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Abstract  This article aims to review the literature on 
condition-based maintenance (CBM) by analyzing various 
terms, applications, and challenges. CBM is a maintenance 
technique that monitors the existing condition of an indus-
trial asset to determine what maintenance needs to be per-
formed. This article enlightens the readers with research in 
condition-based maintenance using machine learning and 
artificial intelligence techniques and related literature. A bib-
liometric analysis is performed on the data collected from 
the Scopus database. The foundation of a CBM is accurate 
anomaly detection and diagnosis. Several machine-learning 
approaches have produced excellent results for anomaly 
detection and diagnosis. However, due to the black-box 
nature of the machine learning models, the level of their 
interpretability is limited. This article provides insight into 
the existing maintenance strategies, anomaly detection tech-
niques, interpretable models, and model-agnostic methods 
that are being applied. It has been found that significant 
work has been done towards condition based-maintenance 
using machine learning, but explainable artificial intelli-
gence approaches got less attention in CBM. Based on the 
review, we contend that explainable artificial intelligence 
can provide unique insights and opportunities for addressing 
critical difficulties in maintenance leading to more informed 

decision-making. The analysis put forward encouraging 
research directions in this area.

Keywords  Condition-based maintenance · Machine 
learning · Anomaly detection · Explainable artificial 
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SVM	� Support vector machine
TC	� Total citations
XAI	� Explainable artificial intelligence

1  Introduction

Maintenance is crucial in improving asset availability in 
manufacturing industries. The appropriate choice of main-
tenance strategy is essential for minimizing costs and down-
time. Successive improvement approaches have been tried 
to overcome the inefficiencies encountered by the previous 
maintenance approaches (Prajapati et al. 2012). The main-
tenance strategies have been divided into Reactive mainte-
nance (RM), Scheduled maintenance (SM), Condition-based 
maintenance (CBM), and predictive maintenance (PdM) 
(Jardine et al. 2006; Fink 2020).

Reactive maintenance (RM) occurs when a machine 
component is failed and can no longer operate. The failed 
machine component needs to be replaced or repaired (Paz 
& Leigh 1994) for the machine to work again. The main 
advantage of the RM strategy is that the expenses associ-
ated with keeping machines running are low (Swanson 2001; 
Vanzile & Otis 1992). But, this strategy is risky from the 
point of view of safety measures and higher costs to restore 
the catastrophic failures, and a higher amount of time to be 
repaired. Scheduled maintenance (SM) is a strategy where 
maintenance is carried out at predecided time intervals. It 
comprises inspections, adjustments, and planned shutdowns. 
This strategy depends on the machine components’ probabil-
ity of failing in specified time intervals (Gits 1992). The SM 
strategy’s primary goals are to reduce the cost of reactive 
maintenance and machine failures. The repair cost, how-
ever, is generally less in SM compared to RM. This strategy 
relies on a predetermined degradation model of a particular 
machine which sometimes may lead to missed faults caused 
by various factors. Condition-based maintenance (CBM) 
and Predictive maintenance (PdM) strategies are different 
from RM and SM as they are data-driven approaches that 
help operators in setting times for maintenance activities. 
Condition-based maintenance involves continuously moni-
toring an asset and replacing it when it stops functioning 
normally. On the other hand, Predictive maintenance (PdM) 
uses proactive, data-driven maintenance techniques to assess 
equipment conditions and determine when maintenance is 
necessary. PdM predicts the remaining useful life of a com-
ponent to designate the point when maintenance has to be 
performed. PdM results in reduced maintenance costs com-
pared to CBM (Carvalho et al. 2019a, b; Ran et al. 2019).

The CBM and PdM are considered to be an integral part 
of modern smart manufacturing or Industry 4.0. Industry 
4.0 integrates computer science engineering with mechani-
cal and electrical engineering to bring advancement at the 

technological level (Lasi et al. 2014). It requires manufactur-
ing companies to collect and store operations data to moni-
tor several parameters affecting machinery conditions and 
detect warning signals in case of breakdown (Bousdekis 
et al. 2015). Some of the key players in the Industry 4.0 
revolution are prognostic and health management (PHM) 
systems. These systems aim to solve the problems of effec-
tively detecting whether an industrial component has devi-
ated from its normal operating condition or predicting when 
a fault will occur and execute an intelligent maintenance 
approach through real-time monitoring and data analysis. 
Prognostics and health management comprises condition-
based and predictive maintenance (Fig. 1). CBM refers 
to anomaly detection and fault diagnosis. The motive of 
anomaly detection is to find out whether the health of the 
system is normal or not. The diagnosis refers to finding out 
the deviation from the normal behavior of the system and 
its corresponding degree. Prognosis refers to identifying the 
trend of deterioration and estimating the remaining useful 
life (RUL) (Z. Zhao et al. 2021). Effective PHM methods 
promise to reduce the likelihood of catastrophic failures, 
thereby enhancing the safety of industrial machines.

