variables
and processes. Table 2 displays the number of methods
being used with identical types of parameters.

Two cohesion metrics, Cohesion between Methods
(CBM) and Cohesion in Class (CIC), were suggested by
Tomar and Yadav (2018c). Cohesion in a class refers to how
frequently the class’s methods use its attributes (variables)
in a component (Singha et al. 2018c). The relatedness of
class members is referred to as cohesion between methods
(Singha et al. 2018c).

6.3 Cohesion in class (CIC)

CIC =
∑N

i=1
f (ci)

TM
 N = Total Number of class attributes. f (ci) =

frequency of use of each attribute by class methods for each
attribute.TM = total Number of class methods.

6.4 Cohesion between methods (CM)

CM =
∑a

i=0
f (ci).Mi

am(m−1)
 f
(

ci
)

.Mi = Total of the techniques that use
the same kind of attributes.M = Number of class
methodsa = Number of factors

To verify these measures, an empirical investigation
based on Python components must be done. The identical
Python must be used. CM and CIC must be determined
for each Python component. The frequency of attributes

Table 1 CoV and the
frequency of variables

U F(Bi) CoV Components

4 7 3 B1
4 7 3 B2
5 9 3.25 B3
5 9 3.25 B4
17 46 3.56 B5
5 9 3.25 B6
3 6 3.50 B7
5 9 3.25 B8
4 6 3 B9
4 7 3 B10

Table 2 Demonstrates CoM
values

V F(Ai) CoM Components

13 7 0.6 B1
13 7 0.6 B2
31 9 0.4 B3
31 9 0.4 B4
65 46 0.006 B5
31 9 0.4 B6
5 6 3.0 B7
5 9 0.80 B8
4 6 0.6 B9
4 7 3.0 B10

Int J Syst Assur Eng Manag

1 3

and CIC values aimed at each component are displayed
in Table 3. Table 4 displays the total number of methods
utilised for the same type of attribute and the CBM value
for each component. CM, CIC, and CoM statistical tools
should be used to determine the statistical significance of
the CoV results. These measures will be subjected to the
T-test. The inferential analysis is the T-test. It is employed
to ascertain whether the resources of the dual groups differ
meaningfully (Fig. 1). Table 5 and Fig. 1 represents the
standard deviation and mean of CIC and CoV. It is used to
determine whether there is a significant difference between
the means of two groups.

When paired sample t-tests are used on the data (results in
Table 6), it is discovered that CoV’s cohesiveness is greater
than CIC [Tomer and Yadav]. The average value shows that
the cohesiveness values of the given metrics are greater than
those of the CIC that Yadav and Tomer have suggested (Sin-
gha et al. 2018c). The T-test value is 5.0654, and at a 99
percent degree of confidence, the same would be substantial.
This indicates that CoV has a more significant cohesiveness
value (Fig. 2).

When paired sample t-tests are used on this data (results
in Table 6), it is discovered that CoM is much more cohe-
sive than CM [Tomer and Yadav] (Singha et al. 2018c).

Comparison between CM and CoM Graph (Result in Fig. 2
and Table 7) are applied on the data and found that the cohe-
siveness of proposed metrics CohM (Cohesion of Methods)

Table 3 Displays the CIC
value and the frequency of the
characteristics

TM F(ci) CIC Components

5 7 2.5 B1
5 7 2.5 B2
7 9 2.5 B3
7 9 2.5 B4
31 45 3.0 B5
7 9 3.0 B6
3 6 3.0 B7
5 9 3.0 B8
4 6 2.5 B9
4 7 2.5 B10

Table 4 Depicts the CBM
value

TM FCI.Mi CM Components m m − 1 am(m − 1)

,wherea = 1

5 7 0.50 B1 4 3 12
5 7 0.50 B2 4 3 12
7 9 0.50 B3 9 8 72
7 9 0.50 B4 9 8 72
31 45 0.007 B5 5 4 20
7 9 0.004 B6 5 4 20
3 6 0.003 B7 6 5 30
5 9 0.60 B8 6 5 30
4 6 0.60 B9 7 6 42
4 7 0.50 B10 7 6 42

