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Abstract  Multi-component maintenance optimization is 
a well-studied area for age-based failure models but in con-
trast, incorporation of condition-based maintenance (CBM) 
is still an open area of research. Taking advantage of con-
dition monitoring information for updating components’ 
health conditions demands a dynamic short-term approach 
when grouping multiple activities subject to CBM policy. 
Degradation models are commonly utilized in CBM for pre-
dicting the future condition of a given component to decide 
appropriate maintenance actions where inherent uncertain-
ties exist in the degradation processes. There are a limited 
number of works in literature that account for degradation 
uncertainties where maintenance cost is a function of such 
uncertainty. This paper aims to develop a maintenance deci-
sion support for a multi-component system by incorporating 
CBM while considering the degradation uncertainties. In 
this paper, a two-stage stochastic programming is proposed 
to address such an issue and the problem is formulated for 
situations where maintenance opportunities are limited due 
to practical constraints (e.g., remote offshore maintenance 
operations of wind farms, unmanned platforms in oil and 
gas industries, etc.). The concept of marginal cost is used 
in developing the equation of optimality. This is a combi-
natorial problem and becomes intractable when the number 
of components is large therefore a heuristic is proposed to 
reduce the problem size which reduces the required compu-
tational time substantially. It is shown that significant cost 

savings are possible, especially, when the downtime cost and 
common setup cost are significant. A numerical example is 
provided with a system of six components achieving above 
10% cost reduction when the degradation uncertainties are 
taken into account.

Keywords  Condition-based maintenance · Multi-
component maintenance · Economic dependence · Decision 
support system · Degradation uncertainty

1  Introduction

1.1 � Motivation

Ongoing development of sophisticated data-collection, 
processing, storage, and communication technologies (e.g. 
Wireless Sensor Networks (WSN), cloud computing, infra-
red thermography, advanced signal processing techniques, 
Internet of Things (IoT), Big Data analytics, augmented 
reality, etc.) are building the pave-way for more automated 
on-site data collection from the critical assets across differ-
ent industries (Ali et al. 2020; Alaswad and Xiang 2017; 
Daily and Peterson 2017; Paolanti et al. 2018; Cachada 
et al. 2018; Spendla et al. 2017; Hashemian 2011). From 
the maintenance perspective, such development is very 
inspiring for the transition from traditional age-based main-
tenance to condition-based maintenance (CBM) where the 
true health condition of assets in a given environmental and 
operational setting is of interest instead of general failure 
histories of similar assets. The fundamental aim is to ensure 
timely maintenance actions to reduce the waste of an asset’s 
remaining useful life (RUL) while avoiding a costly failure. 
However, RUL is almost always stochastic in nature due to 
the underlying uncertainties of the degradation process and 

 *	 Abu MD Ariful Islam 
	 abu.m.a.islam@ntnu.no

	 Jørn Vatn 
	 jorn.vatn@ntnu.no

1	 Mechanical & Industrial Engineering, Norwegian University 
of Science & Technology (NTNU), Trondheim, Norway

http://crossmark.crossref.org/dialog/?doi=10.1007/s13198-023-01900-9&domain=pdf
http://orcid.org/0000-0001-8921-4141


S962	 Int J  Syst  Assur  Eng  Manag (December 2023) 14:S961–S979

1 3

should be incorporated into a maintenance decision system 
to create more robust maintenance decision models.

It is often economically beneficial if multiple assets are 
maintained together (sharing a common setup cost, for 
instance). As a practical example, maintenance of wind 
turbines in a wind farm requires vessels carrying a main-
tenance crew and essential equipment such as spare parts 
(Seyr and Muskulus 2019), large lifting or transport equip-
ment such as helicopters, jack-up equipment, crane vessels, 
etc. where maintenance is often not easily accessible and 
the rental and operating costs of these pieces of equipment 
are substantially high (Wang et al. 2021). Each visit consists 
of a substantial setup cost that may be incurred from the 
transportation cost of vessels, finding the right crews for 
the jobs, ordering of spare parts, etc., and Lua et al. (2018) 
showed a significant cost reduction in maintenance cost 
applying an opportunistic grouping approach compared to 
the schedule-based maintenance policy. Similar application 
areas are foreseeable in the development of unmanned and 
minimum manned platforms in the North Sea such as the 
Oseberg H from Equinor in the Norwegian Continental Shelf 
(NCS). Such platforms are built on the concept of minimum 
visit policy with an ambition to visit the platforms only once 
or twice a year and thus both CBM and multi-component 
maintenance become relevant (Tan et al. 2020). Costs of 
these visits are often very high for remote operations and 
Nachimuthu et al. (2019) reports that a corrective mainte-
nance trip at an offshore wind farm can be expected to cost 
$70, 000 − $130, 000 . Therefore, each avoidable visit has the 
potential for significant maintenance cost savings.

1.2 � Overview of multi‑component maintenance

Multi-component maintenance models are concerned with 
optimal maintenance policies for a system consisting of sev-
eral units of machines or many pieces of equipment, which 
may or may not depend on each other (Cho and Parlar 1991). 
Possible types of dependencies are categorized mostly into 
economic, stochastic, and structural dependency (Thomas 
1986). In brief, economic dependency implies that the cost 
of individual maintenance of each component is differ-
ent than when they are jointly executed. This dependency 
can be both negative (e.g., manpower restriction, breaking 
redundancy structure to cause downtime) and positive (e.g., 
economies of scale) (Nicolai and Dekker 2008). Stochastic 
dependency is also known as failure interaction when one 
component’s failure has an impact on the lifetime distribu-
tion of another component’s failure or is subjected to com-
mon cause failure (Van Do et al. 2013). Structural depend-
ence implies that two or more components are structured 
in a way that, repairing one component would disturb the 
working status of other components (Dao and Zuo 2017). In 
addition, Keizer et al. (2017) included resource dependency 

as an additional type of dependence that applies when the set 
of spares or tools are shared by multiple components and/or 
the number of maintenance workers is limited.

Grouping of multiple maintenance tasks has been investi-
gated in depth for aging components measured based on the 
component failure history. The basic grouping optimization 
is based on static grouping where the groups of components 
are fixed and always executed throughout the entire plan-
ning horizon. However fixed grouping approach is unable to 
update any strategy when there is new information available 
e.g., changes in failure rate estimates, unexpected advance-
ment, or postponement of the next planned preventive main-
tenance, etc. In such context, a more suitable maintenance 
model is known as the dynamic grouping based on the roll-
ing horizon method where planning rules can be updated 
according to short-term information (Wildeman et al. 1997).

1.3 � Contribution of this paper

Consider a situation where maintenance opportunities 
are limited by practical constraints (e.g., remote location, 
weather conditions, etc.). In addition, tasks often require 
prior preparation such as a long lead time for spare parts, a 
repairman with specific skills, etc. In such scenarios, when 
a maintenance team is already dispatched for executing the 
tasks and they reveal a need for maintenance of a certain 
component that they are not prepared for may result in huge 
unplanned costs. We propose to include an insurance under 
which management can be prepared for the maintenance and 
later decide whether to execute the task depending on the 
actual health state of the component. In this paper, under the 
scenario mentioned above, stochastic programming (SP) is 
proposed for group maintenance, capable of handling associ-
ated uncertainties to help managerial decision-making. We 
apply the marginal cost (introduced by (Berg 1980)) con-
cept to develop the objective function. The additional cost of 
deferring a preventive replacement an additional time unit is 
expressed by marginal cost (Dekker and Roelvink 1995). As 
per this concept, a replacement is premature if the marginal 
cost of a component is below the minimum average cost 
and risky (e.g. failure) if it exceeds. The scope of this paper 
has been limited to positive economic dependencies and the 
context of the problem is generalized from the remote opera-
tions in oil and gas industries and windfarm alike. Offshore 
maintenance has accessibility constraints and is often dis-
turbed by the environmental conditions (Cibulka et al. 2012) 
and degradation of machinery may differ as Palin-Luc et al. 
(2010) demonstrates that fatigue life can be reduced by more 
than 70% when exposed to extreme corrosion and sea-water 
flow. On the other hand, Tyapin et al. (2011) demonstrated in 
an example that it is possible to have four times of expected 
mean duration of the same maintenance performed com-
pared to perfect weather conditions. Such factors are very 
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relevant to the concept of setup costs and demand more effi-
cient maintenance strategies for reducing operational costs. 
The main contributions of this paper are as follows:

•	 This paper addresses both CBM and the grouping of mul-
tiple components based on current condition information 
and future prediction uncertainties.

•	 From the modeling perspective, SP is proposed in this 
paper which would allow decision-makers to recourse 
actions to minimize the losses against unexpected sce-
narios.

•	 In this paper, degradation uncertainties are more explic-
itly considered, often implicit or absent from most of the 
studies related to multi-component maintenance optimi-
zation models.