As stated previously, as a key player in the fourth indus-
trial revolution, PHM utilizes some of the most recent 
advancements made in computer science engineering 
over the past few years. Among them, machine learning 
is arguably one of the technologies receiving the most 
remarkable growth. Machine learning is an essential and 
fundamental technical achievement that enables Indus-
try 4.0 and plays a critical role in industrial innovation 
by delivering solutions to various difficulties (Ayvaz & 
Alpay, 2021). Classical machine learning methods such as 
artificial neural networks (ANN), support vector machine 
(SVM), K-nearest neighbor (KNN), decision trees (DT), 
etc., have been favorably implemented in artificial intelli-
gence-enabled maintenance (Wuest et al. 2016; W. Zhang 

Fig. 1   Classification of prognostics and health management process 
(Z. Zhao et al. 2021)
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et al. 2019a, b). Deep learning (DL) is a subset of machine 
learning built on artificial neural networks. DL methods 
such as convolutional neural networks (CNN), recurrent 
neural networks (RNN), deep reinforcement learning, 
autoencoders, etc., are emerging as important approaches 
in the maintenance of various equipment and system (Ami-
hai et al. 2018; Huuhtanen and Jung 2018; Janssens et al. 
2017).

Advancements in machine learning techniques have 
achieved an influential accuracy benchmark in recent years 
(LeCun et al. 2015). But this has resulted in higher model 
complexity. Consequently, model interpretability and 
explainability are reduced. Therefore, it is hard for the users 
to understand the prediction results. Hence, these models are 
considered “black-box models” (Rudin C. 2019). Explain-
able artificial intelligence (XAI) generates more interpreta-
ble and user-understandable explanations. The ultimate goal 
of the XAI approach is to create and modify the existing 
machine learning techniques with an adequate explanation 
so as the end-user, who is dependent on the recommenda-
tions of the artificially intelligent systems, can understand 
the overall behavior, weakness, and strength of the system 
(Gunning 2019). Interpretability is the extent to which an 
end-user can acknowledge the source of a decision (Kim 
et al. 2016). It is sufficient to know about prediction accu-
racy in a low-risk environment. However, there are cases 
where it is essential to see the model’s explanation of how 
it came to that prediction (Doshi-Velez & Kim 2017). The 
motivation of interpretability is to create interpretable mod-
els, explain the model’s complexity, increase the model’s 
fairness, and check the sensitivity of the predictions.

In this review article, we make the consecutive 
contributions:

1.	 We illustrate anomaly detection techniques in the context 
of CBM and familiarize the readers with it based on the 
literature using bibliometric analysis.

2.	 We identify XAI techniques as an essential study field 
for upkeep in unsolved research problems.

3.	 To assess the scope of XAI in maintenance, we discuss 
interpretable models and model-agnostic approaches 
that are being used and provide their merits and disad-
vantages in various aspects.

This paper is organized as follows; Sect. 2 discusses the 
data gathering and research methods and includes a brief 
discussion of research growth, relevant sources, keyword 
analysis, etc. Different anomaly detection methods based on 
machine learning types are described in Sect. 3. The prob-
lems with black-box machine learning models are illustrated 
in Sect. 4, which also briefly introduces interpretable and 
model-agnostic methods. Section 5 winds up the paper.

2 � Data collection and research methodology

We collected the data from the most preferred archive: 
Scopus, and bibliometric analysis was performed. This 
analysis reveals the trends in the publication from the 
perspective of research advancement, which helps in 
choosing the best journal, crucial keywords, and the most 
relevant sources.

The keywords used for the research are: “Condition-based 
maintenance” or “condition-based monitoring” and “learn-
ing” performed on 1st October 2021 (Search within arti-
cle title, abstract, keywords). We considered the data from 
2010 to 2021, and the subject area is limited to engineering. 
Scopus showed 261 documents. Out of the 261 papers, 128 
(49.0% of the total documents) were articles. Other catego-
ries were conference paper (110), review (10), conference 
review (7), book chapter (5), and book (1) (Table 1).

2.1 � Research growth

CBM, with machine learning, has been gaining expeditious 
attention since its establishment. Figure 2 shows the total 
year-wise number of publications in Scopus. As shown in 
Fig. 2, the publications from 10 in 2015 reached more than 
60 in 2020. The search was performed on 1st October 2021, 
with three months remaining in the year, and covid 19 pan-
demic could be two of the reasons for the drop in the publi-
cations as in the last part of the chart.