0

1

2

3

4

CoV CoM

Std.Deviaon Error

Mean

StD.Deviaon Mean

Fig. 1 Std. deviation and mean of CIC and CoV

Table 5 Std. Deviation and Mean of CIC and CoV

Std. deviation Mean N Std.
deviation
error

Cov 0.2345 3.2345 14 0.0654
CoM 0.3456 2.7134 14 0.2345

Table 6 T-Test on paired samples

Paired differences

95%Conf idenceintervalof thedif ference

T DF Sig. (2-
tailed)

Pair1 Cohv-
CIC

0.8765 5.0654 12 99.000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

CoM CM

Std.Deviaon Error

Mean

StD.Deviaon Mean

Fig. 2 Comparison between CM and CoM graph

 Int J Syst Assur Eng Manag

1 3

is more than CBM (Cohesion between methods). The mean
value is reflecting that cohesion value of proposed metrics
(CohM) is higher than the value of CBM which is proposed
by Yadav and Tomer (Singha et al. 2018c). Table 7 and
Fig. 2 denote CoM and CM’s standard deviation and median.
The paired sample T-test value is given in Table 8. The mean
illustrates that the cohesiveness advantages of the proposed
metrics (CoM) are higher than the value of the CM that
Tomer and Yadav have proposed (Singha et al. 2018c). The
99 percent threshold of confidence T-test value is 5.0654,
but the same is significant. It implies that CoM’s value is
higher and more significant in the recommended metrics
(CoM). This analysis shows that, when compared to CIC
and CM [Tomer and Yadav] (Singha et al. 2018c), the pro-
posed metrics (CoV and CoM) are important. The suggested
measures CIC and CBM were proposed by CoM and CVC,
Tomar and Yadav (Singha et al. 2018c). These measures are
based on the elements that are utilised in various ways by
the components. CVC and CoM have been updated, and thus
the cohesion of variables within a coefficient COM within
an element is suggested (Rana and Singh 2016). These two
measures are also affected by many variables and method-
ologies, but the authors classify the data into standard, mod-
erate, and critical categories and take weights into account to
normalize. The frequency of various types of variables that
bind or enhance a component is represented by the COVC.
The connectedness of a constituent’s methods and instance
variables is called the cohesion of methods. This measure
considers how a component’s methods communicate with
one another (Rana and Singh 2016). Mean and Std. Devia-
tion of CohM and CBM (Result in Table 9) are applied on
the data and found that the cohesiveness of proposed metrics

CohM (Cohesion of Methods) is more than CBM (Cohesion
between methods). The mean value is reflecting that cohe-
sion value of proposed metrics (CohM) is higher than the
value of CBM which is proposed by Yadav and Tomer (Sin-
gha et al. 2018c). The T-test value is 4.838 and the same is
significant at 99% level of confidence. It means that the value
of CohM (cohesion of methods) is higher and significant in
proposed metrics (CohM) in Table 10.

6.5 Cohesion of variables in a component (COVC)

C O V C =
∑N

i=0

FV

TV

F V =
∑N

i=0
{
�

f (vi) ∗ wi
�

+
�

f (vmi).wmi
�

+
�

f (vci) ∗ wci
�

}

hereFV = frequency of a component’s instance vari-
ables.TV = Number of instance variables in a compo-
nent as a whole. f (vi) = the standard variable occurrence
rates. f (vmi) = regularity with which moderate variables
occur. f (vci)=the frequency with which important factors
arise.

The weight factors for the standard, moderate, and critical
types of variables are, individually, wi , wmi , and wci.

The ten-part Python project will be used for the empirical
analysis. Table 9 displays the COVC value as well as the
frequency of various types of variables. The ten-part Python
project will be used for the empirical analysis, conducted
based on Python components, regarding each Java Beans
component.

