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1 Introduction

The term “operational risk” was initially defined by the 
Basel Committee on Banking Supervision (BCBS) as the 
potential for direct or indirect losses due to insufficient or 
failed internal procedures, personnel issues, system failures, 
or external events (Basel Committee on Banking Supervi-
sion 2011). This concept, initially exclusive to the bank-
ing sector, has since expanded and been tailored to vari-
ous other industries (Pinto 2015; Kenett and Raanan 2011) 
and become fundamentally interdisciplinary (McNeil et al. 
2015). Operational risk assessment can then be defined as a 
systematic process that evaluates the potential for direct or 
indirect losses arising from a wide array of interdisciplinary 
risk determinants (Aven 2015). The assessment process aims 
to identify, quantify, and prioritize these risk determinants, 
enabling organizations to understand their inherent uncer-
tainties and their impacts on operational objectives (Haimes 
2005).

Furthermore, according to Aven et  al., risk can be 
described as the subjective probability expressing the uncer-
tainty of the occurrences of the initiating events or scenarios 
and their consequences, as well as the uncertainty about the 
underlying factors influencing the initiating events and con-
sequences. The subjective probability expressing the uncer-
tainty is often given based on the background knowledge 
(Aven 2012). Consequently, for operational risk assessment, 
it becomes imperative to integrally consider two aspects:

Firstly, given that operational risks often intersect various 
disciplines, consequently, the operational risks are evaluated 
using diverse criteria. In that sense, it is appropriate to apply 
the MultiCriteria Decision Analysis (MCDA) framework 
to operational risk management (Chen and Tzeng 2004). 
MCDA is a systematic method used in complex decision-
making scenarios with often conflicting criteria. It involves 
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identifying the problem, generating alternatives, setting 
evaluation criteria, and then weighing these alternatives 
to find the most suitable solutions (Wallenius et al. 2008; 
Belton and Stewart 2002). By integrating the MCDA frame-
work into multi-objective operational risk assessment, one 
can obtain a prioritized risk profile that distinguishes risk 
determinants based on their overall importance as well as 
their relevance to specific objectives.

Secondly, since knowledge plays an important role in 
uncertainty reduction, for operations with uncertainty 
induced by inadequate knowledge, the continuous accumu-
lation and utilization of knowledge is a pivotal step in opera-
tional risk assessment. In this case, STSP is a potential fit for 
this purpose. STSP is a key method in time series analysis, 
focusing on the prediction of future data by understanding 
available time series data, with underlying components like 
trend, seasonality, cyclical patterns, and noise (Box et al. 
2015). STSP enables a dynamic and systematic approach to 
managing uncertainty, allowing decision-makers to adapt 
their understanding as new knowledge emerges.

While there is an extensive body of literature and many 
industrial practices addressing each of the two aspects dis-
cussed above independently, integrating these aspects holds 
a certain level of theoretical novelty and practical necessity. 
The aim of this paper is to propose a framework to iteratively 
reduce uncertainty within the MCDA process by applying 
continuously updated interdisciplinary knowledge based on 
the STSP techniques. In particular, the framework aims to 
achieve the following targets:

• By employing STSP techniques, to enable the utilization 
of updated knowledge in the operational risk assessment 
process. This is important for operations where decisions 
must be made based on real-time knowledge and data.

• By employing MCDA methods, to obtain an operational 
risk assessment consisting of a spectrum of risks that are 
prioritized based on their effects on the overall, as well as 
subordinated, operational objectives. This is to avoid silo 
risk assessment which often ignores the synergy or com-
petitiveness of the interdisciplinary risk determinants.

• By integrating the MCDA and STSP techniques, to form 
a framework that is particularly suitable for operational 
risk assessment which is interdisciplinary and multi-
objective, as well as critically depending on real-time 
knowledge and data updates.

To achieve the above targets, this study proposes the integra-
tion of the SARIMA (Seasonal Autoregressive Integrated 
Moving Average) as an STSP techniques (Box et al. 2015), 
with the TOPSIS (Technique for Order of Preference by 
Similarity to Ideal Solution) as an MCDA method, to con-
struct an adaptive operational risk assessment model. The 
model is coded with Python and applied for 161 countries’ 

operational risk assessment based on ACLED’s (Armed 
Conflict Location & Event Data Project) real-time data 
(Raleigh et al. 2010). The model’s assessment and forecast 
results were thoroughly analyzed, revealing insights into the 
model’s functionality, assessment and forecast quality, as 
well as the sensitivity to model setting variations and data 
input quality.

The remainder of this paper is organized as follows: 
Section 2 presents a literature review on MCDA and STSP 
integration and applications. Section 3 introduces a math-
ematical model to integrate the SARIMA and TOPSIS meth-
odologies, and the data ingesting process for the modeling 
process. Section 4 details the modeling results of the empiri-
cal operational risk assessment for 161 countries based on 
the proposed model with ACLED’s real-time data. Section 5 
discuss the assessment of result thoroughly including model 
sensitivity analysis. Section 6 concludes the study by sum-
marizing the findings and discussing the limitations of the 
model, and possible future Improvements. Section 7 discuss 
the compliance of this paper with ethical standards.

2  Related research and industrial applications

MCDA was initially proposed to solve problems with fixed 
terms and conditions. This did not include treating ele-
ments of uncertainty. For MCDA to be employed in the 
operational risk management process, the method should 
be able to handle uncertainty. Roy proposed the ELEC-
TRE (Elimination and Choice Translating Reality) method 
to consider theoretical interaction between MCDA and 
uncertainty, introducing the concept of robustness analy-
sis to tackle inherent decision-making imprecision (Roy 
1991). Figueira et al. conducted a comprehensive survey 
on MCDA framework and methodology groups, which 
comprised techniques that are able to deal with uncer-
tainties, such as Stochastic Multicriteria Acceptability 
Analysis (SMAA), Evidential Reasoning (ER), and the 
ELECTRE method (Figueira et al. 2005). These methods 
offered distinct advantages in the face of uncertainty, with 
SMAA, for instance, integrating a probability distribution 
function into the decision-making process to accommo-
date uncertain, stochastic, or imprecise data. Similarly, ER 
provides a systematic framework for integrating and ana-
lyzing diverse forms of information, including uncertain 
or subjective judgments. In addition to MCDA methods 
that inherently address uncertainty like SMAA, ER, and 
ELECTRE, MCDA approaches that address uncertainty 
by integrating external frameworks and methodologies are 
also commonly seen in academic research and industrial 
applications. Examples include Bayesian network-based 
MCDA for operational risk management (Dalla Valle and 
Giudici 2008; Watthayu and Peng 2004), interval-valued 
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fuzzy MCDA (Wang et al. 2022; Wang 2019), and Demp-
ster-Shafer theory-based MCDA (Hamid et al. 2022; Wu 
and Liao 2022). These methodologies implement MCDA 
with uncertainty in a wide range of contexts, from disaster 
risk reduction to supply chain management.

In particular, Bayesian Inference (BI), as a probabilistic 
method, integrating with MCDA methods allows for con-
tinuous uncertainty reduction. The iterative approach in 
BI lies in its fundamental premise of continuously updat-
ing prior beliefs based on newly observed data (Jaynes 
2003). This process, often referred to as sequential analy-
sis, allows for dynamic uncertainty reduction, where the 
degree of uncertainty is reduced with each additional data 
input (Sinha 1993). Recent theoretical advancements of BI 
focus on broadening its applicability and efficiency. Non-
parametric methods have been proposed by Ghosal and Van 
Der Vaart for broadening the scope and adaptability of BI 
application, increasing its versatility beyond standard para-
metric models (Ghosal and Van der Vaart 2017). For indus-
trial applications, Shevchenko and Wüthrich delve into the 
structural modeling of operational risk by fusing empirical 
loss data with expert opinions, through Bayesian inference 
(Shevchenko and Wüthrich 2009). Their study showcases the 
practical applica-tion of Bayesian techniques in operational 
risk assessment, leveraging both quantitative and qualita-
tive information to formulate more robust risk management 
strategies. TOPSIS, as an MCDA technic, is widely used in 
performance ranking with multicriteria. The BI-integrated 
TOPSIS is designed to iteratively reduce the model uncer-
tainties inherent in the performance determinants used in the 
ranking process. Gul and Yucesan present a Bayesian Best-
Worst Method (Bayesian BWM) integrated TOPSIS model 
to rank 189 public and private Turkish universities (Gul and 
Yucesan 2022). Bayesian BWM is utilized to achieve the 
first ranking goal, followed by adopting the TOPSIS method, 
resulting in a comprehensive performance evaluation of uni-
versities. Lo and Liou propose an integrated Bayesian BWM 
and classifiable TOPSIS model to rank critical failure modes 
for risk assessment (Lo and Liou 2021). The study leverages 
Bayesian BWM for the initial ranking and integrates it with 
the classifiable TOPSIS technique, contributing to robust 
risk assessment methodologies.