2.2 � Most relevant sources

In this section, we show (Table 2) the top 10 relevant sources 
of the publications in the area, sorted by the number of arti-
cles. As can be seen, IEEE access is at the top with 13 arti-
cles, while Lecture Notes in networks and systems stands at 
the bottom with four articles. This analysis represents the 
exploration that CBM has acquired through these publica-
tions over the years.

Table 1   List of document types Document types Numbers

Article 128
Book 1
Book chapter 5
Conference paper 110
Conference review 7
Review 10
Total documents 261
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2.3 � Country‑specific production

This section lists the top 10 countries according to the total 
number of publications (Table 3). The USA is at the top of 
the list with 93 publications, and Singapore is at the bottom 
with 12 publications.

2.4 � Keyword analysis

Figure 3 shows a word cloud which indicates the prominence 
of the word as per its appearance in the manuscript. It is 
noted here that “condition-based maintenance” and “learn-
ing systems” are two of the most relevant keywords.

2.5 � Co‑Citation network

Co-citation is stated as the recurrence with which two arti-
cles are cited together by other articles. Figure 4 represents 
the prominent co-cited authors of CBM research. By co-
citation analysis, the predominant knowledge bases of the 
CBM can be established proficiently and effortlessly from 
cited references.

3 � Condition‑based maintenance (CBM)

The maintenance of an industrial asset is an indispensable 
exercise in the production process. Condition-based mainte-
nance (CBM) is a strategy that observes the health condition 

Fig. 2   The number of docu-
ments published by year

Table 2   List of top 10 most relevant sources

Sources Articles

IEEE access 13
Mechanical systems and signal processing 12
Ocean engineering 6
Expert systems with applications 5
Lecture notes in mechanical engineering 5
Proceedings of the annual conference of the prognostics 

and health management society phm
5

Applied sciences (Switzerland) 4
Computers in industry 4
IEEE transactions on reliability 4
Lecture notes in networks and systems 4

Table 3   Country scientific 
production

Region Freq

USA 93
China 92
Italy 34
France 33
UK 26
Canada 18
Brazil 17
Spain 15
Germany 13
Singapore 12

Fig. 3   Word Cloud
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of machine elements over time to recognize and prevent pos-
sible failures (Vachtsevanos et al. 2006). Planned mainte-
nance (PM) is accomplished through predetermined sched-
uled intervals, whereas CBM is conducted after a decline 
in the condition of the equipment. This maintenance strat-
egy effectively reduces the cost of machine failures, mini-
mizes the chances of interference with normal operations, 
reduces unscheduled downtime due to failures, and enhances 
machinery reliability (de Jonge et al. 2017).

CBM is a maintenance strategy that upholds maintenance 
decisions depending on the condition monitoring process 
(Jardine et al. 2006; Grall et al. 2002). Figure 5 illustrates 
CBM and PdM’s main components, i.e., anomaly detection, 
fault diagnosis, and prognosis. In CBM, the equipment’s 
operative condition is monitored using sensors to collect 
various parameters such as vibration, temperature, acoustic 
emission, lubricating oil, etc. (Campos 2009). CBM follows 
the data acquisition, extraction, and preprocessing processes 
to uphold decision-making through information regarding 
a system’s health condition. The information derived from 
the anomaly detection and fault diagnosis process can be 
used at the PdM level to describe system health conditions 
in a better way.

3.1 � Anomaly detection

Anomaly detection helps in finding the patterns in the par-
ticular data that do not match the expected behavior. These 
non-compliant arrangements are called anomalies, outliers, 

exceptions, etc., in different domains (Chandola et al. 2009). 
An anomaly is detected when the input data show dissimi-
larities compared to normal machine conditions (Khan and 
Yairi 2018). Finding an anomaly does not imply erroneous 
data because it might be due to a new healthy feature that 
the anomaly detection algorithm has not acclimated to or 
does not relate to historical data (Yue Zhao et al. 2019). 
Anomaly detection techniques have been favorably applied 
for fault revelation in manufacturing (Schneider and Frank 
1996), fraud detection in the financial sector (Sadgali et al. 
2019), intrusion detection in a computer network (García-
Teodoro et al. 2009), finding the potential risk in the health 
sector  (Antonelli et al. 2013), oil and gas industries (Shahir 
et al. 2015), etc.

Supervised anomaly detection approaches need a dataset 
labeled as “faulty” and “normal”. Unsupervised anomaly 
detection approaches discover formerly unseen data points 
without any prior understanding. A minimal amount of 
dataset represents an anomaly (usually less than 1%). Hence 
there are insufficient examples to learn for a supervised 
learning approach. Therefore, unsupervised learning algo-
rithms are trendy for finding an anomaly. Labels are acces-
sible only for normal classes in semi-supervised learning 
(Kiran et al. 2018). Here we discuss some widespread indus-
trial anomaly detection approaches. Figure 6 illustrates vari-
ous anomaly detection approaches based on various machine 
learning approaches.