The inference is made that a component uses a moderate
variable frequently, which increases its reusability when cre-
ating a brand-new application. The measures from Rajender
Singh and Rana (Rana and Singh 2016) are subjected to
correlation analysis. This leads to the conclusion that both
the kind and frequency of the variables affect the compo-
nent’s complexity (coupling or cohesiveness). The outcome
demonstrates that these characteristics have an impact on
the component’s complexity in Table 11. Although the rec-
ommended complexity seems rational and matches intui-
tive perception, it is not the sole factor in determining how
complicated a CBSE is in total. One of our upcoming initia-
tives will involve conducting more empirical studies using
genuine CBSS systems to apply our suggested measures.
It will be possible to investigate the link between the sug-
gested metric values and a number of CBS quality param-
eters using data from projects that the industry has already
implemented. For standard-type variables, the Pearson cor-
relation value (Table 12) is − 0.654. It implies that the value

Table 7 CoM and CM’s standard deviation and median

Std. deviation Mean N Std. deviation error

CoM 0.63245 0.6576 14 0.18765
CM 0.34567 0.23456 14 0.087645

Table 8 Paired sample T-test

T df Sig. (2- tailed)

Pair 1 CoM-CM 5.0654 12 99.000

Table 9 Mean and Std. deviation of CohM and CBM

Mean N Std. deviation Std. error mean

CohM 0.5537 13 0.61020 0.16205
CBM 0.25639 13 0.345075 0.093935

Table 10 Paired sample T test

T Df Sig. (2-tailed)

Pair 1 CohM-CBM 4.838 11 0.000

Int J Syst Assur Eng Manag

1 3

of COVC is reduced by 0.654 per unit if we increase the
standard sort variables in a constituent. The moderate-type
variable has a correlation value of 0.5678. It implies that
the value of COVC grew by 0.5678 per unit if we raised
the moderate-type variables in a component. For crucial-
type variables, the Pearson correlation is also 0.675. This
suggests that the value of COVC grew by 0.577 per unit if
the frequency of essential type variables was increased in a
component.

7 Conclusion and future work

Since moderate instance variables are used frequently within
a component, there is a significant likelihood that the compo-
nent can be reused when creating a brand-new application.
To explore the relationship between the cohesiveness meas-
ure and the regularity of different kinds of variables (critical,
moderate, and standard), the Pearson correlation approach is
functional to the metrics developed by Rajender Singh and
Rana (2016). For standard-type variables, the Pearson cor-
relation value (Table No. 12) is − 0.654. It implies that the
value of COVC is reduced by 0.654 per unit if we increase
the standard sort variables in a constituent. The moderate-
type variable has a correlation value of 0.5678. It implies
that the value of COVC grew by 0.5678 per unit if we raised
the moderate-type variables in a component. For crucial-
type variables, the Pearson correlation is also 0.675. This

suggests that the value of COVC grew by 0.577 per unit if
the frequency of essential type variables was increased in
a component. As a result, it is advised that researchers use
fewer essential type variables and more moderate and critical
sort variables. We already recognise that a component needs
to have a high cohesion value and a low coupling value to be
independent. Conclusion: To get the greatest outcomes for
the component’s strengthening, which results in the com-
ponent’s reusability for creating a new application, the use
of moderate illustration variables within a section ought to
be high. Projects completed using component-based systems
are frequently delivered on time and within budget (Rajmo-
han and Ramasubramanian 2023; Pakrooh and Bohlooli
2021; Pawar et al. 2019; Li and Mao 2017; Upadhya 2023;
Annepu and Rajesh 2020; Edla et al. 2020; Alimi et al. 2019;
Miura and Suzuki 2003; Alam 2022). To assess the projects’
complexity, metrics are created. An experimental assess-
ment of the current and proposed metrics has been done on
this Python. Cohesion measures have undergone extensive
analysis and comparison between the proposed measures and
various cohesiveness metrics. Using a statistical tool, CM
and CIC’s proposed metrics should be compared to CoM
and CoV. The data is subjected to a t-test, which reveals that
the proposed measures, CoM and CoV, have higher levels
of cohesion than CM and CIC. The Pearson Correlation
approach is used to display the relationship amid the cohe-
siveness measure and the regularity of various variables,
functions that employ different variables, and COVC and
COM are upgraded versions of CoV and CoM. The analysis
of COVC and COM shows that by using modest wildcards,
the component’s strength, cohesion, and likelihood of being
reused for creating new applications would all be high. The
complexity of the constituent depends on the type and regu-
larity of the variables, according to the case study’s findings.
The outcome demonstrates that these characteristics impact
the component’s complexity. The suggested cohesion com-
plexity seems rational and fits intuitive perception. However,
it is not the only factor determining how complicated a CBSE
is. The primary drawbacks of the suggested technique are