1.4 � Structure of the paper

The second section provides a literature review focused on 
multi-component maintenance models applying CBM poli-
cies and economic dependencies. Section 3 provides the 
problem formulation and associated modeling assumptions. 
Section 4 describes the methodology used in this paper and 
develops the required equations. Section 5 explains our 

proposed heuristic. Section 6 provides a numerical example 
to demonstrate the application of the proposed approach. 
Sections 7 and 8 discuss this paper’s merit, limitations, inter-
pretations, and future applications.

2 � Literature rview

The full scope of multi-component maintenance is extremely 
broad, and a detailed discussion is beyond this paper’s scope. 
A general classification is shown in Fig. 1 based on Kobbacy 
et al. (2008). Dependency classification has already been 
introduced in the previous section. Stationary models gener-
ally assume an infinite planning horizon where maintenance 
rules do not change over time. In these models, short-term 
information such as component degradation, unexpected 
opportunities, etc. can not be incorporated contrary to the 
dynamic models. Among the optimization method used for 
multi-component maintenance optimization models, exact 
methods emphasize on finding the real optimal solution 
which is often computationally too expensive and therefore 
impractical for large and complex problems. Heuristics in 
such cases are often sought to find a near-optimum solution. 
Another approach is to find the optimum maintenance poli-
cies for a given planning problem. The rest of the litterateur 
review will be mostly focused on the economic dependence 
and policies concerning CBM. In terms of the planning 
aspect and optimization method, this paper is relevant to 
dynamic grouping models and heuristics respectively.

There are several review papers in the area of mainte-
nance of the multi-component systems such as Nowakowski 
and Werbińka (2009), Dekker et al. (1997), Nicolai and Dek-
ker (2008), however, Wang and Chen (2016) focus on the 
CBM context that was lacking in the previous reviews. The 
multi-component maintenance policies considering eco-
nomic dependencies are summarized in two categories as 
in Fig. 2 by (Wang and Chen 2016) by following classifica-
tions from (Wang 2002) and (Nicolai and Dekker 2008). As 
the name suggests, opportunistic maintenance is dependent 

Fig. 1   General classification of Multi-component maintenance mod-
els adopted from Kobbacy et al. (2008)

Fig. 2   Multi-component main-
tenance policies with considera-
tion of economic dependence 
based on (Wang and Chen 2016; 
Wang 2002; Nicolai and Dekker 
2008)
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on the arrival of planned (e.g., scheduled shutdown, main-
tenance, etc.) or unplanned (e.g., corrective maintenance 
requirement of one component may create an opportunity 
for preventive maintenance of another component) oppor-
tunities. Group maintenance, on the other hand, does not 
rely on the occurrence of an opportunity and allows more 
flexibility in finding the optimal maintenance group at each 
maintenance time point (Wang and Chen 2016).

In failure opportunity policy, it is assumed that hard 
failures arise unexpectedly which creates an opportunity 
to check other component status and derive maintenance 
decisions accordingly. In the delay corrective maintenance 
policy, opportunities are sought to delay corrective main-
tenance to the point to perform the next preventive mainte-
nance on other components. This policy is more appropriate 
for systems with redundancy and soft failures that do not 
cause major downtime. In this area, (Nguyen et al. 2014) 
presented a predictive CBM strategy for multi-component 
systems considering both economic and structural depend-
encies. They categorized failures as critical and non-critical 
where the latter can be postponed until a critical failure or 
the next preventive maintenance opportunity. In the oppor-
tunistic threshold policy, preventive maintenance thresholds 
are established and at each inspection point if at least one 
component requires a PM, then other components are also 
checked for opportunities for PM. Opportunistic mainte-
nance policies offer advantages in terms of comprehensive-
ness, computational efficiency, etc. but disturb the planned 
feature of PM which may potentially cause unexpected pro-
duction demand or spare parts shortage (Wang and Chen 
2016).

There are two general methods of grouping- static and 
dynamic. In the static grouping method, the system is 
assumed to operate in a stable way infinitely. Thus, one or a 
set of maintenance rules can be generated that do not change 
over time. In contrast, dynamic grouping can incorporate 
short-term information such as changes in operating condi-
tions, component failure rates, etc. In the CBM context for 
the multicomponent systems, any established group of main-
tenance tasks is subject to change with the availability of 
new information and thus dynamic grouping policy is more 
relevant (Wang and Chen 2016). The earliest work, to the 
best of the authors’ knowledge, is found to be the dynamic 
grouping based on rolling horizon, proposed by Wildeman 
et al. (1997). Several theorems are proved in Wildeman et al. 
(1997) that substantially reduce the number of groups to 
build an optimum grouping structure. They propose adaptive 
planning of a long-term tentative plan when new information 
becomes available. The failure model of this work is based 
on component age rather than their actual health condition.

Bouvard et al. (2011) and Van Horenbeek and Pintelon 
(2013) incorporated CBM for multi-component system on 
the basis of Wildeman et al. (1997) and the work of Bouvard 

et al. (2011) is among the earliest works of incorporating 
CBM and grouping decisions, to the best of the authors’ 
knowledge. Here the early maintenance actions are penalized 
for reducing the component’s RUL while late maintenance is 
penalized for increasing the component’s failure probability. 
They applied the rolling horizon approach to dynamically 
group and optimize maintenance operations for commercial 
heavy vehicles. They inspect the components regularly and 
at each inspection point, the failure probability function is 
calculated with measured current degradation information 
which is the basis for the adaptive scheduling of upcom-
ing maintenance operations. The components’ degradation 
is modeled with a homogenous gamma process assuming 
a known shape and scale parameters. Van Horenbeek and 
Pintelon (2013) propose dynamic Predictive Maintenance 
(PdM) policy on the basis of both (Wildeman et al. 1997) 
and Bouvard et al. (2011) and extend them with different 
levels and combinations of dependencies between the com-
ponents. In this work, the degradation model is modeled 
by a stationary gamma process and the random threshold 
variable is modeled by a Weibull probability distribution. 
Their approach closely resembles (Bouvard et al. 2011) and 
the main differences are associated with the additional con-
sideration of different factors. For instance, Van Horenbeek 
and Pintelon (2013) additionally considered stochastic and 
structural dependence, imperfect maintenance, non-zero 
maintenance downtime, random failure threshold, etc. 
Although these considerations should make the algorithm 
more complex, however, the underlying modeling approach 
did not differ a lot. Similar result as Bouvard et al. (2011) 
is reported with some additional findings. From their result, 
it can be realized that dynamic and adaptive scheduling of 
maintenance tasks based on component conditions increases 
the utilization of components thus increasing the lifetime.

On the other hand, Keizer et al. (2016) propose cluster-
ing of maintenance tasks for k-out-of-n system with eco-
nomic dependency and with redundancy. Unlike Bouvard 
et al. (2011) and Van Horenbeek and Pintelon (2013), they 
did not follow any predetermined strategy structure. In 
this approach, component states are discretized, and the 
optimal maintenance group is searched for all possible 
combinations of component states. Although these types 
of policies seem to be more applicable and provide more 
cost-effective solutions but can become computationally 
expensive for more than three components. Furthermore, 
the requirement of discrete state-space makes it challeng-
ing to utilize continuous degradation processes such as 
the gamma process to model degradation. (Keizer et al. 
2016) used Poisson distribution for deterioration incre-
ment in their original model to guarantee a discrete state 
space but also discussed the continuous degradation with 
exponential deterioration increments briefly.
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Among the other works that combine both multi-com-
ponent systems and CBM, Tian and Liao (2011) propose a 
proportional hazard-based CBM policy where components 
are economically dependent. A numerical algorithm for cost 
evaluation is proposed and exemplified with real-world con-
dition monitoring data. Do et al. (2015) propose a dynamic 
maintenance decision rule for components connected in 
series while considering availability and limited repairmen 
constraints. Genetic algorithm and MULTIFIT are used as 
optimization algorithms. When a component fails, Zhou 
et al. (2015) uses the opportunity to preventively maintain 
other components. Failures are simulated using Monte Carlo 
simulation to calculate the cumulative maintenance cost of 
the system. Rasmekomen and Parlikad (2016) use simu-
lated annealing to demonstrate that considering stochastic 
dependency leads to a positive impact on the CBM policy 
and exemplified with an industrial cold box from a petro-
chemical plant. Dynamic maintenance grouping is combined 
with routing problems for geographically dispersed produc-
tion systems by Nguyen et al. (2019). They use the Local 
Search Genetic Algorithm (LSGA) and Branch and Bound 
(BAB) method for finding the optimal group and route. Shi 
et al. (2020) use system reliability requirement as the crite-
ria to develop a CBM decision framework using a rolling-
horizon approach. The Bayesian method is used to update 
the posterior distributions of the failure model parameters. 
A dynamic opportunistic maintenance approach is devel-
oped by Vu et al. (2020) for different types of redundant 
systems. Oakley et al. (2022) consider both economic and 
stochastic dependency to optimize replacement decisions at 
maintenance opportunities. Their policy uses a utility/reward 
function and minimizes the overall cost by minimizing the 
total long-term penalty. These articles mostly focus on one 
or more of the dependencies and use different approaches 
for grouping, however, associated uncertainties in decision-
making are not explicitly focused.