A more recent study by Wang et al. (2023) targets the 
complexity in multivariate long sequence time-series fore-
casting. It specifically addresses the oversight of interde-
pendencies among variables (Wang et al. 2023). Their solu-
tion involves integrating Graph Convolutional Networks 
(GCNs) with the Transformer model, further augmented by 
Temporal Convolutional Network (TCN) within the self-
attention layer. This approach effectively improves predic-
tion accuracy over several benchmarks, demonstrating the 
model’s capability in managing variable interdependencies 
in long sequences.

Conversely, Kim and Moon explores multivariate time 
series data across various fields using a Bi-directional Long 
Short-Term Memory (BiLSTM) model (Kim and Moon 
2019). Their innovation lies in incorporating field-specific 
features into the forecasting model, distinguishing their 
approach from traditional methods that often overlook such 
nuances. This adaptation results in enhanced predictive 
accuracy across multiple fields, underscoring the model’s 
adaptability and efficiency.

Both studies contribute to the time-series forecasting field 
by introducing more nuanced, context-aware models capable 
of handling complex real-world data. Wang et al.’s research 
advances our understanding of variable interdependencies in 
extended time series, while Kim and Moon’s work highlights 
the significance of field-specific adaptations in forecasting 
models. These studies collectively inform the trajectory of 
time-series forecasting, emphasizing the need for both tech-
nical sophistication and domain-specific tailoring, especially 
for multivariate scenarios.

2.1  The need for integrating MCDA and STSP

The literature survey presented above highlights a criti-
cal gap in the capabilities of existing MCDA method-
ologies, particularly in their ability to process and adapt 
to continuously evolving information. These MCDA 
methods,according to the literature survey, although robust 
in various aspects, are notably deficient in their iterative 
execution capability, which is essential for effectively incor-
porating the latest developments and data. In contrast, STSP 
methodologies excel in managing sequential data, but fall 
short in integrating multivariate or multiobjective consid-
erations. This shortfall is largely attributable to the lack of a 
comprehensive MCDA framework within TSA approaches. 
The evident dichotomy between these two methodologies 
underscores the urgent need for their integration, aiming 
to leverage the strengths of both approaches for enhanced 
decision-making processes.

Expanding on this understanding, it becomes apparent 
that integrating MCDA with STSP could pave the way for a 
more objective and comprehensive approach to uncertainty 
management. Such an integration would not only facilitate 
a dynamic adaptation to changing data over time, but also 
allow for the incorporation of multiple criteria and objec-
tives; a feature notably absent in standalone TSA methods. 
This synergy could lead to a more holistic decision-making 
process, where time-dependent data is analyzed not just in 
isolation, but in conjunction with a range of other relevant 
factors and criteria.

Moreover, the integration of MCDA with STSP could 
significantly enhance the predictive accuracy and reliabil-
ity of the analyses. By combining the methodological rigor 
of MCDA in handling multiple criteria with the temporal 
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precision of STSP, decision-makers could gain deeper 
insights into complex scenarios, where variables and out-
comes evolve over time. This integrated approach would 
enable a more nuanced understanding of trends, patterns, 
and potential future outcomes, thereby facilitating more 
informed and strategic decisions.

In addition to improving decision-making quality, this 
integration could also introduce a new dimension of flex-
ibility in MCDA methods. By incorporating the dynamic 
aspects of STSP, MCDA methodologies could become more 
adaptable to changing circumstances, allowing for real-time 
adjustments and updates in the decision-making process. 
This would be particularly beneficial in environments char-
acterized by rapid changes and uncertainty, where the ability 
to quickly adapt to new information is crucial.

Therefore, in the next chapter, we develop a mathematical 
model to integrate SARIMA as a STS method and TOPSIS 
as a MCDA method to form an operational risk assessment 
framework to test our concept.

3  Modeling method and data ingesting

This section introduces a mathematical model to integrate 
TOPSIS and SARIMA to acheinve two functoanlities. 
Firstly, it employs TOPSIS approach to create a compre-
hensive operational risk profile for countries. This profile 
integrates various weighted risk determinants, enabling a 
multi-objective risk assessment. Secondly, the SARIMA 
method is integrated into the TOPSIS. This addition is 
aimed at refining the model’s time series analysis capabili-
ties, allowing for the incorporation of historical trends and 
continuous updating of the risk profile with the most recent 
data and information.

3.1  Country operational risk assessment based 
on TOPSIS

The Technique for Order of Preference by Similarity to 
Ideal Solution (TOPSIS) is a wellknown MCDA method 
often used to assess and rank among different alternatives 
based on multiple and often conflicting criteria (Hwang and 
Yoon 1981). In our paper, we use TOPSIS to score and rank 
different countries on their public security risk level. The 
basic idea behind TOPSIS is to find the alternative that has 
the shortest distance to the positive ideal solution (PIS) and 
the greatest distance from the negative ideal solution (NIS). 
The PIS is a hypothetical solution that has the best possible 
values for all of the criteria, while the NIS is a hypothetical 
solution that has the worst possible values for all of the cri-
teria. In our case, all the risk determinants’ value for public 
security has a negative preference direction—the lower their 
values, the better. Therefore, to use the TOPSIS to assess a 

country’s operational risk among a group of countries is to 
find a country’s risk determinant value’s difference com-
pared to the hypothetical country with the worst value of 
all three public security risk determinants of that country 
group. The value of the risk determinants is often named 
as utility in the MCDA process, and we define the utility 
function of the operational risk determinants through the 
following steps.

Given that the public security risk category has M distinct 
risk determinants, for example, as numbers of wars, crimes, 
social unrest, and terrorism activities in a country within a 
given period (referred to as RDm , where m belongs to set M, 
M = {war, crime, unrest, terrorism…} ), we are assessing N 
countries (notated as COn , where n belongs to set N).

The utility function fn(m) quantifies the preference level 
of an individual risk determinant RDm for a given country 
COn . Broadly speaking, a lower probability of encounter-
ing adverse events such as war, crime, unrest, and terrorism 
activities is more desirable. As such, the utility function for 
individual operational risk determinants can be computed 
directly based on the likelihood that the total number of 
adverse events in the evaluated country for a certain period 
is below a certain threshold.

We introduce AVw(m) to represent the worldwide monthly 
average number of adverse events per million people. For 
each country n, we also define AVn(m) as the monthly aver-
age number of adverse events per million of the country 
n’s population. The utility function for RDm in country n is 
given by:

This equation essentially measures the country’s adverse 
event rate relative to the worldwide average, providing a 
standardized comparison of the operational risk determi-
nants across countries.

To utilize the TOPSIS framework, we need to generate 
a weighted decision matrix. We firstly assign weights wm to 
each risk determinant RDm . The weights can be assigned 
based on the importance of each risk determinant. Then, 
the weighted utility is generated by multiplying each fn(m) 
by its corresponding weight wm . The weighted utility matrix 
is then:

As all the risk determinants are harmful indicators, with 
lower values being better, the ideal solution (IS) will be the 
one with the minimum Fn(m) value for each m across all 
countries n , and the negative ideal solution (NIS) will be 
the one with the maximum Fn(m) value for each m across all 
countries. Therefore, for each RDm,

(1)fn(m) =
AVn(m)

AVw(m)

(2)Fn(m) = fn(m) × wm
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Next, calculate the separation of each country from the ideal 
solution and the negative ideal solution, using the Euclidean 
distance. The separation S+

n
 from the ideal solution ISm is:

The separation S−
n
 from the negative ideal solution NISm is 

calculated as:

COci
n

 , as the relative closeness to the IS, is the country’s 
public security utility score and can be calculated as

The country with the highest COci
n
 is considered to have the 

lowest public security risk.