Table 11 Displays the COVC
value as well as the frequency
of various types of variables

Component f (vi) f (vmi) f (vci) FV TV COVC

B1 3 3 3 1.3 4 0.404
B2 3 3 3 1.5 4 0.456
B3 5 3 4 1.7 4 0.453
B4 5 3 5 2.3 4 0.456
B5 3 17 6 2.5 5 0.567
B6 3 4 7 2.6 6 0.456
B7 0 4 5 2.8 2 0.567
B8 4 5 5 3 4 0.678
B9 5 2 3 3.4 5 0.654
B10 6 2 2 5 3 0.123

Table 12 Demonstrates the Pearson correlation between cohesive-
ness measurements and the frequency of several types of variables

Various variables Correlation by
pearson

Significance N

Critical 0.675 0.0654 14
Standard − 0.654 0.0134 14
Moderate 0.5678 0.0567 14

 Int J Syst Assur Eng Manag

1 3

related to component trustworthiness since components are
black-box programme units and users may not have access to
the component’s source code. Therefore, it is unwise to trust
the components. Trade-offs between ideal criteria and avail-
able components are a constant in the system definition and
design process, which may be another restriction. The use
of moderate local variables within a portion and methodolo-
gies using moderate instance variables in an element must
be on the higher side to have the best possible results for the
reinforcing of the constituent, which in turn wires the reus-
ability of the constituent for developing a novel application.
Soft computing techniques and MATLAB may be utilised
in future works to optimise the output of given measures
(Ezugwu et al. 2022; Agushaka et al. 2022, 2023; Hu et al.
2023; Zare et al. 2023; Abualigah et al. 2023).

Author contributions SS is the only author of the paper, and she
confirms that she was the only one to conceptualize the study, evalu-
ate the findings, and prepare the draft manuscript. The final draft of
the paper was authorized by the author after they had evaluated the
findings.

Funding No funding.

Declarations

Conflict of interest The author declare that they have no conflict of
interest.

Human and animals rights For this type of study, informed consent
is not obligatory.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abualigah L, Ekinci S, Izci D, Zitar RA (2023) Modified elite opposi-
tion-based artificial hummingbird algorithm for designing FOPID
controlled cruise control system. Intell Autom Soft Comp. https://
doi. org/ 10. 32604/ iasc. 2023. 040291

Agushaka JO, Ezugwu AE, Abualigah L (2022) Dwarf mongoose
optimization algorithm. Comput Methods Appl Mech Eng
391:114570

Agushaka JO, Ezugwu AE, Abualigah L (2023) Gazelle optimization
algorithm: a novel nature-inspired metaheuristic optimizer. Neural
Comput Appl 35(5):4099–4131

Alam T (2022) Blockchain-enabled deep reinforcement learning
approach for performance optimization on the internet of things.
Wireless Pers Commun 126(2):995–1011

Alimi IA, Teixeira AL, Monteiro PP (2019) Effects of correlated mul-
tivariate FSO channel on outage performance of space-air-ground
integrated network (SAGIN). Wireless Pers Commun 106(1):7–25

Al-Taani AT, Al-Sayadi SH (2022) Extractive text summarization of
arabic multi-document using fuzzy C-means and Latent Dirichlet
Allocation. Int J Syst Assur Eng Manag 15:713–726

Annepu V, Rajesh A (2020) Implementation of an efficient artificial
bee colony algorithm for node localization in unmanned aerial
vehicle assisted wireless sensor networks. Wireless Pers Commun
114:2663–2680

Arvind, Ratan R (2020) Identifying traffic of same keys in crypto-
graphic communications using fuzzy decision criteria and bit-
plane measures. Int J Syst Assur Eng Manag 11(2):466–480