Finally, CBM-based multi-component maintenance 
models are rarely supported by case studies with real-life 
data mainly due to the lack of it. Therefore, the accurate 
estimation of model parameters is often hard to achieve 
which contributes to the uncertainty in the estimation of 
the actual health condition of the component (de Jonge and 
Scarf 2020). In recent years, industrial data are becoming 
more available due to the ongoing development of sensor 
technologies and condition monitoring systems (Choi et al. 
2018).

3 � Problem formulation and assumptions

There are four basic sources of difficulties in decision 
making that make decisions hard- complexity, inherent 
uncertainty, interests in achieving multiple objectives, and 

different influencing perspectives of multiple decision-mak-
ers (Clemen and Reilly 2013). This paper mainly reflects 
on the inherent uncertainty and attempts to develop a basic 
structure for decision analysis to help planners taking better 
maintenance decisions utilizing the condition monitoring 
information of an asset.

Consider several components degrading continuously 
following some stochastic processes. At the current time, 
(t0) , the health condition of a component is assumed to be 
perfectly known and future conditions can be predicted with 
the knowledge of the failure threshold. Maintenance of these 
components can be executed in some periodic pre-scheduled 
points of time denoted as �1, �2, ... as depicted in Fig. 3. This 
is justified for the context when the maintenance operations 
require visiting the site and are often associated with some 
setup costs and require specific resources such as spare parts 
that require ordering beforehand and arranging qualified 
crews for the task (Keizer et al. 2017). Each maintenance 
requires prior preparation and therefore immediate main-
tenance is not possible without prior planning. Preparation 
times are assumed to be ≤ Δ� (= �n+1 − �n) . It implies that 
this time interval is long enough to have prepared for the 
task and any spare parts can be made available within ≤ Δ� . 
There is a setup cost whenever a maintenance opportunity is 
utilized, and multiple maintenances can share a single setup 
cost when conducted in the same window and the planning 
horizon is finite with a length of T time unit.

Now assume that, based on the current health information 
at t0 the optimum maintenance plan has been found that rec-
ommends maintenance of component number 1 and 4 at the 
opportunities �1 and �3 respectively while components 2 and 
3 together at �2 . The First Hitting Times (FHT) of each com-
ponent are shown with numbers and crosses on the failure 
threshold (Lj) in Fig. 3. At this point, the planning has been 
done based on the belief that the future degradation will fol-
low the expected course regulated by the stochastic process. 
However, a different situation can be observed at t0 + � or �1 
which may make the previous plan not optimal anymore. For 
example, it could be required to maintain component 2 at �1 

Fig. 3   Illustration of associated uncertainties in a multi-maintenance 
decision process
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together with component 1 if it is found to be degraded much 
worse than anticipated. Moreover, it could be even possible 
to skip visit at �2 by postponing component 3 at �3 . However, 
the maintenance team is already at �1 without any prepara-
tion for component 2 and therefore misses the opportunity to 
revise the existing plan. The objective is to optimally sched-
ule the maintenance in the available opportunities under the 
degradation uncertainties of the components.

3.1 � Modeling assumptions

Let J be the total number of degrading components that we 
need to schedule for maintenance where each individual 
component is presented by j = 1, 2, ..., J . Following prop-
erties are assumed for any j:

•	 Degradation processes are assumed to be a homogeneous 
gamma process with shape parameter �j and intensity 
parameter �j as it is especially suitable for deterioration 
models where inspections are involved (van Noortwijk 
2009). Other degradation models can also be used.

•	 Has a known failure threshold Lc
j
 . Upon hitting the 

threshold the component is failed and downtime occurs.
•	 The degradation process has inherent uncertainty. Degra-

dation increment within the t0 to t0 + Δ� can be between 
0 and ∞ which is regulated by gamma distribution as 
a function of its parameter �Δt and � . All the other 
parameters of the maintenance models are assumed to 
be strictly deterministic.

•	 Only  f i r s t  t h ree  immedia te  oppor tuni t ies 
�1 = t0 + �, �2 = t0 + 2�, and �3 = t0 + 3� are assumed 
to be sufficient for maintenance planning. Note that, we 
can only execute any required maintenance at t0 + � at 
the earliest. Whatever decision we make at t0 is subject 
to possible changes at t0 + � as a function of the actual 
future health conditions of the component in the next 
inspection. If a component is currently ( t0 ) planned 
beyond �1 without a need for the insurance has the same 
significance if it were planned even later as in any case 
the plan will be revised in the next inspection. We are 
further assuming that the component health condition is 
not as volatile that a component would need immediate 
maintenance at t0 + � whereas it was originally planned 
at t0 + 4� . Based on these arguments we believe that con-
sidering only the first three immediate opportunities are 
sufficient to relax some complexities in the calculation.

•	 Any j can degrade slower or faster than our expecta-
tion. To account for this situation, it is assumed that the 
continuous distribution of possible degradation level at 
some future time can be discretized into finite number 
of realizations with some corresponding probabilities. 
Most simplistically, three scenarios are considered- slow, 

expected and fast degradation to be observed at t0 + � 
which is sufficient to demonstrate the modeling structure.

•	 Flexibility to decide on whether to execute maintenance 
at �1 for component j can be availed by paying a prepara-
tion cost c�

j
 upfront which will function as insurance. 

When this preparation cost is paid at t0 for a component 
j, it can be executed at �1 if it deems more profitable given 
the condition of j is found to be worse than expected. 
Otherwise, it can be left for later execution. In this way, 
a component’s useful life can be extended by avoiding 
premature replacement. With two-stage SP we need to 
decide whether to buy insurances for a component j or 
not and for a given scenario how should we distribute the 
maintenance tasks.

3.2 � Notations

•	 �j ∶ Shape parameter of component j
•	 �j ∶ Intensity parameter of component j
•	 t0 ∶ Current time
•	 �m ∶ mth maintenance opportunity ( �m = m�)
•	 W :  Total number of windows/maintenance opportunities 

considered and each individual window is presented by 
m where m = 1, 2, ...,W

•	 J :  Total number of component and each individual com-
ponent is presented with j

•	 mj ∶ Corresponding window index considered for com-
ponent j.

•	 S, E, F :  Representation of slow, expected and fast deg-
radation progression respectively

•	 Ω ∶ Set of all scenarios considered associated with deg-
radation progression where Ω ∈ {S,E,F}

•	 � ∶ (note: this is bold zeta) Set of all possible combina-
tions of scenarios associated with all component j. For 
example, for j ∈ {1, 2} it would consist of 9 combina-
tions such as (S, S), (S, E), ..., (F, F). Note that the com-
binations are presented as ordered pairs as for example, 
(S,E) ≠ (E, S).

•	 � ∶ A particular combination (e.g. (S, S)) from � and 
therefore � ∈ {1, 2, .., ∣ � ∣} where ∣ � ∣ is the size or car-
dinality of the set �.

•	 �j ∶ Individually experienced scenario by a component 
j in a � . For example, for � = 2 in the above example, 
�j=1 = S and �j=2 = E

•	 p(�j) ∶ Probability of occurring �j
•	 p(�) =

∏

j p(�j) ∶ Probability of occurring a particular � 

and it holds that, 
∣� ∣
∑

�=1

p(�) = 1

•	 cr
j
∶ Universal cost of repair/replace of component j

•	 c�
j
∶ insurance cost of component j. For this problem we 

assume this cost is same as the cost of preparation. If a 
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maintenance is not executed at t0 + � after paying the 
preparation cost, it will be lost and must pay again next 
time when the task will be executed

•	 c
p

j
= cr

j
+ c�

j
∶ Total planned maintenance cost

•	 cb
j
∶ Additional breakdown cost beyond cp

j
 when a com-

ponent is repaired/replaced while in a failed state
•	 ci

j
∶ Inspection cost of component j

•	 cd
j
∶ Downtime cost of component j per unit time

•	 S :  Setup cost per visit
•	 Φ∗

j
∶ Optimum cost per unit time for component j derived 

from individual optimization
•	 T :  Total operational lifetime of the system
•	 D0

j
∶ Current degradation level of j at t0

•	 D
�

j
∶ Future degradation level at �1 for the given scenario �j

•	 Lc
j
∶ Failure threshold of component j. Critical compo-

nents are usually not allowed to reach the technical fail-
ure limit as the failure of such components may lead to 
additional accidents such as fire hazards, hydrocarbon 
leakages into the environment, etc. Therefore, this is 
more practical to set the level of this failure threshold on 
the basis of its economic life rather than its technical 
lifetime which is a common practice in the industries 
(Ahmadzadeh and Lundberg 2014). Alert limits- com-
monly used in CBM strategies, are usually and under-
standably set on the basis of the economic life of a com-
ponent than its actual limit of hard failure.

