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Abstract The existing management structure of medical

supply inventory (MSI) is not sufficiently effective, and it

is incompetent to solve the problems of medical supply

stock control in public security emergencies. Therefore,

deep learning and big data technology are employed in this

work to optimize the stock control structure and enhance

management efficiency, so that the optimized management

structure can play an excellent role in the material supply

of emergencies. After browsing copious literature, the

economic ordering models with infinite/limited supply rate

and without shortage are innovatively constructed to real-

ize efficient management of emergency supplies inventory.

Besides, the optimized fixed-point and quantitative order-

ing method of safety stock is employed to construct the

MSI models for scarce emergency supplies and the time-

sensitive emergency supplies, respectively. Then, an

earthquake-related emergency is taken as a case and data

source to evaluate the solution results of the emergency

MSI model. Moreover, the stacked auto-encoders (SAE)

algorithm is used to build the demand prediction model for

MSI. Finally, a simulation experiment compares the SAE-

based demand prediction model for MSI with a back

propagation neural network (BPNN) model and radial basis

function network (RBFN) model to verify the model’s

performance. The experimental results demonstrate that

after 150 times of training, the error between the predicted

value and the actual value of each model is within 30, and

the prediction accuracy is significantly improved. After 170

times of network training, the mean absolute error (MAE)

values of BPNN model and RBFN model are 31.98 and

73.73, respectively. In contrast, the MAE value of the

SAE-based model is 21.32, which is superior to the other

two models. Evidently, the management structure of MSI is

optimized by dividing the emergency MSI into three MSI

models for the critical emergency supplies, scarce emer-

gency supplies, and the time-sensitive emergency supplies.

The research outcome can provide essential logistical

support for dealing with public security emergencies.

Keywords Medical supply inventory model � Stock
control � Supply planning � Deep learning � Public
emergency

1 Introduction

In recent years, continuous economic and social progress

plays increasingly severe havoc with nature, resulting in

the spread of natural disasters and extreme weather

worldwide (Yu et al. 2018; Wang and Ye 2018). The

interaction between man-made hazards and various natural

disasters has constantly generated crippling large-scale

emergencies worldwide in recent decades (Short et al.

2019; Rosselló et al. 2020). For example, the swine
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influenza (Influenza A Virus Subtype H1N1) spread out

around the world in 2009, followed by the wild-type

poliovirus epidemic in 2014 in Asia, Africa, and the

Middle East, Ebola epidemic in Africa in 2014, Zika virus

epidemic in 2016, and the epidemic of Coronavirus Disease

2019 (Yang et al. 2021). Multitudes of health emergencies

play a crucial role to property and life safety of people. For

a timely and effective response to international public

health emergencies, the United Nations established the

World Health Organization in 1948. This organization

protects people around the world from harm by establish-

ing efficient management methods of public health emer-

gencies (Rose et al. 2017). Emergency supplies

management is absolutely a primary procedure of emer-

gency management (Khan et al. 2019). All sudden events

are unpredictable, and correspondingly, the supplies used

to respond to emergencies generally fail to meet the

requirements for temporal and spatial accessibility. Con-

sequently, it is usually impossible to immediately and

efficiently handle public emergencies (Zhang et al. 2021).

Emergency supplies management concerns multiple factors

such as logistics allocation and stock control. Among them,

emergency supplies stock control is particularly vital to the

emergency operation (Hu et al. 2019).

Many domestic and foreign researchers have studied

public emergency management, and most of them focus on

how to improve the response ability to emergencies. For

instance, Son et al. (2020) studied the resilience in emer-

gency management through the method of literature

review, and found out the paramount dimensions of

emergency management flexibility and prevalent technical

tools to enhance emergency management flexibility.