Azadeh A, Jebreili S, Chang E, Saberi M, Hussain OK (2017) An
integrated fuzzy algorithm approach to factory floor design incor-
porating environmental quality and health impact. Int J Syst Assur
Eng Manag 8:2071–2082

Bhat J, Saqib M, Moon AH (2022) Fuzzy extractor and chaos enhanced
elliptic curve cryptography for image encryption and authenti-
cation. Int J Syst Assur Eng Manag. https:// doi. org/ 10. 1007/
s13198- 021- 01330-5

Biemen JM, Kang BY (1995) Cohesion and reuse in an object-oriented
system. In: Proceeding on ACM symposium on software reus-
ability (SSR’95), pp 259–262

Chen J, Wang H, Zhou Y et al (2011) Complexity metrics for compo-
nent-based software systems. Int J Digital Content Technol Appl
5(3):235–244

Chhillar U, Bhasin S (2011) A journey of software metrics: traditional
to aspect-oriented paradigm. In: 5th National conference on com-
puting for nation development, 289–293

Chidamber SR, Kemerer CK (1991) Towards a metrics suite for object
oriented design. In: Proceedings of 6th ACM conference on object
oriented programming, systems, languages and applications
(OOPSLA’91), 197–211

Chidamber SR, Kemerer CKA (1994) Metrics suite for object oriented
design. IEEE Trans Software Eng 20:476–493

D’Aniello G, Gaeta A, Gaeta M, Tomasiello S (2018) Self-regulated
learning with approximate reasoning and situation awareness. J
Ambient Intell Humaniz Comput 9:151–164

Din AFU, Mir I, Gul F, Akhtar S (2023) Development of reinforced
learning based non-linear controller for unmanned aerial vehicle.
J Ambient Intell Humaniz Comput 14(4):4005–4022

Edla DR, Tripathi D, Kuppili V, Dharavath R (2020) Multilevel auto-
mated security system for prevention of accidents at unmanned
railway level crossings. Wireless Pers Commun 111:1707–1721

Ezugwu AE, Agushaka JO, Abualigah L, Mirjalili S, Gandomi AH
(2022) Prairie dog optimization algorithm. Neural Comput Appl
34(22):20017–20065

Faiz M, Daniel AK (2022) A multi-criteria cloud selection model based
on fuzzy logic technique for QoS. Int J Syst Assur Eng Manag
15:687–704

Gadekar R, Sarkar B, Gadekar A (2022) Model development for assess-
ing inhibitors impacting Industry 4.0 implementation in Indian
manufacturing industries: an integrated ISM-Fuzzy MICMAC
approach. Int J Syst Assur Eng Manag 15(2):646–671

Gandhi P, Kumar BP (2012) Analytical analysis of generic reusability
Weyuker’s. Properties in international journal of computer science
issues (IJCSI), 1–9

Gill NS, Balkishan (2008) Dependency and interaction oriented com-
plexity metrics of component-based systems. ACM SIGSOFT
Softw Eng Notes 33(2):1–5

Gui G, Scott PD (2008) New coupling and cohesion metrics for evalu-
ation of software component reusability. In: 9th International

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.32604/iasc.2023.040291
https://doi.org/10.32604/iasc.2023.040291
https://doi.org/10.1007/s13198-021-01330-5
https://doi.org/10.1007/s13198-021-01330-5

Int J Syst Assur Eng Manag

1 3

conference for young computer scientists, IEEE https:// doi. org/
10. 1109/ ICYCS. 2008. 270

Hitz M, Montazeri B (1995) Measuring coupling and cohesion in
object-oriented systems. In: Proceedings of the international
symposium on applied corporate computing, pp 1–8

Hu G, Zheng Y, Abualigah L, Hussien AG (2023) DETDO: An adap-
tive hybrid dandelion optimizer for engineering optimization. Adv
Eng Inform 57:102004

Jain V, Raj T (2018) An adaptive neuro-fuzzy inference system for
makespan estimation of flexible manufacturing system assembly
shop: a case study. Int J Syst Assur Eng Manag 9:1302–1314