•	 L
p

j
∶ Preventive maintenance threshold of component j

•	 Fj(mj,D
0

j
,D

�

j
, Lj) ∶ Failure probability of a component j 

as a function of which window we are choosing to main-
tain it ( mj ), current degradation level of j (D0

j
) , the future 

degradation level at �1 (D
�

j
) given the scenario �j , and the 

corresponding failure threshold (Lj)
•	 Ej(mj,D

0

j
,D

�

j
, Lj) ∶ Expected length of downtime of a 

component j as a function of which window we are 
choosing to maintain it ( mj ), current degradation level of 
j (D0

j
) , the future degradation level at �1 (D

�

j
) given the 

scenario �j , and the corresponding failure threshold (Lj)

4 � Methodology

In a two-stage SP, decision variables are classified as first 
and second-stage decision variables where the first-stage 
decisions are made before knowing the values of the random 
variables, and the second-stage decisions are made after the 
value of random data are observed (Shapiro and Dentch-
eva 2021). Using similar notations of Birge and Louveaux 
(2011), let x and y be the first and second stage decision 
variables while � is the random vector to be observed. The 
second stage problem is also known as the recourse problem 

with an assumption that the so-called � is fixed. Now let 
k = 1, 2, ...,K be the possible realizations of � with pk be 
their probabilities. This deterministic equivalent problem 
now can be written into extensive form by assigning one set 
of second-stage decisions (yk) to each realization � to each 
realization of qk, hk and Tk . The extensive form of this large-
scale linear problem then can be written as Eq. (1).

4.1 � First stage decision variables

In the first stage, a decision needs to be made on whether to 
pay for an insurance for a component j or not. If c�

j
 is paid at 

t0 , j can be maintained at �1 or leave it for later. Otherwise j 
can only be planned at �2 or �3 . So following first-stage deci-
sion variables are considered:

•	 x1,j ∶ 1 if j is committed at �1 and the preparation cost is 
paid; 0 otherwise. Maintenance of j will be executed at 
�1 regardless of the actual condition at �1

•	 x2,j ∶ 1 if j is planned with flexibility at �1 with an insur-
ance; 0 otherwise. Maintenance of j can be done at any 
opportunities including �1 . However, if not executed at �1 
the preparation cost will have to be paid again for execut-
ing it later.

•	 x3,j ∶ 1 if j is planned beyond �1 without paying for the 
insurance; 0 otherwise. Maintenance of j is only possible 
at �2 or �3.

4.2 � Second stage decision variables

In the second stage, a set of decisions need to be made 
regarding which windows are optimum to utilize as a func-
tion of first stage decisions for the corresponding degrada-
tion scenarios. Following variables are therefore introduced 
where y�

mj,j
 indicates that for a given scenario combination 

of � , maintenance of component j is decided to be executed 
at window mj ∈ {1, 2, 3}:

•	 y
�

mj=1,j
∶ 1 if j is decided at �1 for scenario combination � ; 

0 otherwise
•	 y

�

mj=2,j
∶ 1 if j is decided at �2 for scenario combination � ; 

0 otherwise

(1)

min cTx +

K
∑

k=1

pkq
T
k
yk

s.t. Ax = b,

Tkx +Wyk = hk, k = 1, ...,K;

x ≥ 0, yk ≥ 0 k = 1, ...,K
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•	 y
�

mj=3,j
∶ 1 if j is decided at �3 for scenario combination � ; 

0 otherwise

4.3 � Objective function

Any component j can be maintained at any mj� during the 
operational lifetime of a component where mj is an integer 
and according to our assumption mj = 1, 2, 3 . Then for each 
j with a particular set of �j and �j , the probability of failure 
and therefore causing a downtime depend on their current 
health conditions D0

j
 , failure threshold Lc

j
 , future degradation 

level at �1 ( D
�

j
 ) and the length of mj� . The total expected 

unplanned downtime cost between t0 and mj� is presented in 
Eq. (2) where the first part of the cost is associated with the 
breakdown maintenance cost itself were 0 ≤ F(.) ≤ 1 . The 
second part is the associated downtime due to failure were 
0 ≤ Ej(.) ≤ mj� . If the health condition is monotonically 
degrading over time then Q(mj,D

0

j
,D

�

j
, Lj) will keep increas-

ing as mj increases.

This optimization problem is about balancing the planned 
costs against the unplanned costs. The cost of one planned 
maintenance cost is the sum of the actual repair cost cr

j
 and 

the preparation cost c�
j
 . During the total duration of the 

operational lifetime, the total number of required planned 
maintenance is not straightforward to find and we adopt an 
assumption from Vatn (2008) where for each component j, 
we find the first point of maintenance and assume that the 
rest of the operational period the component will be main-
tained at their corresponding individual due date incurring 
the minimum average cost. Now let �j(�, L

p

j
) be the average 

cost per unit time for an individual component j for a given 
maintenance interval � and maintenance threshold Dp

j
 while 

�j
∗(�∗, L

p∗

j
) or �∗

j
 in short is the minimum average cost per 

unit time for the corresponding optimum values of � and Dp

j
 . 

One major advantage of this approach is that it avoids 
repeated grouping of the components. Now the total cost of 
maintaining a component at t0 + mj� for a given scenario �j 
is given as in Eq. (3). It means that, the unexpected cost 
increases as we postpone our maintenance while the contri-
bution of the �∗

j
 decreases and vice-versa. The quantities 

Fj(.),Ej(.) and Φ∗
j
 and the processes for obtaining them are 

explained in more detail in subsequent sections.

(2)
Q(mj,D

0

j
,D

�

j
, Lc

j
) = cb

j
Fj(mj,D

0

j
,D

�

j
, Lc

j
) + cdEj(mj,D

0

j
,D

�

j
, Lc

j
)

(3)
Cj(�j,mj)

�

=S + cr
j
+ c�

j
+ cb

j
Fj(mj,D

0

j
,D

�

j
, Lc

j
)

+ cdEj(mj,D
0

j
,D

�

j
, Lc

j
) + (T − mj�)Φ

∗
j

Then the objective function of this two-stage SP minimizes 
the total cost of maintaining multiple component in the 
remaining operational lifetime (T − t0) as per Eq. (4) where 
k ∈ {1, 2, 3} present the first stage variables and in order to 
simplify the representation of the cost of first stage decision 
variables, another binary variable �k,j is considered. �k,j = 1 
when k = 2 which is the case when insurance is paid and 
otherwise �k,j = 0.

Subject to the following constraints:

Here we use Cj(�j,mj) = Cj(�j,mj)
�

− S to be able to include 
the contribution of the setup cost for multiple component 
which is not straightforward due to it’s dependency with 
y
�

mj,j
 . Further note that the full planned cost is included in 

Eq. (3) and thus when the insurance is already bought and 
later the maintenance was actually done at �1 the preparation/
insurance cost will be paid twice. Therefore the preparation 
cost is subtracted for such case to avoid double-counting of 
c�
j
 and a binary variable �j is used for handling such case,

Constraint 5 ensures that for a component j, not more than 
one first stage decision is considered. Constraint 6 ensures 
that only a single window is chosen for a component j for a 
corresponding scenario combination � . Constraint 7 imple-
ments the conditions between the first and second stage vari-
ables. Final constraint 8 declares the binary nature of both 
first and second stage variables.

4.3.1 � Probability of failure

The probability that a component j will fail within the next tj 
period is straightforward to obtain for degradation following a 

(4)

Z(xk,j, y
�
mj,j

) = min
∑

j

[

�k,jc�j +

∑

�
p(� )

(

∑

y�mj ,j

xk,jy
�
mj,j

(

Cj(�j,mj) − �jc�j

))]

+

S
∑

�
p(� )

∑

mj

∑

j
max(y�mj,j

)

(5)x1,j + x2,j + x3,j = 1

(6)y
�

1,j
+ y

�

2,j
+ y

�

3,j
= 1

(7)x1,j × y
�

2,j
= x1,j × y

�

3,j
= x3,j × y

�

1,j
= 0

(8)x1,j, x2,j, x3,j, y
�

1,j
, y

�

2,j
, y

�

3,j
∈ {0, 1}

�j = 1 for y
�

1,j
= x2,j = 1; else 0
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stationary gamma process (van Noortwijk 2009) for a given 
set of shape and scale parameters if the current degradation 
level D0

j
 and the failure threshold Lc

j
 is known. The equation 

can be expressed as Eq. (9) where tj = mj�.

Note that, Eq.  (9) only computes the failure probability 
between current time t0 and mj� only on the basis of current 
health information and disregard the uncertain degradation 
scenarios we are going to observe when we are at �1 . In the 
deterministic equivalent problem presented by the Eq. (4) 
the different scenarios at �1 are known and presented by 
D

�

j
∈ {DS

j
,DE

j
,DF

j
 }. If D�

j
≥ Lc

j
 , component j is already in a 

failed state at �1 and the Fj(.) = 1 for all values of mj . When 
D

𝜁

j
< Lc

j
 it is certainly known that j has already survived 

until �1 for this particular scenario and for the remaining part 
D0

j
 will be replaced by D�

j
 in Eq. (9). For the completeness 

of the notation, this failure probability is presented as a func-
tion of D�

j
 as well.