Moreover, Fathi et al. (2020) performed a structured survey

on the virtual operation support of the workflow of the

emergency management organization. They found that data

mining technologies and tools could greatly enhance the

efficiency of emergency management. Kaveh et al. (2020)

investigated the latest development of post-earthquake

emergency management system using optimization tech-

nologies. In addition, Sun et al. (2021) employed the fuzzy

multi criteria decision-making method to select emergency

plans, which improved the reliability and accuracy of

ranking evaluation indicators. Furthermore, Russo (2021)

proposed a hybrid method of disaster and emergency

management. However, few people have made efforts on

the response and solutions to emergencies by establishing

models to improve the ability to deal with emergencies.

The exploration reported here aims to applying the

medical supply inventory (MSI) model via deep learning

(DL) to provision planning scheme to public emergencies.

Through the literature review and the summary of previous

works, the critical emergency supplies inventory model,

scarce emergency supplies inventory model, and time-

sensitive emergency supplies inventory model are estab-

lished, respectively, to optimize the management structure

of MSI. Besides, the demand prediction model of MSI is

built by using the stacked auto-encoders (SAE) algorithm

of DL to provide necessary logistics support for dealing

with public security emergencies. Taking an earthquake

case as an example, the simulation training is performed to

scientifically evaluate the effectiveness of the model. This

investigation not only realizes the scientific and rational

classification of medical emergency supplies, but also

furnishes emergency inventory and material management

with research ideas and theoretical foundation. In this

work, the first section puts forward the research purpose

and significance by introducing the background of emer-

gency management of public emergencies. The second

section analyzes the existing medical supply management

and planning mode and problems, and expounds the clas-

sification and inventory strategy of emergency supplies to

strengthen the understanding of emergency management

strategy. Besides, the emergency supplies inventory model

is constructed. In the third section, the experimental design

and model performance evaluation are carried out, and the

prediction results of emergency supplies supply based on

DL are analyzed. The fourth section discusses the experi-

mental results, and finally, the fifth section draws the

experimental conclusion.

2 Methods

2.1 Existing medical supply store control

and planning model and related problems

(1) MIS model

The majority of present MIS models are inspired by

modern logistics management. Figure 1 reveals the pri-

mary modules of emergency supplies management and

planning, principally containing the logistics hub, infor-

mation management hub, and command hub. Specifically,

the command hub can plan, coordinate, and control emer-

gency supplies, involving developing specific support

plans, needs analysis, comprehensive deployment, and

material financing of emergency supplies, and material

feedback information acquisition. The logistics center

consists of four procedures, namely supplies purchasing,

supplies storage, supplies transportation, and supplies dis-

tribution. The information management center is composed

of the emergency supplies database, enquiry system, real-

time supplies supervisory, and decision optimization sys-

tem. In addition, the emergency command center can

connect to the information management center and the

logistics center through an information feedback module.

(2) Problems of the MIS model
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The modern emergency response can be analyzed from

three perspectives, namely the quantity of emergency

supplies, the quality of emergency supplies, and the com-

position of emergency supplies. At present, the costly

management of emergency supplies cannot provide high-

quality services to deal with emergencies. Hence, it is

crucial for scientific stock control to realize cost reduction

of MSI and meanwhile the optimization of service quality

of MIS.

2.2 Emergency MSI strategy

Common emergency supplies inventory strategies include

deterministic and random inventory models. Deterministic

inventory models include the inventory model with an

infinite supply rate and without shortages for inventory,

inventory model with a finite supply rate and without

shortages for inventory, inventory model with an infinite

supply rate and allowable shortage, and inventory model

with a finite supply rate and allowable shortage. In reality,

emergency supplies must be available in stock. Therefore,

the deterministic emergency supplies inventory model has

two categories, namely, the inventory model with an infi-

nite supply rate and without shortages for inventory and the

inventory model with a finite supply rate and without

shortages for inventory, as shown in Fig. 2.