3.2  Integrating SARIMA into TOPSIS

As introduced previously, STSP is a pivotal method in time 
series analysis. It focuses on predicting future data points 
by understanding underlying components such as trend, 
seasonality, and residual randomness. Various models are 
available for this purpose, including but not limited to 
State Space Models and Exponential Smoothing Models. 
These models employ techniques like the Kalman filter to 
allow for the simultaneous estimation of these elements.

Since operational risk assessment often relies on time 
series data, it is inevitable to consider the following 
elements:

• Cross‑year trend: The public security level of a coun-
try might degrade, improve, or fluctuate over the sur-
veyed years. This can be discerned from the historical 
count of adverse events.

• Seasonal trend: Public security levels also exhibit sea-
sonal variations. For example, public security generally 
improves during winter compared to summer, primarily 
because people are more inclined to stay indoors during 
colder months.

• Residual randomness: Apart from cross-year and 
seasonal trends, countries’ security levels also exhibit 
randomness. This could be attributable to yet-to-be-
identified underlying risk determinants, stochastic 

(3)ISm = min(Fn(m)), NISm = max(Fn(m))

(4)S+
n
=

√

√

√

√

M
∑

m=1

(Fn(m) − ISm)
2

(5)S−
n
=

√

√

√

√

M
∑

m=1

(Fn(m) − NISm)
2

(6)COci

n
=

S−
n

S+
n
+ S−

n

errors in data collection, or the influence of external 
covariate factors.

To capture the three aspects of the time series dataset, we 
employ the Seasonal Autoregressive Integrated Moving 
Average (SARIMA) as a representative STSP method. 
SARIMA decomposes the observed time series into various 
components, namely cross-year trend ( Tt ), seasonal trend 
( St ), and residual randomness ( Et ). Let Xt represent the data-
set of the historical count of adverse events at time t  . The 
SARIMA model can then be represented as:

The components Tt and St can be modeled as follows:

where � is the mean level of Tt , � is the slope of Tt , � is the 
amplitude of St , f  is the frequency of St , � is the phase shift, 
and �2 is the variance of the normally-distributed random 
variable Et.

The parameters 
(

�, �, � , f ,�, �2
)

 can be continuously 
updated as new data becomes available. This, in turn, 
produces new Xt values which update AVw(m) and AVn(m) 
accordingly. These continuously updated AVw(m) and AVn(m) 
can then be employed to calculate the country’s public 
security utility score COci

n
 through the Technique for Order 

of Preference by Similarity to Ideal Solution (TOPSIS) 
method at each data-updating point. The integration process 
of TOPSIS and SARIMA is illustrated in Fig. 1.

3.3  Operational risk assessment data ingesting

The empirical study presented in this section is designed to 
evaluate the functionality of the integrated SARIMA and 
TOPSIS model proposed in Sect. 3. Specifically, it tests the 
model’s capacity for comprehensive operational risk assess-
ment based on multifaceted risk determinants. It further 
explores the model’s ability to integrate new data and infor-
mation over time to improve its forecasting performance. 
The empirical study includes three steps, as illustrated in 
Fig. 1.

The empirical study presented in this section is designed 
to evaluate the functionality of the integrated SARIMA 
and TOPSIS model proposed in Sect. 3. Specifically, it 
tests the model’s capacity for comprehensive operational 
risk assessment based on multifaced risk determinants. 
It further explores the model’s ability to integrate new 
data and information over time to improve its forecasting 
performance. The empirical study includes three steps, as 
illustrated in Fig. 2.

(7)Xt = Tt + St + Et

(8)

Tt = � + � ⋅ t,

St = � ⋅ sin(2�ft + �),

Et ∼ N
(

0, �2
)
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3.3.1  Operational risk determinant

As previously discussed, country operational risk often 
includes a complex interplay of various interdisciplinary 
risk determinants, which are notably dynamic and intricately 
interconnected. For modeling purposes, and to maintain the 
tractability of our analysis, we narrow our focus to four 
primary risk determinants for country operational risk 
assessment, as explained in detail below:

• War: This risk determinant measures a country’s overall 
exposure to both civil and interstate warfare and con-
flicts that are conducted by political, religious, and mili-
tary entities. Operational risks can arise in various ways 
from war and conflict of significant magnitude, including 
infrastructure damage, supply chain disruption, loss of 
market access, or potential harm to employees.

• Crime: This determinant evaluates the overall prevalence 
of crime within a country, encompassing both organized 
and individual criminal activities. These activities can 
vary from minor offenses to serious violent incidents 
perpetrated by non-governmental, non-military, and non-
political entities. This determinant can be quantitatively 
evaluated using real-time national crime statistics, such 

as crime report cases, homicide rates, incarceration rates, 
and the circulation of illicit small firearms.

• Terrorism: This risk determinant captures the level of 
terrorist activities within a country, which can be fueled 
by extreme religious, political, and ethnic ideologies. 
This determinant can be quantitatively measured using 
data such as the number of terrorist attacks and resulting 
fatalities.

• Unrest: This risk determinant reflects the overall inten-
sity of social discontent within a country. The causes of 
social unrest can be diverse, encompassing income ine-
quality, public resentment due to poverty and unemploy-
ment, exploitation of public resources by elites, or divi-
sions based on political, religious, ethnic, or community 
lines. This determinant can be quantitatively assessed by 
monitoring the frequency of demonstrations and riots in 
a country.

We use the Armed Conflict Location & Event Data Project 
(ACLED) as the real-time data source for war, crime, social 
unrest, and terrorism data collection. ACLED is a leading 
provider of real-time data on political violence and protest 
events around the world. The project was originally con-
ceived by Prof. Clionadh Raleigh and launched in 1997 at 

Fig. 1  Integration of TOPSIS and SARIMA

Fig. 2  Empirical study workflow



Int J  Syst  Assur  Eng  Manag 

1 3

the University of Sussex (Raleigh et al. 2010). ACLED has 
since grown and expanded in scope, providing data from 180 
countries from 1979 onward. ACLED’s data is used widely 
across academia and industry. In academia, researchers 
have free access to use it to study conflict patterns, violence 
against civilians, the impact of climate change on violence, 
and many other topics. In industry, particularly in risk man-
agement, humanitarian, and development sectors, ACLED 
data supports threat analysis, forecasting, and strategic plan-
ning. The information ACLED provides is especially valu-
able for organizations operating in conflict zones or areas 
with high levels of political instability. Please also note 
that ACLED is not exhaustive. While it is widely used and 
freely accessible for academic research, other sources exist 
that might provide more extensive coverage and be updated 
more frequently but are not publicly available. Meanwhile, 
although ACLED is a widely utilized resource for study-
ing conflict patterns, it is not exempt from potential biases 
(Miller et al. 2022). For instance, ACLED relies heavily on 
media reports, which are susceptible to biases in terms of 
over-reporting violent incidents and under-reporting peace-
ful ones, especially in conflict-prone regions. Additionally, 
there can be an urban bias due to the concentration of media 
in cities, which could lead to over-reporting of urban inci-
dents as compared to rural ones. ACLED’s primary use of 
English-language sources can introduce bias in non-English-
speaking regions. The coverage and accuracy of ACLED’s 
data have also improved over time, which might introduce 
a temporal bias in longitudinal studies. Lastly, ACLED’s 
event classification might differ from other sources, possibly 
introducing biases in this area.

In our data experiment, we establish event retrieval 
criteria for each risk determinant, following the guidelines 
set out in the ACLED Codebook (Raleigh et al. 2010), as 

detailed in Table 1. However, it is crucial to recognize that, 
due to the inherent complexities and potential inaccuracies 
in event recording and categorization, the retrieved events 
may not perfectly align with our criteria. There could be 
overlaps, where events returned for a specific determinant 
may actually pertain to another category. Similarly, 
there may be omissions where certain events that should 
have been classified under a specific determinant are not 
retrieved due to imprecise categorization. Further refinement 
of the retrieval criteria, such as including more detailed 
specifications regarding actors involved, could enhance data 
precision and consequently the accuracy of the results.

We utilize Python to implement the above event retriev-
ing criteria, by using ACLED’s Data Application Program-
ming Interface (API). Based on the events returned, we 
generate four separate tables as the training dataset for each 
of the four types of adverse event as war, crime,terrorism, 
or unrest. The structure of these tables is exemplified in 
Table 2.