4.3.2 � Expected downtime

Finding the expected downtime between t0 and mj� is more 
challenging and an obvious option is Monte Carlo simulation, 
but the calculation speed can be a major issue as it will be 
required to run many times for a large number of components. 
Therefore, the following approximation is proposed. Consider 
that, from our current decision point at t0 we are interested to 
find the expected downtime between t0 and t0 + � (meaning 
mj = 1 ) and we start by splitting the period by n equally spaced 
interval with each interval of length �∕n . Then the probability 
that the system fails in a sub-interval i is given by Eq. (10) 
where G(.) is the CDF for the gamma distribution and 
D

�

j
= Lc

j
− D0

j
.

Given the system fails in sub-interval i, the expected down-
time can be approximated by Eq. (11).

Thus, the unconditional expected downtime is approximated 
by Eq. (12).

Note that, similar to Eq. (9), mean downtime is also depend-
ent with the uncertain degradation scenarios that are known 

(9)Fj

(

mj,D
0

j
, Lc

j

)

=
Γ
(

�jtj, �j

(

Lc
j
− D0

j

))

Γ
(

�jtj

)

(10)pi = G(D
�

j
, �j(i − 1)�∕n, �j) − G(D

�

j
, �j(i)�∕n, �j)

(11)MDTi = � − �(i − 1∕2)∕n

(12)MDT = E(mj,D
0

j
, Lc

j
) =

∑

i

MDTipi

at �1 . When D𝜁

j
< Lc

j
 , component j is certainly in a function-

ing state and expected downtime within the interval [t0, �1] 
is 0. For [t0, �2] and [t0, �3] we simply need to use Eq. (12) by 
changing the value of mj and replacing D0

j
 with D�

j
 . When 

D
�

j
≥ Lc

j
 , the component is known to have failed within 

[t0, �1] . This downtime can be known for a continuously 
monitored system or a system that self-announces the fail-
ure. However, in our case, the exact quantity is unknown and 
an expected length of downtime needs to be estimated. Tak-
ing advantage of using a stationary gamma process for deg-
radation model, we assume that the degradation is linear 
from D0

j
 and D�

j
 and the exact point of time (t�

j
) when degra-

dation crosses the Lc
j
 can easily be found. Then the total 

downtime within [t0,mj�] for mj = {2, 3} is �1 − t
�

j
+ mj�.

4.3.3 � Minimum average cost rate

From the renewal theorem mean maintenance cost per unit 
time can be expressed as in Eq. (13) where E[CR] is the total 
expected cost in a renewal period and E[TR] is the expected 
length of the renewal period. Note that each individual compo-
nent can be individually optimized with respect to their main-
tenance thresholds and inspection intervals.

The optimal preventive maintenance threshold ( Lp∗ ) and 
optimum inspection interval �∗ are obtained by minimizing 
Eq. (13) w.r.t. Lp and �:

For a new component with a degradation process that fol-
lows stationary gamma process, Mean Time Between 
Replacement (MTBR) can be obtained as L

p�

�
 for an interval 

of length � . However, the gamma process is a jump pro-
cess and it is very unlikely that the process will always hit 
Lp exactly and will overshoot above the threshold slightly 
(Van Noortwijk et  al. 2005) and the mean time can be 
approximated by L

p�

�
+

1

2�
 . In addition, we are monitoring 

periodically with an interval � and upon discovering a main-
tenance requirement, we need an additional � amount of time 
to execute maintenance. Therefore, expected renewal length 
can be approximated by,

Expected cost in a renewal period consists of several cost 
factors. Each inspection will incur an inspection cost regard-
less of maintenance, a setup cost, preventive or corrective 

(13)C(Lp, �) =
E[CR;L

p, �]

E[TR;L
p, �]

(14)C(Lp
∗

, �∗) = �∗ = arg min
Lp,�

C(Lp, �)

(15)E[TR;L
p, �] =

Lp.�

�
+

1

2�
+

3�

2
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maintenance cost, and associated downtime cost. Expected 
cost in a renewal period is then given by:

Equation (16) can be better understood by illustration pre-
sented in Fig. 4 directly adopted from Islam and Vatn (2020). 
Note that, the notations yp and yc in the figure are Lp and Lc 
according to this paper’s notation. a, b and c represent the 
situations when a component is already failed at �c where �c 
is the first inspection point to observe the degradation level 
above the preventive maintenance threshold, a component 
is above preventive maintenance threshold at �c but survives 
until the maintenance arrives, and a component is above pre-
ventive maintenance threshold at �c but fails before mainte-
nance arrives respectively. Here pa, pb and pc are probability 
that the component is in failed state at �c , probability that 
the component is in between Lp and Lc , and the probability 
that the component will fail within the next � respectively. 
In addition, E(�a) is the expected downtime in the interval 
[�c − �, �c] and E(�c) is the expected downtime in the interval 
[�c, �c + �] . Φ∗ is then found using Monte Carlo simulation 
and for the details of the process can be found in Islam and 
Vatn (2020).

5 � Computational challenge and heuristics

Grouping and scheduling of the maintenance activities are 
required to be conducted simultaneously in the dynamic 
grouping problem which is generally NP-hard (Vatn 2008). 
Such problems are often dealt with heuristics and 

(16)
E[CR;Lp, �] =S + Nici + cp + pa(cb + cd(E(�a) + �))

+ (1 − pb)[pccb + cdE(�c)]

meta-heuristics such as evolutionary algorithms. In this 
paper, we propose heuristics to solve the problem within a 
reasonable time frame. Equation (4) searches for the mini-
mum solution for the decision variables xk,j and y�

mj,j
 by con-

sidering all the possible combinations and search space 
explodes in terms of size. As an example, consider two com-
ponents j = {1, 2} and three scenarios {S,E,F} . Thus the 
total number of scenario combinations are ∣ � ∣= ΩJ = 9 and 
the combination of windows that can be utilized is WJ = 9 . 
For the case when x2,1 = x2,2 = 1 , all first three opportunities 
can be used as part of candidate solutions in the second 
stage. Therefore for the part with the second stage variables 
y
�

mj,j
 , we have to choose 1 window combination for each sce-

nario combination leaving us to deal with a search space of 
99 ≈ 387 million approximately. For the other combinations 
of x variables, the same process needs to be conducted. For 
more than 2 components the problem becomes intractable.

5.1 � Modification of the objective function

Now consider that Ψ is a single combination of x variables 
of j components and xΨ

k,j
 is the corresponding value of x vari-

ables taken by j in that combination Ψ where k ∈ {1, 2, 3} 
and xk,j ∈ {0, 1} . Then for each Ψ , we can rewrite Eqs. (4) 
as (17). Note that, �Ψ

k,j
= 1 if k = 2 for corresponding com-

bination Ψ.

Fig. 4   Illustration of mainte-
nance policy under degradation 
process directly adopted from 
Islam and Vatn (2020)
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Z(xk,j, y
�

mj,j
) or the minimum cost of the objective function is 

definitely represented by at least one of the first stage deci-
sion variable combination Ψ . Therefore it holds that,

Equation (4) would check every possible combinations of 
y
�

mj,j
 (second stage variable) across all the possible scenario 

combinations � . However it is rather obvious that, the mini-
mum cost of z(xΨ

k,j
, y

�

mj,j
) is the summation of minimum costs 

under each scenario combinations. In another word, mini-
mum cost is associated with the decisions of selecting win-
dow combinations that brings the cheapest cost for any par-
ticular scenario combination. Therefore for any particular Ψ , 
with J number of component ( j = {1, 2, .., J} ) and n corre-
sponding scenario combinations ( � = {1, 2, .., n} ) the equa-
tion is elaborated as Eq. (19).

(17)

z(xΨk,j, y
�
mj,j

) =
∑

j
�Ψ
k,jc

�
j +

∑

j

∑

�
p(� )

∑

y�mj ,j

(

xΨk,jy
�
mj,j

(

Cj(�j,mj)−

�jc�j

))

+ S
∑

�
p(� )

∑

mj

∑

j
max(y�mj,j

)

(18)Z

(

xk,j, y
�

mj,j

)

= min
Ψ

z

(

xΨ
k,j
, y

�

mj,j

)

(19)

min z(xΨk,j, y
�
mj ,j

) =
∑

j
�Ψ
k,jc

�
j + min p(1)

(

xΨk,1y
1
m1,1

(

C1(�1,m1) − �1c�1

)

+ xΨk,2y
1
m2,2

(

C2(�2,m2) − �2c�2

)

+ ...+

xΨk,Jy
1
mJ ,J

(

CJ(�J ,mJ) − �Jc�J

)

+ S
W
∑

m=1

J
∑

j=1
max(y1mj ,j

)
)

+ min p(2)
(

xΨk,1y
2
m1,1

(

C1(�1,m1) − �1c�1

)

+ xΨk,2y
2
m2,2

(

C2(�2,m2) − �2c�2

)

+ ...+

xΨk,Jy
2
mJ ,J

(

CJ(�J ,mJ) − �Jc�J

)

+ S
W
∑

m=1

J
∑

j=1
max(y2mj ,j

)
)

+ min p(n)
(

xΨk,1y
n
m1,1

(

C1(�1,m1) − �1c�1

)

+ xΨk,2y
n
m2,2

(

C2(�2,m2) − �2c�2

)

+ ...+

xΨk,Jy
n
mJ ,J

(

CJ(�J ,mJ) − �Jc�J

)

+ S
W
∑

m=1

J
∑

j=1
max(ynmJ ,j

)
)

The minimum of Eq.  (19) with respect to all Ψ as per 
Eq. (18) gives the minimum cost associated with the SP 
and the corresponding decision variables represent the opti-
mum decisions. This observation dramatically reduces the 
required number of computations to find the optimum solu-
tion. For example, the numerical example presented in the 
next section would require only 81 computations for the case 
when insurances are bought for both components as opposed 
to the 387,420,489 numbers of required computations in the 
complete formulation.