Fig. 4   Co-citation network
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Fig. 5   Flow diagram of condition-based maintenance and predictive maintenance

Fig. 6   Types of anomaly detec-
tion techniques
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3.1.1 � Supervised anomaly detection techniques

Support vector machine (SVM) is the most used supervised 
learning algorithm in multiclass classification problems. The 
hyperplane with the highest margin is used in multidimen-
sional space to disparate one class from another (X. Zhang 
et al. 2006). Classical SVM, and its improved versions, have 
been successfully implemented for anomaly detection. For 
example, power signals along with vibrations were used for 
anomaly detection in wind turbines using SVM (Santos et al. 
2015), and a combination of SVM and adaptive neuro-fuzzy 
inference (ANFIS) was used for fault detection in the case of 
the steam turbine (Salahshoor et al. 2010), a fusion of relevance 
vector machine (RVM) and SVM was used for detecting a fault 
in the case of low-speed bearing (Widodo et al. 2009).

An artificial neural network (ANN) is the constituent of 
AI that is intended to simulate the human brain. Neurons 
are connected by the nodes and carry the information. ANN 
has been implemented in many types of machines for fault 
detection. A feedforward neural network with a backpropa-
gation algorithm is used to detect the fault in a centrifugal 
pump (Rajakarunakaran et al. 2008). The ANN approach 
is developed to identify defects in the cooler water spray 
system (Subbaraj and Kannapiran 2010).

3.1.2 � Unsupervised anomaly detection techniques

3.1.2.1  Distance‑based approaches  The fundamental 
assumption of distance-based anomaly detection approaches 
is that expected data points have a dense region, and out-
liers are far from their neighbors. K-nearest neighbor is a 
supervised machine learning approach, but it follows an 
unsupervised method for anomaly detection because there 
is no preestablished inlier or outlier; instead, it is based on 
threshold values. The fundamental of KNN is that similar 
data points are near each other, and outliers are away from 
similar data points clusters. The technique has been applied, 
for instance, in the slot milling cutting tool (Liu et al. 2022), 
semiconductor manufacturing process (Subbaraj and Kan-
napiran 2010), motor bearing (Tian et al. 2015), combustion 
engine (Jafarian et al. 2018), gas sensor arrays (J. Yang et al. 
2016), power transformers (Islam et al. 2017), reciprocating 
compressor (Patil et al. 2022) among others.

K-means clustering is another unsupervised approach in 
which data points are grouped into distinct clusters. Here K 
denotes the number of predefined clusters so that all dataset 
belongs to one group with similar properties. Every clus-
ter is affiliated with a centroid. A threshold value is added 
to detect outliers. A case is considered an outlier if the 
interspace between the data point and its nearby centroid 
exceeds the threshold value. K-means clustering has been 
extensively applied in fault detection in various machines. It 
has been used, e.g., for fault detection of commutator motors 

(Glowacz 2019), rolling element bearing (Yiakopoulos et al. 
2011; Yu et al. 2021), wind turbines (H. H. Yang et al. 2015; 
W. Zhang & Ma 2016), heat pump air-conditioning systems 
(H. Zhang et al. 2019a, b), cutting tools (Lahrache et al. 
2017), stream turbines (Yao et al. 2022), among others.

The local outlier factor (LOF) is a density-based unsuper-
vised anomaly detection approach for finding local anoma-
lies. It calculates the local density variation of a data point 
corresponding to its neighbors. A sample with a lower den-
sity than its neighbors is considered an outlier. LOF has been 
extensively implemented for anomaly detection. For example, 
it has been applied to fault detection of batteries for electric 
vehicles (Yang Zhao et al. 2017), detection of abnormal rail 
wear (Famurewa et al. 2017), detection of abnormal behavior 
in lithium-ion batteries (Diao et al. 2020; Fan et al. 2022), 
anomaly detection in the diffusion process of semiconductor 
manufacturing (Chang et al. 2021), etc.

3.1.2.2  Statistically based approaches  Statistics-based 
anomaly detection approaches fit a statistical model for the 
expected behavior of given data points which can be used 
to determine whether the unseen data point belongs to this 
model or not. Histogram-based outlier score (HBOS) is 
an unsupervised learning approach. HBOS determines the 
degree of outliers by constructing histograms for every fea-
ture, and then histogram density is measured for every fea-
ture (Chang et  al. 2021). This has been applied to detect 
anomalies in multiphase flow meters used in the oil and gas 
industries (Barbariol et al. 2019).