In Table  2, the column CountryISO designates the 
country, while EventNum refers to the aggregated adverse 
events for a particular month, normalized by the country’s 
population in million units. Event_month identifies the 
specific month within the modeling period when the adverse 
event is tabulated for that country, and EventNum_average 
represents the mean of EventNum for all countries during 
that month. If no adverse event of a specific type is reported 
by ACLED for a given country and month, a zero is recorded 

Table 1  Criteria for retrieving events by determinant

Determinants Events retrieving criteria

War For war, we intend to return the events that often involve state and non-state actors and the gaining of territory through battles 
and armed clashes

Battles: a) Government regains territory; b) Non-state actor overtakes territory; c) Armed clash
Crime For crime, we intend to return the crime events that are conducted mostly person to person, physically. This is to separate crime 

events from terrorism, as well as from war and conflict event categories
Violence against civilians, including a) Sexual violence; b) Attack; c) Abduction/forced disappearance; d) Disrupted weapons 

use; e) Mob violence; f) Looting/property destruction
Terrorism For terrorism activity, we primarily concentrate on incidents carried out remotely or suicidal, by explosive or chemical weapons 

and devices
Explosions/remote violence: a) Chemical weapon; b) Air/drone strike; c) Suicide bomb; d) Remote explosive/landmine/IED; c) 

Grenade
Unrest For social unrest, we intend to return demonstration and riot events of any kind

Demonstration events: a) Protests: peaceful protest / protest with intervention / excessive force against protesters; b) Riots: violent 
demonstration / mob violence

Data period 2000 days before 2023.07.26, which is the date of the modelling process

Table 2  ACLED adverse event monthly rate table structure

CountryISO Event_month EventNum EventNum_average

... ... ... ...
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for the EventNum value, ensuring data completeness across 
all four tables. This method enables seamless merging of 
the tables using CountryISO and Event_month as keys, 
eliminating potential issues with null values. The data is 
organized into four distinct tables, each containing the 
monthly rates for one of the four adverse events, spanning 
161 countries and a period of 65 months, from March 
2019 to July 2023. These tables subsequently serve as the 
historical training dataset for the modeling process.

3.3.2  Risk determinants correlation assessment

Understanding the correlations between different factors or 
variables is pivotal in constructing accurate, reliable, and 
interpretable models. In this section, we first investigate 
the autocorrelations of adverse event rates across the entire 
time frame, aiming to discern how significantly past data 
influences future occurrences for each of the four types of 
adverse events. This analysis is vital for time-series predic-
tion models such as SARIMA, where understanding tempo-
ral dependencies can enhance predictive accuracy. Subse-
quently, we assess the cross-correlations between the four 
adverse event rates as time-series datasets. This examina-
tion aims to determine the degree of interdependence among 
these events, a critical consideration for TOPSIS ranking.

Adverse event rate autocorrelations across the time Frame 
We calculate the autocorrelation of the four adverse event 
rates (crime, unrest, terrorism, and war) throughout the time 
frame across all countries. This analysis aims to understand 
how historical data correlates with the present occurrence 
of each adverse event, an essential aspect for time-series 
prediction models such as SARIMA. The findings reveal 
diverse autocorrelations for different adverse event rates 
across various countries, with both positive and negative 
autocorrelation values present. Interestingly, war exhibits 
the highest average autocorrelation coefficient across all 161 
countries at 0.19 , followed by unrest events at 0.17 , terrorism 
events at 0.16 , and crime events at 0.13 . This ordering is 
intuitive: war, often marked by persistence and lagging 
effects, has the most substantial correlation, while unrest 
and terrorism show repetition with varying magnitudes and 
patterns for a country or territory. Crime, on the other hand, 
is often more individualized and exhibits more random 

patterns, thus resulting in the smallest autocorrelation 
coefficient.

While the average autocorrelation coefficient appears 
relatively small and may not seem ideal for SARIMA mod-
eling, it is important to recognize that the autocorrelation 
coefficient for individual countries can vary significantly 
and, in some cases, be quite high in both positive and nega-
tive directions. Countries with substantial adverse event 
data often exhibit stronger positive or negative autocorrela-
tion values. Such autocorrelations facilitate more accurate 
forecasting through the SARIMA model. As illustrated in 
Table 3 below, countries like Afghanistan, Iran, Libya, and 
Poland demonstrate notable autocorrelation coefficients 
across various adverse event types, such as war, unrest, ter-
rorism, and crime, from 2020 to 2023. These higher coef-
ficients underscore the potential of SARIMA to effectively 
model and predict adverse events.

Cross-correlations for adverse event rates as time series 
dataset Cross-correlation is a statistical measure used to 
describe the degree of similarity or dependence between 
two time series at varying time lags. The level of depend-
ence between different criteria is an important consideration 
in the TOPSIS process. In general, TOPSIS prefers lower 
dependence between criteria, as it ensures that each crite-
rion is evaluated on its unique merits and contributes dis-
tinct information to the decision-making process. High in 
terdependence between criteria can lead to redundancy and 
potentially bias the ranking and weighting process, under-
mining the accuracy and integrity of the overall evaluation.

We calculate the cross-correlations for the four adverse 
event rates as four time series data pair-wisely. To streamline 
the analytical process, we made a simplifying assumption 
that the cross-correlation remains invariant when reversing 
the order of the time series in each pair. Similar to adverse 
event monthly rate autocorrelation, the results reveal diverse 
cross-correlations for different adverse event pairs and for 
different countries, with both positive and negative values 
existing. The average cross-correlation coefficients between 
various pairs of adverse event rates across 161 countries are 
listed in Table 4

In Table 4, the moderate correlation between terrorist 
and war (0.209) may indicate underlying factors influencing 
both. Meanwhile, the weaker correlations, such as crime 

Table 3  Rank and 
adverse event monthly rate 
autocorrelation coefficient from 
2020 to 2023

Rank actual_value_war actual_value_unrest actual_value_terrorism actual_value_crime

Country Value Country Value Country Value Country Value

1 Afghanistan 0.929 Iran 0.734 Afghanistan 0.937 Burkina Faso 0.797
2 Libya 0.909 Poland 0.693 Ukraine 0.919 Poland 0.780
3 Azerbaijan 0.902 Ukraine 0.664 Myanmar 0.834 Angola 0.778
4 Yemen 0.854 Bangladesh 0.651 Libya 0.801 Slovakia 0.776
5 Myanmar 0.841 USA 0.612 Yemen 0.792 Sudan 0.746
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vs. war (0.091), crime vs. terrorist (0.074), war vs. unrest 
(0.074), crime vs. unrest (0.064), and terrorist vs. unrest 
(0.033), suggest a mild relationship between these risk 
factors. In the context of TOPSIS analysis, which requires a 
certain level of independence between criteria, the relatively 
low values of these coefficients may be seen as beneficial. It 
implies that the adverse events are not highly interdependent, 
allowing for a more accurate ranking of countries based on 
diverse and distinct aspects of risk.

However, the average cross-correlation coefficient for all 
161 countries does not uniformly represent each individual 
country, as there are significant variations in the coefficients 
among different countries. Some countries exhibit much 
larger positive or negative cross-correlated coefficients. 
These highly correlated criteria, whether positive or nega-
tive, may introduce redundancy and bias into the weighting 
process of the TOPSIS analysis for specific countries, thus 
potentially affecting the overall accuracy and representative-
ness of the model.

The analysis in this section identifies specific autocorrela-
tions and cross-correlations within the adverse event rates. 
The observed autocorrelations, while varying significantly 
among individual countries, reveal a measurable relation-
ship between historical data and current occurrences, thus 
meeting the underlying assumptions for SARIMA modeling. 
Simultaneously, the cross-correlation coefficients, which 
indicate the degree of dependence between criteria, are 
mostly low. This low level of dependence is consistent with 
the requirements of TOPSIS, where independence between 
criteria is desired, to avoid redundancy and bias. Collec-
tively, these results provide evidence that the data meets the 
necessary criteria for further analysis using both SARIMA 
and TOPSIS modeling.