6 � Numerical results

This section presents a numerical result to verify the modi-
fied objective function. An example with two components is 
demonstrated against the full solution and the gain in compu-
tational time saving is discussed. All data are used with the 
assumption that component degradation follows a stationary 
gamma process with a known failure threshold and there is no 
uncertainty in the observation of the current health condition 
of the component. Component data presented in the table 1 is 
partially motivated by the work of Pedersen et al. (2020) where 
sensor data of several centrifugal pumps from an offshore oil 
platform located on the NCS were analyzed and the MTTF 
for pumps are roughly 15–20 months. The components in our 
study have been chosen within that range. In addition, in that 
study degradation related to only a single failure mode- impel-
ler damage was considered where the degradation rate follows 
a constant trajectory. However other failure modes also influ-
ence the degradation rate and add uncertainty to the measure. 
Therefore, in our study, we selected a higher value of SD.

6.1 � Grouping with two component

The mean time to failures (MTTF) of the components are 
respectively 20 and 18.33 time units when they are continu-
ously monitored and replaced without delay. The initial health 
conditions are assumed to be degraded for this illustration. It 
is assumed that opportunity windows for maintenance come 
every 3 time unit and the maintenance threshold and average 
cost rate is optimized based on such assumptions. These data 
are summarized in Table 1. For the cost parameters, cp

j
= 1 , 

c�
j
= 0.5 , cb

j
= 2 and ci

j
= 0.1 are set for all j. In addition, 

downtime cost per unit time and setup cost is assumed to be 
cd
j
= 10 and S = 4 monetary unit respectively for all j. The 

Table 1   Component data used 
in numerical example with two 
components

j �j �j Lc
j

MTTF SD t
0 D0

j
Φ∗

j
� L

p

j

1 0.10 0.010 150 20.00 11.90 0 50 1.02 3 48
2 0.15 0.015 150 18.33 9.81 0 50 0.91 3 33
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total operational life (T) is assumed to be 1000 time units. The 
degradation level at t0 + � or D�1

j
 is arbitrarily chosen for the 

convenience of demonstration as presented in Table 2.
Based on the degradation levels for corresponding scenarios 

and using the cost Eq. (3), Table 3 presents the individual cost 
of maintaining a component in the 1st, 2nd and 3rd window 
where the bold numbers represent the cheapest strategies for 
each scenario. In this particular case when they are consid-
ered individually, it can be seen that both components 1 and 
2 are optimum to be maintained at 2nd window for slow and 
expected degradation while optimum at 1st window in the case 
of fast degradation.

6.1.1 � Without incorporating uncertainty‑ deterministic 
solution 

Recall that, buying an insurance provides the flexibility of 
maintaining a component immediately at t0 + � even though 
the component was planned originally for either t0 + 2� or 
t0 + 3� . In the deterministic case, buying an insurance is 
irrelevant and if the component is cheaper to be maintained 
at t0 + � we would commit for the maintenance or otherwise 
we would simply plan it for the upcoming windows. This is 
represented by the Expected Value (EV) solution where the 
stochastic variables are replaced by their expected values for 
the optimization process. In this case, the result shows that 
the optimum strategy is to maintain both components at 2nd 
window with a total cost of 1928.72.

6.1.2 � With incorporating uncertainty‑ stochastic solution

The stochastic solution is obtained by separately solving 
the Eqs. (4) and (19) inside the boundary of relevant con-
straints. Both approaches resulted in the same conclusion 

which is presented in Table 4. The first two columns are 
the chosen first-stage decision variables for components 1 
and 2 respectively. Cost columns show the corresponding 
minimum cost of each decision combination taken in the 
first stage. Depending on the first-stage decisions number of 
combinations to evaluate in the second stage will vary. For 
example, when maintenance of both components is com-
mitted at �1 , there is only a single combination to check for 
each of the scenario combinations. Obviously, the number 
of combinations is maximum for the cases when insurance 
is availed for both of the components resulting in maximum 
flexibility.

The result from the numerical example shows in Table 4 
that, Eq. (4) is transformable to Eq. (19). The results are the 
same in both cases, however, the full calculation requires 
more than 2 hours compared to the modified calculation 
which requires only a few seconds (Elapsed time is only 
shown for the full calculation). The calculation is performed 
in a commercially available computer with moderate com-
puting power with Intel(R) Core(TM) i7-7600U CPU @ 
2.80GHz & 2.90 GHz processor and 16 GB RAM. For two 
components, the computational bottleneck lies in the case 
when both insurances are bought in the first stage which 
consumes about 88% of the total computational time.

Table 5 shows the result of corresponding second stage 
decisions in detail that generated the optimum solution. Col-
umn names denote the window number of components 1 and 
2 respectively and each row represents a scenario combina-
tion. It shows that the SP solution recommends using the first 
window for both components when at least one component 
deteriorates more than expected. It also recommends the first 
window when both components experience the expected sce-
narios. For any other situations, both components should be 
maintained together at the second window.

6.1.3 � Value of stochastic solution

In practical situations, SP is seldom used mainly due to 
its complexity (Birge 1982) and therefore it is only useful 
when the value of it over-weighs the computational cost of 
performing it. Value of Stochastic Solution (VSS), in this 
regard, is useful to measure the expected loss of using the 
deterministic solution or the expected profit of using SP. The 
goodness of the expected solution can be obtained by VSS 

Table 2   Discretization of 
degradation levels and their 
corresponding probabilities

j Scenarios p
�

j
D

�
1

j

1 S 0.33 50.18
1 E 0.33 76.82
1 F 0.33 131.38
2 S 0.33 50.96
2 E 0.33 79.65
2 F 0.33 132.53

Table 3   Individual cost of 
maintaining at mth window for 
given scenarios for component 1 
and 2 respectively

Component 1 Component 2

m = 1 m = 2 m=3 m = 1 m = 2 m = 3

S 1012.72 1011.52 1012.88 912.73 911.60 913.01
E 1012.72 1012.23 1015.52 912.73 912.49 916.54
F 1012.72 1016.38 1028.71 912.73 917.98 933.51



S973Int J  Syst  Assur  Eng  Manag (December 2023) 14:S961–S979	

1 3

by replacing the expected values with random values for the 
input variables (Escudero et al. 2007) as in Eq. (20).

where Z∗
EEV

 is the optimal solution by keeping the first-stage 
variables fixed as the deterministic solution which is, in this 
case, ∀xk = 0 . Z∗

SP
 is the optimal solution of the stochastic 

problem. Recall the result for the case of two components 
where the 2nd window is optimum for both components 
without paying for any insurances. Therefore, maintenance 
can be done only either at the 2nd window or can be post-
poned at the 3rd window. The EEV solution for that problem 
is found to be 1931.398 monetary units and thus the VSS 
results in 2.22 monetary units. It implies that, for this exam-
ple, it is beneficial to use SP instead of the deterministic 
solution and 0.11% cost can be saved.

6.2 � Sensitivity analysis

In this Sect. 6 components are considered and With the 
increasing number of components (J), the number of sce-
narios (Ω) , and the number of immediate windows to con-
sider (W), the required number of calculations will escalate 

(20)VSS = Z∗
EEV

− Z∗
SP

rapidly following ΩJ×WJ . Assuming three scenarios and the 
first three windows to consider for three components, this 
number already explodes to 4.4 × 1038 . With the modified 
approach, the computational bottleneck is regulated by 
ΩJ ×WJ and for 6 components computational bottleneck is 
a maximum of 36 × 36 = 531441 number of computations 
for the case when insurance is bought for all the components. 
Table 6 shows the component data with their MTTF calcu-
lated for Lc

j
= 200.