Principal component analysis (PCA) is a dimensionality 
reduction approach. It converts the multidimensional data 
into a lower dimension for more straightforward analysis 
(Sapra 2010). Traditional PCA is sensitive to anomalies 
and can mislead in results in the existence of anomalies. 
To reduce the sensitivity, a covariance matrix is replaced 
by its robust variants in robust principal component analy-
sis (rPCA) (Tharrault et al. 2008). The rPCA model-based 
approach is introduced to detect faults for helical coil steam 
generator systems (K. Zhao & Upadhyaya 2006) and fault 
detection in weld inspection (Cassels et al. 2019).

3.1.2.3  Classification based approaches  The training stage 
learns a classifier using the available training data in the 
classification-based anomaly detection approach. The testing 
stage classifies the unseen data point as normal or abnormal. 
Classification-based anomaly detection approaches are divided 
into one-class and multiclass anomaly detection approaches. 
In one-class anomaly detection techniques, it is presumed 
that entire training data points have only one class label, and 
a borderline around the normal data points is formed. If any 
instance falls outside the borderline, it is considered an anom-
aly (Schölkopf et al. 2001). The multiclass anomaly detection 
technique presumes that training data points belong to different 
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normal classes, and classifiers learn to differentiate between all 
normal classes. If any instance is not considered normal by any 
classifier, it is considered an anomaly (Barbará et al. 2001).

One-class support vector machine (One class SVM) is an 
unsupervised anomaly detection approach that learns a deci-
sion function for anomaly detection. A segmentation algo-
rithm with one-class SVM is introduced to detect anomalies 
in petroleum industry turbomachines (Martí et al. 2015). A 
fault detection approach is introduced using one-class SVM 
in electro-mechanical machines from vibration quantifica-
tion (Shin et al. 2005).

Isolation Forest (IF) is an unsupervised learning approach 
based on decision trees. Subsampled data is prepared in a 
tree form based on the selected features. The samples finish 
up in shorter branches and designate anomalies. Thus, it is 
easy to separate anomalies from the tree. The samples that 
go deeper into the tree are less likely to be anomalies. Isola-
tion forest has been successfully applied in various areas. 
For instance, an integrated hybrid manifold learning and IF 
technique is developed for fault monitoring in marine diesel 
engines (R. Wang et al. 2021), anomaly detection technique 
using IF in the diffusion process of semiconductor manu-
facturing is introduced (Chang et al. 2021), IF based fault 
detection approach is developed for hydroelectric genera-
tors (Hara et al. 2020), IF based fault detection technique is 
developed for fault detection in heavy haul railway opera-
tions (Oliveira et al. 2019), etc.

3.1.3 � Semi‑supervised anomaly detection techniques

Semi-supervised techniques combine supervised and unsu-
pervised learning processes where unlabelled data is used 
for training a model. Autoencoders are a specific type of 
neural network where the output is the same as the input. An 
autoencoder comprises two main components: an encoder 
that plans the input into the code and a decoder that plans the 
code to reform the input. The key idea behind autoencoders 
is to determine a low-level representation of the input data. 
Autoencoders have been extensively applied for fault detec-
tion in various areas. For example, it has been used for fault 
detection of bearings (Sun et al. 2017; H. Liu et al. 2018a, b; 
Meng et al. 2018; C. Li et al. 2017; X. Li et al. 2020; Sohaib 
and Kim 2018), gearboxes (Jiang et al. 2017; G. Liu et al. 
2018a, b; Yu 2019), electric motors (Principi et al. 2019), 
gas turbine (Luo and Zhong 2017), transformers (Ou et al. 
2019), induction motors (J. Wang et al. 2017), building auto-
mation systems (Choi and Yoon 2021), etc.

The gaussian model-based anomaly detection approach 
assumes that the data arise from a Gaussian distribution. By 
using maximum likelihood estimates, a gaussian can be fit. 
The distance calculated from the mean in standard deviation 
is an anomaly score for a data point. The gaussian mixture 

model is used for fault detection in industrial gas turbines 
(Y. Zhang et al. 2017). A vital advantage of the gaussian 
mixture models is their applicability for anomaly detection 
when there is insufficient foreknowledge of fault patterns.

4 � Open challenges

4.1 � Interpretability

One of the strong condemnations of most machine learning 
techniques is their black-box nature. An absolute mathemati-
cal description of most machine learning and deep learning 
approaches is tough to acquire. This pessimistic property of 
the machine learning approaches represents a notable limi-
tation in maintenance. The problem is that a single metric, 
such as classification accuracy, is an incomplete description 
of most real-world tasks (Ribeiro et al. 2016a).

Figure 7 shows the trade-off between the model’s inter-
pretability and predictive accuracy (Morocho-Cayamcela 
et al. 2019). A simple Linear Regression (LR) model has 
the highest level of interpretability, but the predictive accu-
racy level is generally low. That is why simple LR models 
are straightforward to explain. In contrast, Neural Networks 
(NN) are very effective in predictive accuracy, but they are 
considered black-box models, so they can not be interpreted.