3.4  Model contributions

The proposed model integrates MCDA and STSP in a novel 
manner. While both methodologies have been extensively 
utilized independently, their integration presents a theoretical 
innovation. This integration allows for operational risk 
assessment to adaptively work with multivariate risk factors 
using time series data. This approach is relatively new and 
not commonly seen in existing research. The application 
of MCDA provides a systematic method for handling 
complex decisions with conflicting criteria. This is crucial 

in operational risk management where risks often span 
multiple disciplines and objectives. The incorporation of 
STSP, specifically SARIMA, enables the continuous update 
and utilization of knowledge in risk assessment. This is 
particularly important in environments where real-time data 
and knowledge significantly influence decisions.

4  Modeling results

In our Python-based model, constructed based on the steps 
illustrated in Fig.  1, we leverage libraries like NumPy, 
Pandas, and SciPy for data handling and analysis. For spe-
cialized tasks, we use ‘pymcdm’ library for MCDA and 
‘statsmodels’ library for SARIMA forecasting.

4.1  SARIMA training and forecasting results

We partition each of the four ACLED event datasets as 
exemplified in Table 2 into a 24-month training subset, fol-
lowed by a 41-month testing subset, and extend for another 
three months beyond the latest data point, for forecasting.

The SARIMA training on the four partitioned ACLED 
event datasets generates four new datasets, each one carrying 
41 months’ past data, with a corresponding forecast value 
for each data point, and the Mean Squared Error (MSE) of 
the forecast. The model also decomposes the overall trends 
of the 41 months’ past data into yearly trends, seasonal 
trends, and residual randomness, for each of the countries. 
Besides the 41 months’ past data, the datasets also include 
forecasts for the upcoming three months. The forecast value 
does not have actual values for comparison, as they represent 
future predictions. The Utility score within each of the four 
datasets is generated as dividing Forecast − EventNum by 
Forecast − EventNum − average for all historical data points 
and forecasting values. The SARIMA training result table is 
exemplified in Table 5.

4.2  TOPSIS overall utility score

The calculation of the overall utility using TOPSIS begins 
by creating a risk matrix as per function (2) defined in 
Section 3.1. This is done by joining the utility scores for 
each country-month combination across the four SARIMA 
training and forecasting result tables, as exemplified in 

Table 4  Cross-correlation coefficients of adverse event pairs

Adverse event pair Terrorist versus war Crime versus war Crime versus ter-
rorist

War versus unrest Crime versus unrest Terrorist versus 
unrest

Cross-correlation 
coefficient

0.209 0.091 0.074 0.074 0.064 0.033
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Table 6, in conjunction with the predetermined weight 
distribution of the four risk determinants outlined in Table 6.

This operational risk matrix incorporates weighted utility 
scores for 161 countries and regions, spanning the past 41 
months, with the upcoming three months forecasting values, 
as exemplified in Table 7.

Subsequently, we dissect the operational risk matrix 
to a subset corresponding to a unique month in the Event 
month column. To calculate a country’s overall operational 
risk utility score and the score ranking among all countries 
for each month separately, we apply TOPSIS calculation 
functions (3), (4), (5), and (6), as defined in Sect. 3.1, on 
the subsets of the operational risk matrix, one at a time, 
until all months are covered. As a result, a country’s overall 
operational risk utility score and its rank is specific to its 
monthly performance not across the entire time frame. This 
method provides a more direct comparison of a country’s 
current operational risk level relative to others for each spe-
cific month. The final result of the modeling is presented in 
Table 8.

5  Result analysis

The analysis of the results from integrating SARIMA and 
TOPSIS modeling methods in this section proceeds through 
three consecutive steps: 

1. Trends Analyzing and Forecasting by SARIMA: The 
initial step assesses the model’s ability to assess cross-
year trend and seasonal trends within the time-series 
adverse event rates. This includes an investigation into 
how effectively the model can incorporate new data to Ta
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Table 6  Risk determinant weight distribution

Risk determinant War Terrorism Crime Unrest

Weight distribution 0.3 0.3 0.2 0.2

Table 7  Operational risk matrix

Coun-
tryISO

Event 
month

War util-
ity

Crime 
utility

Unrest 
utility

Terrorism 
utility

... ... ... ... ... ...

Table 8  Country operational risk assessment result

CountryISO Event month Overall utility score Overall rank

... ... ... ...
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refresh these yearly and seasonal trends, leading to more 
accurate forecasting of adverse event rates.

2. Examining Operational Risk Assessment by integrating 
TOPSIS and SARIMA: This step is concerned with the 
model’s capacity to perform a comprehensive opera-
tional risk assessment at specific data points, based on 
forecasted adverse event rates for multiple risk determi-
nants.

3. Conducting Model Sensitivity Analysis: The final step 
involves an examination of model sensitivity. The pri-
mary focus here is on testing the sensitivity of weight 
assignments to various risk determinants, as well as 
understanding how fluctuations in the data influence 
the modeling results. This analysis helps to gauge 
the robustness of the model and its responsiveness to 
changes in the underlying risk determinants.

Together, these three steps form a structured approach to 
exploring the capabilities and limitations of the integrated 
modeling technique, offering insights into its applicability 
and reliability in assessing time-related trends and risks.

5.1  SARIMA forecasting performance

In this section, we assess the SARIMA model’s capabilities 
in utilizing the most recent data to augment forecasting pre-
cision at different estimation points. Our evaluation process 
is twofold: initially, we analyze the model’s proficiency in 
discerning the trends of adverse event occurrences; subse-
quently, we estimate the degree of accuracy with which the 
model can predict future values grounded in these identified 
trends.

Adverse event trend analysis Our goal is to evaluate the 
ability of the SARIMA model to discern the cross-year 
trend, seasonal fluctuations, and random variations in the 
occurrences of specific types of adverse events, such as wars, 
terrorism, and social unrest, within particular geographical 
and climatic contexts. To facilitate this analysis, we have 
categorized the 161 countries in our study into four groups, 
based on their average yearly surface temperature: (1) Cooler 
countries, with temperatures generally less than 15 ◦ C; (2) 
Moderate-temperature countries, ranging between 15 ◦ C and 
25 ◦ C; (3) Warmer countries, between 25 ◦ C and 35 ◦ C; 
and (4) Hot countries, where temperatures usually exceed 
35 ◦ C. We decomposed the average trends of adverse event 
rates within these four categories. Cooler countries display 
the most substantial seasonal differences, with adverse event 
rate (monthly event number per million of the population) 
differences of −0.1 to 0.1, greater than those in moderate 
( −0.02 to 0.02), warm ( −0.01 to 0.01), and hot ( −0.01 to 
0.02) countries. This is probably because moderate, warmer 
and hot countries tend to have the smallest seasonal event 
rate gaps, due to lesser temperature variations. The analysis 

of terrorism events reveals a weaker seasonal trend and a 
greater randomness across the four categories, aligning with 
the understanding that terrorism, often small-scale and indi-
vidualized, is least affected by environmental and climatic 
conditions. On the other hand, social unrest clearly exhibits 
seasonal patterns, with cooler countries having the highest 
seasonal terrorism event rate difference ( −0.1 to 0.2) and 
hot countries the lowest ( −0.01 to 0.02). These variations 
can be attributed to the consistent year-round hot tempera-
tures in hot countries and the significant temperature fluc-
tuations across seasons in cooler countries, both of which 
profoundly influence the frequency and intensity of group 
outdoor events, such as demonstrations and riots.

In addition to testing the SARIMA and TOPSIS inte-
grated model’s ability to analyze adverse event trends across 
country groups, we also assess the model’s capacity to dis-
sect adverse event trends for specific countries, ensuring 
the alignment of both levels of analysis. As an example, we 
examine the analysis and forecast of terrorism event trends 
in Iraq, as shown in Fig. 3. The SARIMA model generates a 
cross-year trend, illustrating a consistent yet gradual increase 
from March 2020 to October 2023. This trend, depicted by 
the black line in the second panel from the top in Fig. 4, is in 
line with the actual terrorism event rates, represented by the 
red trend line at the top of the figure. Additionally, the sea-
sonal trend line in the third panel exhibits a distinct seasonal 
pattern that echoes the repetitive pattern in the actual event 
rate (the red curved line in the top panel), particularly in data 
periods 1, 2, and 3. Interestingly, the range of the seasonal 
trend ( − 1 to 1) is much less than the range of the cross-year 
trend, which spans from 3 to 6. This indicates that, for ter-
rorist events in Iraq, the cross-year trend is more significant 
than the seasonal trend. This observation aligns with the 
previously drawn conclusion that terrorism, in general, is 
less influenced by environmental and climatic conditions, 
compared to other factors.