A simple design of experiment is set up to study the dif-
ferent critical input parameters against the output variable- 
VSS. Three input parameters are chosen- downtime cost, 
setup cost, and insurance cost. Failure of a critical compo-
nent in a remote operational environment usually contributes 
to high downtime costs. For example, oil industries can lose 
$5.037 million for only 3.65 days of unplanned downtime in 
a year (The impact of digital on unplanned downtime 2016). 
In this experiment three levels of downtime costs and setup 
costs along with 3 levels of insurance costs are considered 
and the data are summarized in Table 7 with other fixed 
parameters. Choosing an appropriate methods for discritiza-
tion is not straightforward and we leave it to further research. 
A brief description of discretization process is presented in 

Table 4   Result of SP using full and modified approach

Component 1 decision Component 2 decision Cost (modified) Cost (full) Total combinations Time (sec)

Committed at �
1

Committed at �
1

1929.45 1929.45 1 0.15
Flexible with insurance Committed at �

1
1929.45 1929.45 19683 0.75

Planned beyond �
1

Committed at �
1

1934.10 1934.10 512 0.13
Committed at �

1
Flexible with insurance 1929.45 1929.45 19683 0.75

Flexible with insurance Flexible with insurance 1929.18 1929.18 387420489 7951.37
Planned beyond �

1
Flexible with insurance 1931.31 1931.31 10077696 491.76

Committed at �
1

Planned beyond �
1

1934.74 1934.74 512 0.13
Flexible with insurance Planned beyond �

1
1931.84 1931.84 10077696 568.79

Planned beyond �
1

Planned beyond �
1

1931.40 1931.40 262144 5.62

Table 5   Detail result of SP 
generating the optimum solution

Bold represents the corresponding cheapest window combinations found by SP solution under each sce-
nario combinations

Scenario (1,1) (2,1) (3,1) (1,2) (2,2) (3,2) (1,3) (2,3) (3,3)

(S,S) 214.27 214.64 214.79 214.65 214.12 214.72 214.80 214.73 214.43
(E,S) 214.27 214.72 215.08 214.65 214.20 215.01 214.80 214.80 214.73
(F,S) 214.27 215.18 216.55 214.65 214.66 216.48 214.80 215.27 216.19
(S,E) 214.27 214.64 214.79 214.74 214.22 214.82 215.20 215.12 214.82
(E,E) 214.27 214.72 215.08 214.74 214.30 215.11 215.20 215.20 215.12
(F,E) 214.27 215.18 216.55 214.74 214.76 216.58 215.20 215.66 216.58
(S,F) 214.27 214.64 214.79 215.36 214.83 215.43 217.08 217.00 216.71
(E,F) 214.27 214.72 215.08 215.36 214.91 215.72 217.08 217.08 217.00
(F,F) 214.27 215.18 216.55 215.36 215.37 217.19 217.08 217.54 218.47
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the appendix. In this study it is assumed that there is an 
equal probability of experiencing expected, faster or slower 
degradation scenarios and the degradation observed at t0 + � 
can be ±25 from the expected degradation level.

The result of the experiment is summarized in Table 8. 
Besides these input parameters, some tests are done with 
zero downtime cost which would eventually return VSS of 
0 because the maintenance of failures can always be pushed 
backward and forward leaving no trade-off to optimize. With 
0 downtime cost, we eliminate any impact of uncertainty and 
thus VSS returns 0 as expected.

The result shows the critical role of setup cost. When the 
setup cost is low it provides the flexibility of scheduling at 
any opportunity and thus tends to avoid highly expensive 
downtime by choosing a safer insurance of early mainte-
nance. It reduces the uncertainty of the decisions taken and 
therefore there is a little benefit of SP in such cases. It is 
reflected in the result by returning a VSS of 0 for all the 
cases with setup cost of only 10, which is as low as a planned 
maintenance cost of one component. It can be also observed 
in the cases when the setup cost is 100 monetary unit. VSS 
increases as the downtime contribution increases from 10 
to 100 monetary unit per unit time. However, it reduces for 
c
j

d
= 500 as it is a very uneven competition between down-

time and setup cost and thus decision uncertainty drops 
significantly. When the trade-off between setup cost and 
downtime cost is more balanced, SP can deliver significant 
benefit which is depicted by the cases where both S and cj

d
 

are 500. It is obvious that the VSS is going to be different 
according to the input parameters used. When the setup cost 
and downtime is high (e.g. offshore oil and gas operation, 

wind-farm maintenance, etc.), significant benefit can be pos-
sible. In this study, for example, a maximum of 10.43% cost 
savings has been shown.

7 � Discussion

In this paper, it is assumed that the only source of uncer-
tainty is associated with the degradation process which is 
aleatory in nature. There can be several other epistemic 
uncertainties that can play major roles in the decision-
making process. In remote offshore operations, for exam-
ple, weather conditions, transportation availability, etc. are 
some important factors that may add up to the uncertainty 
of having a pre-fixed schedule available. In addition, the 
failure thresholds are assumed to be known perfectly and 
fixed for each component, which is a common assumption 
in CBM-based research. It is often very difficult to find this 
quantity precisely and it is more realistic to represent the 
failure thresholds as a probability distribution as well.

Another assumption of this model is related to the num-
ber of maintenance tasks that are possible to execute in 
each visit. In this model, there is no limitation on how 
many maintenance tasks can be executed in each visit 
which is often not practical for remote operations. For 
example, if a helicopter is used for going to the site, then 
there is a limitation on crew capacities. Different tasks 
may require different expertise and accommodating them 
all on the same trip may not be possible. Alternative 
arrangements such as more than one trip or more special-
ized transportation may influence the setup cost for the 
visit. Such constraints are definitely of interest for incor-
poration in the model.

The probability distribution of uncertainty is discretized 
in only 3 scenarios which is a good starting point and often 
sufficiently facilitates decision-makers. Finer the probability 
distribution is divided such as 5, 7... scenarios, the higher the 
precision is going to be. In contrast, the finer the intervals, 
the higher the computational expense as the number of com-
putations exponentially increases. Whether more scenarios 
are required or not should be further evaluated for each case. 
In addition, this two-stage SP problem is only considering 
the uncertainties associated with the degradation uncertainty 
at t0 + � and the underlying assumption is that from that 
point the degradation trajectory will follow the expected sce-
narios. Therefore, the estimation of the failure probability 
and expected downtime between t0 + � and t0 + 3� is only 
based on the possible component condition at t0 + � and the 
uncertainty between t0 + 2� and t0 + 3� is not accounted for. 
To encapsulate all these uncertainties will require a multi-
stage SP formulation.

Discrete distribution is required to solve the SP prob-
lem given in Eq. (4). However, available computing power 

Table 6   Component data for sensitivity analysis

Component (j) Shape ( �j) Scale ( �j) MTTF

1 0.50 1 401.00
2 0.75 1 267.33
3 1.00 1 200.50
4 1.25 1 160.40
5 1.50 1 133.67
6 2.00 1 100.25

Table 7   Input parameters for the design of experiment

Input parameters Values (monetary unit)

cd
j

10, 100, 500 (per unit time)
S 10, 100, 500
c�
j

1, 5, 8
c
p

j
10

ci
j

1
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is usually limited to handle the cardinality of the prob-
lem together with the complexity of the decision model 
and thus distributions of stochastic parameters need to 
be approximated by discrete distributions with a limited 
number of outcomes (Kaut and Stein 2003). Decision 
analysts commonly approximate continuous probabil-
ity density function with properly designed probability 
mass functions to represent the continuous distribution of 
uncertainties and this process is known as discretization 
(Hammond 2014). There are many ways to generate sce-
narios such as Monte Carlo simulation, Decision Trees, 
decision makers’ subjective assignment of the probabil-
ities using their expert understanding of the system of 
interests, etc. Finding an appropriate method of discre-
tization of the scenarios is a delicate process and can 
significantly influence the outcome of optimization prob-
lems. This is beyond the scope of this paper and therefore, 
one of the distribution-specific methods- Bracket Median 

is utilized for the purpose of the sensitivity analysis for 
its apparent simplicity of application. Note that, different 
approaches are expected to deliver different discretization 
results as conditional distributions are usually skewed. 
Distribution-specific method is very briefly described in 
the appendix.

The assumption associated with the degradation pro-
cess following a stationary gamma process is not a strict 
condition and it is not required to model the degradation 
process with a stochastic model such as gamma, wiener, 
Markov process, etc. The only requirement is to be able 
to calculate the failure probability and expected downtime 
of a component given its current health condition. Any 
stochastic or data-driven degradation model fulfilling this 
condition can utilize this grouping algorithm. In addition, 
periodic opportunity to visit maintenance site is also not 
a hard constraint and the grouping algorithm is transform-
able with a little effort. The main challenge regarding 

Table 8   Result of the experiment

c
j

d
S c�

j
VSS Savings (%)

10 10 1 0.00 0.00
100 10 1 0.00 0.00
500 10 1 0.00 0.00
10 100 1 135.01 2.96
100 100 1 495.21 9.57
500 100 1 6.59 0.13
10 500 1 118.45 0.63
100 500 1 1216.09 5.83
500 500 1 2410.76 10.43
10 10 5 0.00 0.00
100 10 5 0.00 0.00
500 10 5 0.00 0.00
10 100 5 141.38 3.09
100 100 5 500.77 9.65
500 100 5 3.24 0.06

c
j

d
S c�

j
VSS Savings (%)

10 500 5 124.62 0.66
100 500 5 1217.45 5.83
500 500 5 2410.84 10.43
10 10 8 0.00 0.00
100 10 8 0.00 0.00
500 10 8 0.00 0.00
10 100 8 147.82 3.22
100 100 8 1.29 0.03
500 100 8 1.31 0.03
10 500 8 129.30 0.69
100 500 8 1218.47 5.83
500 500 8 2410.97 10.42
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non-periodic opportunities lies in the estimation of indi-
vidual cost rate (Φ∗

j
).