In predictive modeling, it is not enough to know what is 
predicted. Instead, we want to see why this particular pre-
diction was made. In some cases, it is adequate to see the 
prediction results only, not the explainability of the results, 
because of the low-risk environment. Nevertheless, in other 
cases, the explainability of models helps to understand the 
data and the problem more precisely. Whenever there is an 
inadequacy of problem clarification, the need for explain-
ability arises because the prediction results only moderately 

Fig. 7   Interpretability v/s Accuracy of different machine learning 
algorithms



1353Int J  Syst  Assur  Eng  Manag (April 2024) 15(4):1345–1360	

1 3

solve the issues. The following are the needs for interpret-
ability and explainability:

Human understanding and learning: The fundamental 
goal of humans is to find out the meaning and gain knowl-
edge. Applicants may be unsatisfactory or objectionable 
when a particular machine learning model rejects something 
or anticipates low prediction accuracy.

Scientific understanding and learning: In today’s environ-
ment, most problems have an extensive dataset and are solved 
with black-box machine learning models. Interpretability and 
explainability extract further knowledge acquired by the model.

Safety measures: It is tough to create whole scenarios 
where the structure may fail in complex tasks. Listing all 
inputs and outputs are analytically infeasible, and we can 
not indicate all unenviable outputs.

If a machine learning model has explainability, then the 
model contains fairness because of unbiased predictive 
results, privacy due to data protection, and reliability because 
if we make minor changes in inputs, it does not lead to signifi-
cant changes in outputs and trust because a human can trust 
explainable model compared to a black-box model. Figure 8 
represents the difference between a standard machine learning 

model and an interpretable machine learning model. Because 
of the interpretable results, human feedback improves the data 
and model, which gives more substantial predictions.

In machine learning and AI, interpretability and explaina-
bility are generally used interchangeably in machine learning 
systems. Explainability is the extent to which humans can 
understand the internal mechanism of a complex machine 
learning system. In comparison, interpretability is the extent 
to which we can predict what will happen if the model’s 
input parameters have been changed.

4.2 � Interpretable models

The simplest way to accomplish interpretability is to use 
algorithms that generate interpretable models. Logistic 
regression, Linear regression, Generalized Linear Models, 
Generalized Additive Models (Hastie 2017), Decision trees 
(Kingsford and Salzberg 2008), and Decision rules (Apté 
and Weiss 1997) are some of the most widely used interpret-
able models. Table 4 shows the expected advantages and 
disadvantages of interpretable models.

Fig. 8   Typical machine learning model and an interpretable machine learning model

Table 4   Advantages and disadvantages of interpretable models

Model Advantages Disadvantages

Linear regression Transparent about the prediction, Assurance to detect 
optimal weights

Only perform linear relationships, Not up to the mark 
concerning predictive performance

Logistic regression Not just a classification model provides probabilities; 
also, it can be used for multiclass classification

Restrictive expressiveness, Explainability is difficult due 
to multiplicative weights

Generalized linear models 
and generalized additive 
models

Problems faced in linear models can be fixed in these 
extensions, Models can be used for conclusion in 
addition to prediction

Less interpretable, Depending upon the assumptions of 
data generating procedure

Decision trees Instinctive visualization with nodes, Generates better 
explanations, Easy to acknowledge

Fails to handle the linear relationship, Insufficiency of 
smoothness, Unstable because the entire tree structure 
changes with different feature

Decision rules Easy to elucidate, Fast prediction, More compact than 
decision trees, Only pertinent features are selected

Used for classification, not for regression, Generally 
used for categorical features, Fails to handle the linear 
relationship
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4.3 � Model‑agnostic methods

The main idea of the model-agnostic methods is to split up the 
elucidations from the machine learning models (Ribeiro et al. 
2016a). One critical recognition of the model-agnostic meth-
ods over model-specific interpretable methods is the applica-
bility to any model and its flexibility. Model-agnostic methods 
can be used for any kind of model. The main disadvantage of 
using model-specific interpretable methods is the low predictive 
accomplishment compared to other machine learning models 
and the limitation of using a specific model. Model-agnostic 
methods are further divided into global model-agnostic methods 
and Local- Model agnostic methods (Fig. 9).

4.4 � Global model‑agnostic methods

Global model-agnostic methods represent the overall average 
behavior of the model. These methods identify the patterns in 
general and characterize the effect of input features on predic-
tion (Doshi-Velez and Kim 2017). Global interpretability is 
challenging to implement in highly complex machine learn-
ing models. Partial dependence plot (PDP) (Friedman 2001), 
Accumulated local effects (ALE) (Apley and Zhu 2020), 
Feature interaction (H-statistic), Functional decomposition, 
Permutation feature importance (Breiman 2001), and Global 
surrogate are some global interpretation methods. As it is not 
feasible to explain each method in detail, we list the advantages 
and disadvantages of each method (Table 5).