The trends derived from the SARIMA modeling not only 
align with common understanding but also exhibit consist-
ency between the global adverse event trend analysis and the 
analysis for specific countries. This consistency provides a 
reliable foundation for future forecasting.

Adverse event rate forecasting quality We are interested 
in exploring whether the SARIMA model can effectively 
utilize the latest data to forecast future values. The 
SARIMA model’s forecasts are grounded in the identified 
cross-year trends, seasonal trends, and randomness 
found in the historical data. These trends are constantly 
recalibrated and updated as new data becomes available, 
which in turn refines the subsequent forecasts. To validate 
this ability, we refer to our previous example analyzing 
terrorism event trends in Iraq. We plot the running forecast 
of terrorism event rates for each month with the actual 
terrorism event rates for the same period. By comparing 
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both the forecasted and actual event rates, along with 
their trends for upcoming values, we are able to assess the 
model’s capacity for accurate and dynamic forecasting.

First, as illustrated in Fig.  4, we observe that the 
forecast value curve in the top panel exhibits fluctuations 
that closely mirror those found in the seasonal trend line, 
identified based on historical data, and depicted in the third 
panel from the top for data periods 1, 2, 3, 4. Moreover, 
the general trend line of the forecast value aligns with 
the cross-year trend derived from historical data, which 
is demonstrated in the second panel from the top. This 
alignment indicates that the forecast has appropriately 

incorporated both the cross-year and seasonal trends, 
reflecting a coherent understanding of the underlying 
patterns.

The actual rate of terrorism events can experience 
substantial f luctuations, owing to a multitude of 
unforeseeable factors, while the forecasted values are 
often derived from fixed modeling parameters at discrete 
forecasting intervals. As a result, discrepancies between 
actual and forecasted values are not only possible but 
expected. To evaluate the extent of these discrepancies, 
the cross-correlation coefficient between the forecasted 
adverse event rate and the actual adverse event rate has 

Table 9  SARIMA model 
predication quality distribution

Predication quality category (cross correlation coef-
ficient between actual and forecasted values)

Number of countries for the four adverse event 
types

War Crime Terrorism Unrest

0.5 to 1.0: Good Forecasted Quality 17 15 12 8
0.3 to 0.5: Moderate Forecasted Quality 13 18 9 22
0.0 to 0.3: Weak Forecasted Quality 60 69 49 78
Negative: Wrong Forecasts 33 53 33 48
Not Meet Minimum Data Requirement 38 17 58 5

Fig. 3  Iraq terrorism trend decomposing
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been calculated as time-series data. This coefficient 
provides a quantitative measure of the similarities between 
the forecasted and actual values in terms of both absolute 
differences and directional changes over time. The cross-
correlation coefficients are categorized into five distinct 
levels: (1) 0.5–1.0, indicative of strong positive correlation 
and good prediction accuracy; (2) 0.3– 0.5, denoting 
moderate positive correlation and moderate prediction 
accuracy; (3) 0.0–0.3, reflecting weak positive correlation 
and limited prediction success; (4) negative coefficients, 
signaling incorrect predictions; (5) absence of value, 
suggesting insufficient data to make predictions. The 
distribution of countries across these five categories has 
been analyzed for each adverse event type and is detailed 
in Table 9.

The SARIMA modeling returns mixed forecast quality. 
There are strong positive correlations for war, suggesting 
good prediction accuracy. Unrest has fewer countries with 
strong positive correlations. Moderate and weak positive 
correlations are more prevalent for crime and unrest, poten-
tially indicating inconsistencies or noise.

While the areas of crime and unrest have fewer countries 
that do not meet the minimum data requirements (with crime 
at 17 and unrest at 5), they exhibit the largest number of 
incorrect predictions (with crime at 53 and unrest at 48). 
This inconsistency may stem from two factors. Firstly, the 
model’s methodology may lack the capacity to accurately 

forecast events categorized as crime and unrest. Secondly, 
the inherent randomness of these events may require a more 
substantial quantity of data to improve forecast quality, 
compared to areas like war and terrorism, which have 
stronger repetitive patterns.

The presence of no data in several instances, especially 
for terrorism, might also affect the overall interpretation. 
Overall, the forecast quality is varied, with some success in 
predicting war but limitations and inconsistencies in other 
areas.

Adverse event rate forecasting adaptability A critical 
question that may arise is the ability of the forecast to adapt 
when there is a significant discrepancy between actual and 
forecasted values. To explore this issue, we examine the 
forecasted and actual terrorism event rates for Iraq as a rep-
resentative example.

The forecasted and actual values are juxtaposed on the 
same time frame, as shown in Fig. 6, to verify both the 
absolute differences in value and the directional changes of 
the two measures. The green line, representing the forecast, 
generally aligns with the actual value’s oscillations (depicted 
by the red line), maintaining a similar range. Notably, when 
divergence between the forecasted and actual values occurs, 
or there is a change in direction, the forecast line adjusts its 
course to realign with the actual value line.

This behavior is further examined through an analysis of 
the Mean Square Error (MSE) for the forecast, quantifying 

Fig. 4  Iraq terrorism trend forecasting
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the differences between the predicted and actual values. Plot-
ting the MSE value on the same time frame as the forecast 
and actual values on the bottom of Fig. 5, it is observed 
that the MSE line rises when a significant disparity occurs 
between the forecast and actual values. These peaks are fol-
lowed by declines, as the forecast readjusts to match the 
actual value’s level and direction of change.

The patterns in the MSE line indicate a responsive char-
acteristic in the model. The absence of sustained high MSE 
values suggests that the forecast continually adjusts along the 
timeline. This aspect could be interpreted as a sign of adapt-
ability in the model, allowing for adjustments in response 
to actual event rates of terrorism. The adaptability of the 
forecast to the latest updated data indicates that the model 
can respond to new information efficiently. This makes the 
model not just a tool for prediction but an ongoing, dynamic 
system for tracking the actual adverse events rate.

5.2  TOPSIS operational risk assessment performance

In this section, our goal is to analyze the model’s operational 
risk assessment quality. Since there is no universally 
recognized standard for operational risk assessment, a 
range of results may emerge from different models. Even if a 
universal standard did exist, our model, which utilizes unique 
risk determinants and assessment methods for experimental 

purposes, may produce results that diverge from standard 
outcomes. This divergence does not necessarily indicate an 
error or inaccuracy in the modeling methodology we employ. 
However, recognizing this complexity, our analysis in this 
section turns to the Global Peace Index (GPI), to gauge the 
quality of the modeling results (Institute for Economics & 
Peace 2023). GPI is a pioneering measure that gauges the 
relative peacefulness of countries and regions worldwide. 
It includes specific ranking categories, such as the Societal 
Safety and Security rank, which provides a ranking of how 
each country performs concerning its population’s safety and 
security. This category assesses diverse factors, including 
crime rates, political instability, interpersonal trust, terrorist 
activity, and homicide rates. In our analysis, we use the 
GPI Societal Safety and Security ranks as a reference point 
to evaluate our own ranking results. Given that there is 
no universally recognized standard for operational risk 
assessment, a difference of 10 in rankings can be considered 
reasonable and acceptable. This tolerance allows for 
variations that may arise from the unique risk determinants 
and assessment methods employed in our experimental 
model. It is also essential to recognize another aspect of our 
model: it ranks countries on a monthly basis, allowing for 
more frequent variations in response to updated information. 
In contrast, the GPI is updated annually. As a result, the 

Fig. 5  Iraq terrorism event rate forecasting
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fluctuations in our ranking results are inherently higher than 
those in the GPI, leading to additional discrepancies.

Taking all the aforementioned factors into consideration, 
we classify countries with a rank difference of 10 or fewer as 
“similar” to our model’s results and the GPI’s rankings. This 
threshold acknowledges the inherent variability in different 
modeling approaches, including our model’s unique risk 
determinants and frequent updating. The percentage of cases 
that fall within this range serves as a quantitative metric to 
assess our model’s alignment with the recognized GPI stand-
ard. In our specific analysis, we compared the ranking results 
from July 2023 of our model with the GPI’s Societal Safety 
and Security rank for the year 2022, resulting in a similarity 
percentage of 26.14%, which is quantitatively weak.