(1) For the inventory model with an infinite supply rate

and without shortages for inventory, a decrease in the

number of orders can reduce ordering costs. However, at

the same time, it increases the average inventory, leading

to a growth in inventory costs. Therefore, it is essential to

balance the ordering cost and inventory cost for a reason-

able order quantity. As shown in Fig. 2A, the order quan-

tity with the minimum sum of inventory cost and ordering

cost is called economic order quantity (EOQ). The purpose

of this model is to solve the EOQ. The order quantity can

be calculated according to:

Ch =
Q

2
C1T ð1Þ

Ca ¼ C3N ¼ C3
D

Q
ð2Þ

E ¼ Q

2
C1T þ C3

D

Q
ð3Þ

where Q represents the order quantity, D denotes the

demand for supplies in time T referring to the time interval,

and N means the number of orders in T time. Besides, C1

denotes the inventory cost per unit time unit material, C3

signifies the cost of each order, Ch stands for the total

inventory fee in T time, and Ca represents the total

ordering cost in T time. Meanwhile, E stands for the sum of

total inventory cost and total ordering cost in T time.

Then, EOQ denoted as Q* is derived as Eq. (4).

Q�¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � ðD=TÞ � C3
C1

r

ð4Þ

According to Q*, the minimum total cost E*, the best

interval T*, and the best number of orders N* can be

written as Eqs. (5)–(7).

E�¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � D � C1 � C3 � T
p

ð5Þ

T�¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � T � C3
C1 � D

r

ð6Þ

N�¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T � D � C1
2 � C3

r

ð7Þ

Emergencies

Start the emergency system

Emergency command hub

Emergency logistics hub
Emergency logistics information 

management

Information feedback

Supplies purchasing

Supplies storage

Supplies transportation

Supplies distribution

Material database

Inquiry system

REal-time monitoring

Decision optimization  

Demand analysis

Material financing

Making plans

Material scheduling

Feedback collection

Fig. 1 Framework of the

existing medical supply

management and planning

model
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(2) Fig. 2B describes the inventory model with a finite

supply rate and without shortages for inventory. When a

part of supplies is sent to the stockroom, another part of the

supplies will be consumed. Therefore, the inventory order

quantity will not reach the Q* value. To determine the

average inventory, assume that F¼ D
T �

Q
A is the number of

supplies used when a new batch of supplies arrives, the

maximum inventory is Q� F, and the average inventory is
1
2
ðQ� FÞ. Meanwhile, the total inventory fee is denoted as

Ch = C1�T
2

� ðQ� FÞ, the total order fee as

Ca = C3N ¼ C3 Q
D, and the total cost as

E ¼ C1T
2
ðQ� FÞ þ C3 Q

D. Then, the EOQ Q* is expressed

as Eq. (8).

Q�¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � D � C3
T � C1ð1� DA=TÞ

s

ð8Þ

Then, the minimum total cost E* can be presented as

Eq. (9).

E� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � C1 � C3 � Tð1� DA=TÞ
p

ð9Þ

In practice, the supplement of emergency supplies is

complex. Therefore, the deterministic demand of emer-

gency supplies stock control usually occupies a minimal

proportion, and it can only be determined in the short term.

In this situation, inventory control methods are essential to

eliminating impact of diversified uncertain factors. The

fixed-point and quantitative ordering control method is

often used among various random demand models, which

is characterized by a fixed order point and order quantity.

By this method, the next purchase demand decreases to the

fixed order quantity before purchase. Therefore, the inter-

val between orders is not certain. Figure 3 reveals the

relationship between order time interval and inventory size,

where the abscissa represents the time interval between

orders, and the ordinate denotes the inventory size. The

cycle of EOQ is calculated according to Eqs. (10), (11),

and (12).

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2� S

C0

�
r

R ð10Þ

Equation (11) indicates the maximum inventory Qmax.

Qmax¼R� ðT þ TkÞ þ Qs ð11Þ

In view of the arrival quantity and delivery quantity, the

quantity of each order is calculated according to Eq. (12).

Qi ¼ Qmax � Qni � Qki þ Qmi ð12Þ

In Eq. (12), S refers to the single ordering cost, Tk
denotes the average order cycle time, C0 stands for the

storage charges for unit supplies per year, and T represents

the order cycle time. In addition, R denotes the average

inventory demand, Qki is the physical storage of i orders,

Qmax signifies the highest inventory, Qs means the safety

stock, and Qni describes the arrival volume of i order

points.