Jianguo C, Hui W (2011) Complexity metrics for component-based
software systems. Int J Digital Cont Technol Appl 5(3):235–244

Kaur N, Singh A (2013) A complexity metrics for black box compo-
nents. Int J Soft Comput Eng 3(2):179–184

Kumar L, Rath SK (2017) Software maintainability prediction using
hybrid neural network and fuzzy logic approach with parallel
computing concept. Int J Syst Assur Eng Manag 8:1487–1502

Li X, Liu Z, Pan B, Xing B (2001) A measurement tool for object-
oriented software and measurement experiments with IT. In: Pro-
ceeding on IWSM, 2000. (Lecture Notes in Computer Science
2006, Springer, Berlin and Heidelberg, 2001), 44–54

Li L, Mao Y (2017) Autonomously coordinating multiple unmanned
vehicles for data communication between two stations. Wireless
Pers Commun 97:3793–3810

Liu W (2021) Slam algorithm for multi-robot communication in
unknown environment based on particle filter. J Amb Intell
Human Comput. https:// doi. org/ 10. 1007/ s12652- 021- 03020-3

Mittal S, Bhatia PK (2013) Predicting quantitative functional depend-
ency metric based upon the interface complexity metric in com-
ponent-based software. Int J Comput Appl 73(2):1–10

Miura R, Suzuki M (2003) Preliminary flight test program on telecom
and broadcasting using high altitude platform stations. Wireless
Pers Commun 24:341–361

Mwangi T, Michael A (2015) Empirical evaluation of complexity
metrics for component-based systems. J Theor Appl Inf Technol
73(2):275–282

Pakrooh R, Bohlooli A (2021) A survey on unmanned aerial vehicles-
assisted internet of things: a service-oriented classification. Wire-
less Pers Commun 119:1541–1575

Pawar P, Yadav SM, Trivedi A (2019) Performance study of dual
unmanned aerial vehicles with underlaid device-to-device com-
munications. Wireless Pers Commun 105:1111–1132

Rajmohan S, Ramasubramanian N (2023) Improved Symbiotic organ-
isms search for path planning of unmanned combat aerial vehicles.
J Ambient Intell Humaniz Comput 14(4):4289–4311

Rana P, Singh R (2016) A design of cohesion and coupling metrics for
component-based software systems. Int J Comput Appl 146(4):23–27

Rostami M, Farajollahi A, Parvin H (2022) Deep learning-based face
detection and recognition on drones. J Ambient Intell Human
Comput 15(1):373–387

Samriya JK, Kumar M, Tiwari R (2023) Energy-aware aco-dnn opti-
mization model for intrusion detection of unmanned aerial vehicle
(uavs). J Ambient Intell Humaniz Comput 14(8):10947–10962

Sengupta S, Kanjilal A (2011) Measuring complexity of component-
based architecture: a graph-based approach. ACM SIGSOFT
Softw Eng Notes 36(1):1–10

Sharma A, Grover PS, Kumar R (2009) Dependency analysis for
component-based software systems. ACM SIGSOFT Softw Eng
Notes 34(4):1–6

Singh R, Chhillar, Kajla P (2012) New component composition metrics
for component-based software development. Int J Comput Appl
60(15):51–56

Singh R, Chhillar, Ahlawat P, Kumari U (2012) Measuring complexity
of component-based system using weighted assignment technique.

In: 2nd International conference on information communication
and management (ICICM 2012), 17–23

Singha AK, Kumar A, Kushwaha PK (2018) Classification of brain
tumors using deep Encoder along with regression techniques.
EPH-Int J Sci Eng 1(1):444–449

Singha AK, Kumar A, Kushwaha PK (2018) Patient cohort approaches
to data science using biomedical field. EPH-Int J Sci Eng
1(1):457–462

Singha AK, Kumar A, Kushwaha PK (2018) Recognition of human
layered structure using Gradient decent model. EPH-Int J Sci Eng
1(1):450–456

Singha AK, Pathak N, Sharma N, Gandhar A, Urooj S, Zubair S, Sul-
tana J, Nagalaxmi G (2022) An experimental approach to diag-
nose covid-19 using optimized CNN. Intell Autom Soft Comput
34(2):1066–1080