However, it is essential to recognize the context of our 
model’s methodology, which is non-supervised and purely 
quantitative, relying solely on data-driven techniques based 
on four risk determinants from the same data source for 
mainly experimental purposes. In contrast, the GPI ranking 
is derived from both quantitative and qualitative methods, 
incorporating expert insights and a broader array of risk 
determinants. The fact that over a quarter of our ranks align 
closely with such a comprehensive and multifaceted stand-
ard indicates that our model possesses a certain degree of 
validity and quality.

The operational risk rankings generated by our model 
for July 2023 have been visually represented on the map, as 
illustrated in Fig. 6. As a more detailed example, Table 10 
lists the top 20 countries that have the highest overall 
operational risk rankings, along with the countries with the 
highest rankings for subordinate risk determinants.

The rankings presented in Fig. 6 and Table 10 demon-
strate alignment with the prevailing global security status. 
For instance, the top 20 countries with the highest over-
all operational risk all confront various safety and security 
challenges. These encompass recent civil and interstate con-
flicts, sustained social unrest, persistent terrorist threats, and 
significant civilian crimes. Specific examples include the 
Ukraine war that began in February 2022, border disputes 
between Armenia and Azerbaijan from April to July 2023, 
ongoing terrorist threats in Yemen, Iraq, and Somalia, and 
the extended social unrest in France, Guyana, and Kenya. 
The model’s ability to incorporate these recent events into 
its rankings underscores its effectiveness in considering the 
latest data and, subsequently, forecasting risk.

Significant discrepancies are also evident. For 
instance, Afghanistan emerged as the country with the 
lowest operational risk, ranking at 161, while Iceland’s 
unexpectedly high rank as the fourth in crime score 
deviates from common perceptions. An exploration of 
Table 3, containing the SARIMA training results, uncovers 

Table 10  Country operational risk assessment result

Rank Overall operational risk Risk_determinant_war Risk_determinant_ter-
rorism

Risk_determinant_
crime

Risk_determinant_unrest

Country Score Country Score Country Score Country Score Country Score

1 Ukraine 0.62 Ukraine 34.16 Ukraine 143.11 Armenia 38.03 Guyana 18.12
2 Armenia 0.44 Azerbaijan 20.75 Syria 9.42 Cyprus 13.72 Eswatini 6.57
3 Azerbaijan 0.34 Armenia 19.03 Myanmar 8.07 Greece 6.91 Cyprus 6.39
4 Guyana 0.33 Somalia 14.48 Yemen 7.92 Iceland 5.14 Haiti 4.63
5 Somalia 0.28 Syria 12.74 Iraq 7.86 Nicaragua 4.17 France 4.54
6 Syria 0.27 Myanmar 8.78 Somalia 4.10 Mali 3.84 Jamaica 3.17
7 Myanmar 0.23 Sudan 7.14 Armenia 3.32 Myanmar 2.71 Kenya 2.43
8 Cyprus 0.23 Jamaica 5.63 Burkina Faso 2.83 Burkina Faso 2.45 Nepal 2.08
9 Sudan 0.20 Yemen 4.64 Russia 2.80 North Korea 2.12 Greece 2.00
10 Jamaica 0.20 Burkina Faso 4.09 Mali 1.38 Eswatini 1.85 Bolivia 1.99
11 Eswatini 0.20 Brazil 3.21 Cyprus 1.07 Georgia 1.71 Chile 1.99
12 Haiti 0.19 Iraq 3.06 Azerbaijan 1.07 Kuwait 1.66 Paraguay 1.71
13 Yemen 0.18 Haiti 3.05 Kyrgyzstan 0.87 Lebanon 1.55 South Africa 1.63
14 Burkina Faso 0.17 Mali 2.89 Tajikistan 0.81 Afghanistan 1.50 Mauritania 1.61
15 Mali 0.16 Lebanon 2.76 Sudan 0.79 Mozambique 1.49 Peru 1.57
16 France 0.16 Kyrgyzstan 2.52 Libya 0.76 Benin 1.44 Colombia 1.48
17 Iraq 0.16 Puerto Rico 2.24 Afghanistan 0.68 Ukraine 1.38 Israel 1.46
18 Brazil 0.16 Central African 2.19 Benin 0.60 Haiti 1.35 Guinea 1.24
19 Greece 0.16 Cameroon 2.03 Lebanon 0.54 Sudan 1.29 Cape Verde 1.18
20 Kyrgyzstan 0.15 Venezuela 1.91 Colombia 0.38 Mauritania 1.27 Equatorial Guinea 1.15
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substantial divergence between the forecasted and actual 
crime event rates for both Afghanistan and Iceland in July 
2023. This discrepancy may be traced back to anomalous 
events that occurred prior to July 2023, leading to a skew in 
the SARIMA model’s forecasting.

Nevertheless, the subsequent operational risk ranking, 
based on the forecast values for August 2023, exhibits a dis-
cernible shift towards more typical standings, with Afghani-
stan ranked at 128 and Iceland at 78. Although these rank-
ings still defy normal expectations, the evident change in 
course signals that the model’s forecast adjustment mecha-
nism is actively working. This demonstrates the model’s 
capacity to update the operational risk ranking responsively, 
based on the most recent data and historical trends, under-
scoring its adaptability in a changing environment.

5.3  Model sensitivity analysis

We conducted a sensitivity analysis to assess our model’s 
robustness concerning weight assignments for various risk 
determinants. Moreover, an analysis was undertaken to 
gauge the influence of data quality and fluctuations on the 
ranking outcomes through different time frames.

Weight assignment sensitivity In weight assignment 
sensitivity analysis, we defined five distinct sets of weight 
configurations to be utilized in the TOPSIS ranking process, 

as outlined in Table 11. These selected weight sets were 
designed to introduce both distribution and magnitude 
variations. By incorporating these variations, we aimed to 
assess the model’s stability and resilience against extreme 
weight assignment fluctuations.

We then computed the Spearman rank-order correlation 
coefficient (often referred to as Spearman’s rho) for July 
2023 against the five weight assignments. A Spearman’s rho 
value of 0.8972 was derived, indicating a strong consistency 
in rankings across different weight assignments. This 
outcome can be interpreted in two ways: From the positive 
side, even when altering weight assignments, the model’s 
country rankings exhibit marginal variance, suggesting the 
model’s resilience to different hypothetical scenarios. On 
the other side, the marginal ranking variance suggests that 
variances in decision-maker preferences exert a minimal 
influence on country rankings.

Fig. 6  Iraq terrorism event rate forecasting

Table 11  Weight sets for four risk determinants

Weight sets Crime Unrest Terrorist War

Set 1 0.2 0.2 0.3 0.3
Set 2 0.3 0.2 0.3 0.2
Set 3 0.25 0.25 0.25 0.25
Set 4 0.1 0.3 0.3 0.3
Set 5 0.05 0.45 0.45 0.05
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Significant discrepancies are also evident. For 
instance, Afghanistan emerged as the country with the 
lowest operational risk, ranking at 161, while Iceland’s 
unexpectedly high rank as the fourth in crime score 
deviates from common perceptions. An exploration of 
Table 3, containing the SARIMA training results, uncovers 
substantial divergence between the forecasted and actual 
crime event rates for both Afghanistan and Iceland in July 
2023. This discrepancy may be traced back to anomalous 
events that occurred prior to July 2023, leading to a skew in 
the SARIMA model’s forecasting.

Nevertheless, the subsequent operational risk ranking, 
based on the forecast values for August 2023, exhibits a dis-
cernible shift towards more typical standings, with Afghani-
stan ranked at 128 and Iceland at 78. Although these rank-
ings still defy normal expectations, the evident change in 
course signals that the model’s forecast adjustment mecha-
nism is actively working. This demonstrates the model’s 
capacity to update the operational risk ranking responsively, 
based on the most recent data and historical trends, under-
scoring its adaptability in a changing environment.

5.4  Model sensitivity analysis

We conducted a sensitivity analysis to assess our model’s 
robustness concerning weight assignments for various risk 
determinants. Moreover, an analysis was undertaken to 
gauge the influence of data quality and fluctuations on the 
ranking outcomes through different time frames.