4.5 � Local model‑agnostic methods

Local interpretation techniques explain individual predic-
tions. These methods estimate the model’s behavior in a 
small region and assume that machine learning prediction 
for the neighbor instance can be proximate by an interpretable 

model. Individual conditional expectation curves (Goldstein 
et al. 2015), Local surrogate models (Ribeiro et al. 2016b), 
Counterfactual explanation (Wachter et al. 2017), Scoped rules 
(Ribeiro et al. 2018), Shapely values, and Shapely additive 
explanations (Lundberg 2017) are some local interpretation 
methods. The advantages and disadvantages of Local Model-
agnostic methods are presented in Table 6.

5 � Summary and future work

This paper presents an overview of different anomaly detec-
tion techniques in the context of CBM, emphasizing where 
these techniques have been applied in decision-making. A 
bibliometric research analysis on CBM is performed with 
information associated with the most productive authors, 
countries, and relevant keywords. Scopus database was 
used for the data collection in this analysis. Prognostics and 
health management (PHM) is a crucial indicator of indus-
trial automation in industry 4.0, which comprises CBM and 
PdM. This review discusses anomaly detection techniques 
and their applications based on supervised, unsupervised 
(distance-based, statistically-based, classification-based), 
and semi-supervised machine learning approaches. AI, 
Machine learning, and data science are the dominant and 
fundamental tools that allow industrial innovation and tech-
nological advancement in maintenance.

Despite the significant success of machine learning meth-
ods in industrial maintenance, the black-box nature (low 
interpretability) and generalization insufficiency are sub-
stantial shortcomings of the machine learning methods. To 
address the issue of not explaining the decisions to a system, 
XAI has become a research field focusing on machine learn-
ing interpretability, providing a more transpicuous AI by 
maintaining the level of predictive performance. Production 
delays have high costs because of mechanical problems. XAI 

Fig. 9   Types of Model-agnostic 
methods
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in maintenance avoids the issues before they arise, thereby 
diminishing the impacts of the downtime with a more defi-
nite and translucent system to record its performance. XAI is 
the way to earn customers’ assurance and trust. XAI makes 
the system more interpretable and constructive by tracking 
its performance, integrity, and inaccuracy.

We have covered the benefits and significance of inter-
pretability in this review. We have highlighted the benefits 
and drawbacks of interpretable machine learning models. 
The advantages of model-agnostic procedures over model-
specific interpretable methods have been discussed. We 
also talked about the advantages and disadvantages of local 

and global model agnostic approaches. Table 7 includes a list 
of the top 10 highly referenced articles on XAI and interpret-
able machine learning models, as well as the top 20 highly cited 
articles on CBM (Table 8). This investigation, like most stud-
ies, offers great insights but has some pretentious limits as well. 
Only the Scopus database was taken into account when gather-
ing the data, but there are other well-known databases as well; 
hence, an additional study using other databases could be done 
in the future. We have covered CBM only. In subsequent papers, 
we intend to cover interpretability in the PdM and various RUL 
approaches. The discernment obtained from this research 
analysis has implications for academic scholars.

Table 5   Advantages and disadvantages of Global Model-agnostic methods

Global Model-agnostic methods Advantages Disadvantages

Partial dependence plot (PDP) Computation is instinctual, and interpretation is 
understandable if features are not correlated, 
Uncomplicated to implement

The assumption that features are not correlated, 
Diversified effects of the feature values may be 
concealed, Two-dimensional representation of the 
features

Accumulated local effects (ALE) Works fine if features are correlated, Rapid computa-
tion than PDP, Interpretation is more understand-
able than PDP

Implementation is more strenuous than PDP plots, 
Interpretation becomes challenging in the case of 
strongly correlated features, Less instinctual than 
PDP

Feature interaction Discover multitudinous interactions, Can analyze 
interactions robustness between three or more 
features

Lengthy computation, Unsteady results, It does not 
show the appearance of the interactions

Functional decomposition It gives theoretical reasons for individual feature 
effects, Provides better apprehension of other 
methods also

Computation of all feature interactions is highly 
time-consuming, The drawback of being a manual 
procedure

Permutation feature importance Automatically consider all feature interactions, 
Provides better discernment regarding the model’s 
behavior, No need to retrain the model

Variation in results on permutation repetition, Can 
show biased results if features are correlated

Global surrogate Easy implementation, More flexible, Easily under-
standable

Whatever interpretable model, we choose all the 
drawbacks to come with it

Table 6   Advantages and disadvantages of Local Model-agnostic methods

Local Model-agnostic methods Advantages Disadvantages

Individual conditional expectation (ICE) Easy to understand than PDP, Can reveal diversi-
fied relationships