8 � Conclusion

CBM decision-making is a two-step process wherein the 
first step condition monitoring information helps develop 
the deterioration modeling which is then followed up 
by the decision-making step to decide when and what 
to maintain (Ahmad and Kamaruddin 2012). Decision-
making with CBM involves diagnostics and prognos-
tics. Focusing on the prognostics, understandably, it is 
an uncertain quantity, most commonly presented in the 
form of a probability distribution, and thus under CBM 
strategy, decision-makers are further challenged to take 
more dynamic decisions. For profitable decision-making, 
intuitively, understanding the associated risks with each 
possible decision is of critical importance. In a complex 
industrial environment, decision-making is a complex 
problem of choice, and humans are limited in terms of 
making good decisions by considering all associated fac-
tors and their effects simultaneously (Saaty 1988). The 
main objective of this paper is to propose a maintenance 
optimization model to systematically deal with uncertain-
ties in decision-making.

The main intent of this paper is to incorporate deci-
sion analysis in maintenance grouping under the CBM 
strategy to facilitate the decision-making process by sys-
tematically and quantitatively presenting all the decision 
alternatives and their associated risks under varying sce-
narios. This paper presents a maintenance model to serve 
this purpose and first of its kind, to the best of authors’ 
knowledge. Although there are several limitations of this 
model that are discussed in the previous section, there are 
some promising results to consider further development 
of this model. First, simultaneous grouping and sched-
uling of the maintenance tasks usually struggle with the 
cardinality of the problem. It is shown in this paper that 
the burden of computation can be dramatically reduced 
by the simple manipulation of the solution-search strat-
egy. Undoubtedly incorporating more uncertainties and 
constraints discussed in the previous section will further 
complicate the problem and further study is required to 
develop a more practical model to use in industrial appli-
cations. Secondly, although for the given experimental 
design, the VSS is rather small (maximum 0.45% ), they 
are always positive in all reasonable cases. Notice that, 
for a multi-million/billion-dollar project, the resulted sav-
ings are still significant and VSS can be larger than this 
experiment for a more volatile system. Be it large or small, 
a positive VSS indicates that there are opportunities for 
improvement and further studies should be conducted. 

Thirdly, discretization of the probability distribution of 
uncertainty is a critical factor for this model to be use-
ful. This process is independent of the grouping algorithm 
and solely depends on how decision-makers describe the 
associated uncertainties of the system. It can be either 
qualitative (subjective assignment of the probabilities by 
domain experts) or quantitative (e.g., bracket methods, 
quadrature methods, etc.). However, the most critical thing 
is to represent the uncertainty reasonably that resembles 
the reality to avoid garbage in and garbage out situation. 
The discretization process should be meticulously selected 
before implementing this algorithm.
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Appendix A Definition

A.1 Condition‑based maintenance (CBM)

Corrective or unplanned maintenance is the earliest main-
tenance technique and later time-based preventive mainte-
nance, or planned maintenance came into practice which 
performs maintenance at periodic intervals. Eventually, with 
the increasing complexity of modern development, the cost 
of time-based preventive maintenance has also increased for 
industries (Jardine et al. 2006). In such a context, CBM is 
a more efficient alternative for time-based preventive main-
tenance. Note that, both CBM and time-based scheduled 
maintenance are under the same umbrella of preventive 

http://www.ntnu.edu/bru21
http://creativecommons.org/licenses/by/4.0/
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maintenance- aiming to maintain a component prior to an 
actual failure.

TM5-698-2: (2006) defines CBM as- preventive main-
tenance performed to ascertain the condition of an item, 
detect or forecast an impending failure, or performed as 
a result of such actions. This reference doesn’t distinguish 
between the concept of Predictive Maintenance and CBM 
and in this article Predictive Maintenance is used inter-
changeably with CBM. Alaswad and Xiang (2017) defines 
CBM as a maintenance approach that emphasizes combin-
ing data-driven reliability models with sensor data collected 
from monitored operating systems to develop strategies for 
condition monitoring and maintenance. The goal of CBM is 
to reduce unnecessary maintenance actions and eliminate 
the risks associated with preventive maintenance actions. 
In this article, the notion of CBM is implied to denote that 
a component’s health condition can be traced by a means of 
a condition monitoring system and such information can be 
utilized to develop a prognosis of the failure.

A.2 Condition monitoring

Machinery health conditions can be assessed with condition 
monitoring by primarily non-intrusive testing, visual inspec-
tions, and performance data (Gulati and Smith 2009). This is 
an enabling feature that makes CBM possible. In this article, 
we assume that a condition monitoring scheme is available 
for a perfect measurement of the health condition of the 
component of our interest.

A.3 Gamma process

Among the existing stochastic degradation processes, the 
gamma process is considered best for describing monotonic 
degradation (Noortwijk et al. 1997). It is a stochastic process 
with independent and non-negative degradation increments 
where these increments are distributed with a gamma distri-
bution with an identical scale parameter. When degradation 
accumulates monotonically gradually in a sequence of tiny 
increments, the gamma process is deemed to be suitable to 
model such phenomena van Noortwijk (2009). A gamma 
process is defined with a shape parameter v > 0 and intensity 
parameter u > 0 if its probability density function is given 
by:

where Γ(a) = ∫ ∞

0
ua−1e−udu is the corresponding gamma 

function for shape parameter a > 0 and the scale parameter 
b > 0.

In this study, a stationary gamma process is used where 
the transition probability between two given state values at 

(A1)Ga(x ∣ a, b) =
ba

Γ(a)
xa−1e−bx for x > 0

any two times depends only on the difference between those 
times. The shape parameter a therefore is a linear function at 
for a > 0 and the process can be formally defined as follows:

For a, b > 0, a continuous-time stochastic process 
X(t ≥ 0) is a stationary gamma process, such that: 

1.	 X(0) = 0

2.	 X(t) has independent increments
3.	 For 0 ≤ s < t , X(t) − X(s) ∼ Ga(a(t − s), b

Abdel-Hameed (1975) and van Noortwijk (2009) are rec-
ommended for further details about gamma process and its 
application in maintenance.

A.4 Remaining useful life (RUL)

Si et al. (2011) define RUL as the useful life on an asset at 
a particular time of operation where RUL is a random vari-
able that can depend on different factors such as asset’s cur-
rent age, operating environment, health indicator, etc. The 
term useful is usually an economic aspect rather than the 
actual technical lifetime of an industrial machine as indus-
trial life is often longer than its economic life (Ahmadzadeh 
and Lundberg 2014). RUL is a random variable that depends 
on the condition of equipment at time t. Mathematically it 
can be expressed as:

where X(t) is the condition indicator at time t, X(t + h) is 
the prognosis of the condition at t + h , SL is a set of failed 
or unacceptable states of the component. Reaching a failed 
state is generally defined by a failure threshold. When the 
degradation process first exceeds this pre-defined threshold, 
it’s called First Passage Time (FPT) and can be defined with 
respect to a predefined failure threshold L and time to failure 
T as follows:

The degradation process along with the threshold determines 
the probability density function of RUL. However, statistical 
models for prognostics of RUL independent of threshold are 
also possible if the failure data are available (Xu and Wang 
2012). In this study, it is assumed that a deterministic failure 
threshold level is known.

A.5 Discretization process

The stochastic parameter here is the degradation increment 
ΔD within a time interval � = �1 − �0 which is a continuous 
distribution as follows:

(A2)RUL(t) = inf {h ∶ X(t + h) ∈ SL ∣ X(t) ∉ SL}

(A3)TL = inf {t > 0 ∶ X(t) ≥ L}
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Distribution-specific methods require the knowledge of the 
full distribution and is divided into bracket methods and 
quadrature methods (Hammond 2014). The distribution is 
partitioned into mutually exclusive intervals where each 
interval is represented by a single value with some probabil-
ity. The quadrature method involves numerical integration 
and one of the commonly known approaches is Gaussian 
quadrature developed by Miller and Rice (1983). In Bracket 
Mean method, brackets are represented by their conditional 
means where xi = E[X ∣ x ∈ Bi] where Bi is the ith bracket 
and the corresponding probability is represented by 
pi = ∫

x∈Bi
f (x)dx . Bracket Median, on the other hand, utilizes 

condition medians instead of means. More detail of these 
two methods can be found in Bickel et al. (2011); Hammond 
(2014); Clemen and Reilly (2013), etc.
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