Weight assignment sensitivity In weight assignment sen-
sitivity analysis, we defined five distinct sets of weight con-
figurations to be utilized in the TOPSIS ranking process, 
as outlined in Table 11. These selected weight sets were 
designed to introduce both distribution and magnitude vari-
ations. By incorporating these variations, we aimed to assess 
the model’s stability and resilience against extreme weight 
assignment fluctuations.

We then computed the Spearman rank-order correlation 
coefficient (often referred to as Spearman’s rho) for July 
2023 against the five weight assignments. A Spearman’s rho 
value of 0.8972 was derived, indicating a strong consistency 
in rankings across different weight assignments. This out-
come can be interpreted in two ways: From the positive side, 
even when altering weight assignments, the model’s country 
rankings exhibit marginal variance, suggesting the model’s 
resilience to different hypothetical scenarios. On the other 
side, the marginal ranking variance suggests that variances 
in decision-maker preferences exert a minimal influence on 
country rankings.

Data quality and fluctuations sensitivity This might raise 
concerns in certain contexts, for instance where diverse 
stakeholder perspectives require a more reactive model. 
However, our specific choice of risk determinants for the 

data experiment (war, crime, terrorism, and unrest) tends 
to have narrower preference disparities. Given this circum-
stance, the observed level of robustness is acceptable.

For data quality and fluctuation sensitivity analysis, 
since our model ranks overall operational risk on a monthly 
basis, we employed Spearman’s rho to correlate the rankings 
across all months, aiming to understand how stable these 
rankings are over time with monthly data updates and vari-
ations. We found an average Spearman’s rho of 0.72 across 
all months. Although this value does indicate some variation 
in rankings, it also suggests a reasonable level of stability. 
In practical terms, this means that, while the monthly data 
updates do have some impact, the operational risk levels 
for most countries remain fairly stable, without dramatic 
changes on a month-to-month basis. This reflects a consist-
ent pattern in the operational risk landscape and reinforces 
the reliability of our model.

In conclusion, the SARIMA and TOPSIS integrated 
model is able to generate overall acceptable operational risk 
rankings with some notable exceptions at a given point of 
time, based on multifaced forecast risk determinant values. 
The model demonstrates commendable stability in relation 
to the distribution of risk determinant weights. However, 
while it exhibits a certain level of sensitivity to data vari-
ations, this sensitivity remains within an acceptable and 
practical range.

6  Conclusion

This paper proposes a framework that integrates SARIMA 
into TOPSIS for continuous assessment of operational 
risks with multifaced risk determinants. Specifically, the 
SARIMA method is utilized as part of the STS techniques, 
enabling the forecasting and updating of risk determinants, 
based on real-time data and knowledge. Thereafter, the 
TOPSIS, as an established MCDA technique, is employed 
to construct a prioritized operational risk matrix. This risk 
matrix is used to assesses operational risks based on the 
risk determinants, which are continuously updated by the 
SARIMA model, thereby forming a continually updated 
operational risk assessment profile that can adjust to imme-
diate changes in safety and security conditions. To test the 
model’s functionality and performance, we use Python to 
code the model and ACLED as the real-time data source for 
the model, to assess 161 countries’ operational risk level, 
based on the four risk determinants of war, terrorism, crime, 
and unrest. The model’s performance is thoroughly assessed 
and concluded upon as follows:

• The integrated SARIMA and TOPSIS operational risk 
assessment model is functionable and possesses a moder-
ate degree of validity and quality.
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• The SARIMA model is able to analyze and identify the 
cross-year trend, seasonal trend, and randomness of 
adverse event rates for the risk determinant, and to apply 
the trends identified to forecast future values. However, 
the forecast is of mixed quality. Insufficient and sparse 
data is the major reason for the inaccurate or even wrong 
forecasting across the four adverse event types. However, 
the SARIMA is also able to adopt the latest data updates 
to swiftly adjust its forecast.

• The TOPSIS model, based on the SARIMA forecasted 
risk determinants as inputs, is able to generate an overall 
operational risk ranking result that is in general align-
ment with common understandings, but with notable 
discrepancies. However, the TOPSIS model result can 
reflect on concurrent events through SARIMA forecast 
adjustment, as well as adjusting the ranking result when 
significant discrepancies occur.

• The sensitivity analysis reveals that the SARIMA and 
TOPSIS integrated model is relatively insensitive to the 
risk determinant weight assignment variations, mainly 
because the four risk determinants we chose have larger 
cross-correlation coefficients for some countries, which 
brings redundancies to the model, to reduce insensitivity, 
regardless of weight assignment changes

• The sensitivity analysis also reveals that the SARIMA 
and TOPSIS integrated model is sensitive to monthly 
data updates and fluctuations, but with reasonable stabil-
ity to reflect that a country and region’s operational risk 
often does not change dramatically, at least monthly.

In conclusion, this study reveals that the integrated model 
combining SARIMA and TOPSIS exhibits the intended 
functionality, offering a continuous and comprehensive 
assessment, grounded in multiple interdisciplinary data 
sources, as well as the capacity to assess, adjust, and refine, 
utilizing the most recent data and information. This proof 
the novel idea that integrating STS and MCDA can provide 
a functionable framework for iterative uncertainty reduction 
for multifaced analysis and assessment. In particular, inte-
grating the frequentist STS analysis method as an alternative 
to a probabilistic approach can handle the scenario in which 
prior knowledge is hard to obtain and objective uncertainty 
representation is needed.

6.1  Model limitations

Notwithstanding its strengths, the model sometimes displays 
significant inaccuracies for individual countries at specific 
points in time, as discussed as folloiwng:

• Data Quality and Availability: One of the most signifi-
cant limitations is the dependency on data quality. Just 
like most of the statistic-driven models,the SARIMA 

model’s forecasting accuracy is directly impacted by the 
availability and reliability of data. In cases of insuffi-
cient or sparse data, especially concerning adverse event 
types, the model may produce inaccurate or even incor-
rect forecasts. This limitation is particularly evident in 
less-documented regions, or for less-reported types of 
risk events.

• Model Sensitivity and Stability: Although the model 
shows stability in reflecting operational risks, its sensitiv-
ity to monthly data updates can be a double-edged sword. 
On one hand, this allows for a dynamic and responsive 
risk assessment; on the other, it can lead to fluctuating 
assessments that may not accurately represent long-term 
trends or risks.

• Cross-Correlation Challenges: The sensitivity analysis 
reveals that the model struggles with redundancies due 
to larger cross-correlation coefficients among the four 
risk determinants. This reduces the model’s sensitivity 
to weight assignment changes, potentially leading to an 
overemphasis, or underrepresentation, of certain risk fac-
tors.

• Generalization and Adaptability: The model’s current 
configuration may not be universally applicable across 
different geographic regions or risk types. The method-
ologies and algorithms might need to be tailored to suit 
various contexts, which can be a complex and resource-
intensive process.

6.2  Future improvements

Addressing these challenges necessitates concerted efforts 
in both academic research and industrial practices. The fol-
lowing strategies are proposed:

• Analyzing Risk Determinants: A detailed analysis of 
available risk determinants should be conducted, select-
ing those with strong autocorrelation and weak cross-
correlation within their time series records. This selec-
tion process enhances the pattern and trend detection 
and forecasting capabilities of SARIMA, as well as the 
balanced analysis within TOPSIS.

• Ensuring Data Quality: Adequate and high-quality data 
is pivotal for a statistics-driven model such as SARIMA 
and TOPSIS. Employing Big Data technology is advis-
able for operational risk assessment, given the often 
requisite interdisciplinary and real-time data in massive 
quantities.

• Exploring Alternative Methods: There are other BI 
and MCDA methodologies with specific strengths and 
weaknesses tailored to certain risk assessment scenar-
ios. Developing a model and its settings should involve a 
detailed theoretical study of these methods, aligned with 
practical reality checks.
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• Integrating Expert Inputs: Recognizing that a purely 
statistics-driven model may not be error-free, even if all 
necessary requirements are met, the integration of expert 
inputs for evaluating and calibrating the modeling results 
is vital. Further academic research into when and how to 
merge modeling results and expert insights is necessary.
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