Unveil one feature only, It may not 
work correctly if features are cor-
related Many ICE curves together 
become congested

Local surrogate Works also for text and images, Easy to use and 
explain

Explanations can be manipulated, 
Uncertainty of explanations, Igno-
rance of feature correlation

Counterfactual explana-
tion

Clear interpretation, Can work without the use of 
machine learning, Easy implementation

Various counterfactual explanations for an instance

Scoped rules Easy to interpret, Highly efficient because of batch 
sampling, Works efficiently when predictions are 
nonlinear

Thoroughly variable because its runtime depends on the 
model’s performance, Data discretization needs to be used 
carefully not to acquire poor results

Shapely values The essential method to convey a full explana-
tion, Can compare the predictions to the average 
forecast of a subset

High computation time, Requirement of the data to compute 
the shapely value for a new data instance

Shapley additive expla-
nations

Impartially distribution of prediction amidst the 
feature values, Quick implementation and com-
putation

Avoid feature dependence, Requirement of the data to compute 
the shapely value for a new data instance
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Table 7   Top 20 papers of condition-based maintenance in Scopus

S.No Authors and year Title Source TC

1 Tran et al. (2012) Machine performance degradation assessment and 
remaining useful life prediction using proportional 
hazard model and support vector machine

Mechanical Systems and Signal Processing 165

2 Li et al. (2014) Improving rail network velocity: A machine learn-
ing approach to predictive maintenance

Transportation Research Part C: Emerging Tech-
nologies

93

3 Corradu et al. (2016) Machine learning approaches for improving 
condition-based maintenance of naval propulsion 
plants

Proceedings of the Institution of Mechanical 
Engineers Part M: Journal of Engineering for the 
Maritime Environment

66

4 Zhang et al. (2018) Transfer learning with deep recurrent neural net-
works for remaining useful life estimation

Applied Sciences (Switzerland) 58

5 Kumar et al. (2018) A big data driven sustainable manufacturing frame-
work for condition-based maintenance prediction

Journal of Computational Science 56

6 Yang et al. (2011) A hybrid feature selection scheme for unsuper-
vised learning and its application in bearing fault 
diagnosis

Expert Systems with Applications 52

7 Zhao et al. (2017) Research advances in fault diagnosis and prognostic 
based on deep learning

Proceedings of 2016 Prognostics and System Health 
Management Conference, PHM-Chengdu 2016

49

8 Mortada et al. (2014) Fault diagnosis in power transformers using multi-
class logical analysis of data

Journal of Intelligent Manufacturing 43

9 Liu et al. (2019) Review on Applications of Artificial Intelligence 
Driven Data Analysis Technology in Condition 
Based Maintenance of Power Transformers

Gaodianya Jishu/High Voltage Engineering 42

10 Bousdekis et al. (2018) Review, analysis and synthesis of prognostic-based 
decision support methods for condition-based 
maintenance

Journal of Intelligent Manufacturing 39

11 Khoa et al. (2014) Robust dimensionality reduction and damage detec-
tion approaches in structural health monitoring

Structural Health Monitoring 39

12 Robles et al. (2016) Multiple partial discharge source discrimination 
with multiclass support vector machines

Expert Systems with Applications 37

13 Sadoughi et al. (2019) Physics-Based Convolutional Neural Network for 
Fault Diagnosis of Rolling Element Bearings

IEEE Sensors Journal 32

14 Accorsi et al. (2017) Data Mining and Machine Learning for Condition-
based Maintenance

Procedia Manufacturing 28

15 Mathur et al. (2001) Reasoning and modeling systems in diagnosis and 
prognosis

Proceedings of SPIE—The International Society for 
Optical Engineering

28

16 Sezer et al. (2018) An Industry 4.0-Enabled Low-Cost Predictive 
Maintenance Approach for SMEs

2018 IEEE International Conference on Engineer-
ing, Technology and Innovation, ICE/ITMC 
2018—Proceedings

24

17 Wang et al. (2019) Degradation evaluation of slewing bearing using 
HMM and improved GRU​

Measurement: Journal of the International Measure-
ment Confederation

21

18 Xu et al. (2015) Big Data Analytics Framework for System Health 
Monitoring

Proceedings—2015 IEEE International Congress on 
Big Data, BigData Congress 2015

20

19 Martin-del-Campo and 
Sandin (2017)

Online feature learning for condition monitoring of 
rotating machinery

Engineering Applications of Artificial Intelligence 19

20 Hong and Zhou (2012) Remaining useful life prognosis of bearing based on 
Gauss process regression

2012 5th International Conference on Biomedical 
Engineering and Informatics, BMEI 2012

19
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Appendix B

See Table 8.
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