Singha AK, Kumar A, Kushwaha PK (2018) Speed prediction of wind
using artificial neural network. EPH-Int J Sci Eng, pp. 463–469

Sreenivasula Reddy T, Sathya R, Nuka M (2022) Intuitionistic fuzzy
rough sets and fruit fly algorithm for association rule mining. Int
J Syst Assur Eng Manag 13(4):2029–2039

Sultana J, Singha AK, Siddiqui ST, Nagalaxmi G, Sriram AK, Pathak
N (2022) COVID-19 pandemic prediction and forecasting
using machine learning classifiers. Intell Autom Soft Comput
32(2):1007–10243

Tabrez SS, Ahmad MO, Khamruddin M, Gupta AK, Singha AK (2022)
Blockchain and IoT for educational certificates generation and
verification. In: 2022 2nd international conference on computing
and information technology (ICCIT), IEEE, pp. 298–303

Taimoor M, Lu X, Maqsood H, Sheng C (2023) A novel fault diagnosis
in sensors of quadrotor unmanned aerial vehicle. J Ambient Intell
Humaniz Comput 14(10):14081–14099

Tiwari U, Kumar S (2014) Cyclomatic complexity metric for com-
ponent-based software. ACM SIGSOFT Softw Eng Notes
39(1):1–10

Ubaid AM, Aghdeab SH, Abdulameer AG, Al-Juboori LA, Dweiri
FT (2020) Multidimensional optimization of electrical discharge
machining for high-speed steel (AISI M2) using Taguchi-fuzzy
approach. Int J Syst Assur Eng Manag 11(6):1021–1045

Upadhya A (2023) On the reliability of interference limited unmanned
aerial vehicles. Wireless Pers Commun 129(1):119–131

Wechsler H (2023) Immunity and security using holism, ambient
intelligence, triangulation, and stigmergy: sensitivity analysis
confronts fake news and COVID-19 using open set transduction.
J Ambient Intell Humaniz Comput 14(4):3057–3074

Weyuker EJ (1988) Evaluating software complexity measures. IEEE
Trans Softw Eng 14(9):1357–1365

Yadav K, Tomar P (2014) Design of metrics for component-based
software system at design level. Int J Eng Tech Res 2(4):285–289

Zare M, Ghasemi M, Zahedi A, Golalipour K, Mohammadi SK, Mir-
jalili S, Abualigah L (2023) A global best-guided firefly algorithm
for engineering problems. J Bionic Eng. https:// doi. org/ 10. 1007/
s42235- 023- 00386-2

Zhang K, Qu T, Zhou D, Thürer M, Liu Y, Nie D et al (2019) IoT-
enabled dynamic lean control mechanism for typical production
systems. J Ambient Intell Human Comput 10:1009–1023

Zubair S, Singha AK (2020) Parameter optimization in convolutional
neural networks using gradient descent. Microservices in big data
analytics, Springer, Singapore, pp. 87–94

Zubair S, Singha AK (2021) Network in sequential form: combine tree
structure components into recurrent neural network. In: IOP confer-
ence series: materials science and engineering. Vol 1017(1), p. 012004

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/ICYCS.2008.270
https://doi.org/10.1109/ICYCS.2008.270
https://doi.org/10.1007/s12652-021-03020-3
https://doi.org/10.1007/s42235-023-00386-2
https://doi.org/10.1007/s42235-023-00386-2

	Cohesion measurements between variables and methods using component-based software systems
	Abstract
	1 Introduction
	2 Related work
	3 Limitations
	4 Problem description
	5 Materials and methods
	5.1 Cohesion metrics
	5.2 Cohesion of variables (CoV)
	5.3 Cohesion of methods (CoM)

	6 Results and discussion
	6.1 Cohesion of variables
	6.2 Cohesion of methods (CoM)
	6.3 Cohesion in class (CIC)
	6.4 Cohesion between methods (CM)
	6.5 Cohesion of variables in a component (COVC)

	7 Conclusion and future work
	References