2.3 Emergency supplies classification

The Activity Based Classification (ABC) method is a

systematic and quantitative category managerial approach

on the foundation of the ratio of varieties and funds of the

supplies inventory (Lu et al. 2020). The ABC method

divides particular subjects into three categories in line with

a specific criterion, i.e., critical supplies, scarce supplies,

and time-sensitive supplies. The varieties of critical sup-

plies account for 5% to 20%, and the funds occupy 60% to

70%, which are the core of emergency supplies. The

varieties of scarce supplies account for 20% to 30%, and

the funds occupy 10% to 20%, attracting general attention

from stock control. The varieties of time-sensitive supplies

account for 60% to 70%, and the funds occupy 5% to 10%,

which are generally easy to manage. In the subsequent

experiment, an MSI model is built to investigate the

Time
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to
ry

/Q

Q/2

TS Q/A

Q/U

TS

A B

Time

In
v
en

to
ry

/Q

Q/2

Q/U Q/A

Cyclical

Fig. 2 Emergency supplies

inventory models with an

infinite/finite supply rate and

without shortages for inventory
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emergency supplies management of an earthquake. The

literature Lin et al (2019), Liu et al. (2019) and Wang et al.

(2020) and Emergency Supplies Classification and Product

Catalog are selected for references. The emergency sup-

plies applicable to earthquakes contain first aid items,

drugs, relief devices, and recovery resources after disasters.

Figure 4 illustrates the classification of emergency

supplies.

2.4 Construction of emergency MSI models

(1) The MSI model for critical emergency supplies

The critical emergency supplies involve multiple types

of supplies and requires some inventory space. However, in

actual situations, it is difficult to balance the storage

amount, tied-up funds, and storage space of different types

of supplies. Therefore, the economic order model with

finite storage space can be used (Sebatjane and Adetunji

2019a, b; Kumar 2016; Shekarian et al. 2016). Assume that

for the stock control of critical emergency supplies with

Time

Inventory/Q

Qk
1

D

A

2

G

C

B

3

E

Qmax

Time

Inventory/Q

IP2

LT
ARP
IP1
IP3

M-IP1 M-IP3M-IP2

LT

tBAFig. 3 Scheme of the fixed-

point and quantitative control

method

Critical materials: blood-

sucking pad, bandage, alcohol, 

saline, sphygmomanometer

Scare materials: medical 

gloves, goggles, disinfectant, 

ventilator, masks, protective 

clothing

Time-sensitive materials: 
glucose, adrenaline, dopamine, 

nitroglycerin, coral amine, 

Lobeline

Fig. 4 Categories of emergency

supplies
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finite storage space, each kind of critical supplies occupies

certain inventory space, and the inventory space allocated

to critical supplies is specified. Besides, over a spell, the

storage fee rate, requirements rate, and order charge for a

critical supply are fixed. Then, the best order batch of

critical supplies is determined as follows. First, according

to the EOQ model with an infinite supply rate, the average

total cost can be presented as:

minCðQ1;Q2 � � �QnÞ ¼
X

n

i¼1

1

2
C1iQi þ

C3iDi

Qi

� �

ð13Þ

s:t:

P

n

i¼1

xiQi �W

Qi � 0; i ¼ 1; 2; 3. . .; n

8

<

:

ð14Þ

The best order batch of Qi* is determined according to

Eq. (15).

Qi� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � Di � C3i

C1i

r

; i = 1; 2 � � � ; n ð15Þ

In practice, the stock control of critical supplies should

be consistent with the constraint shown in Eq. (16).

X

n

i¼1

xiQi �W ð16Þ

If Qi* does not meet the constraints, it needs to be

solved according to the Lagrange multiplier method, as

presented in Eq. (17).

LðQ1;Q2 � � �QnÞ¼
X

n

i¼1

1

2
C1iQi þ

C3iDi

Qi

� �

þ k
X

n

i¼1

1

2
xiQi �W

� �

ð17Þ

Then, Qi can be obtained by Eq. (18).

Qi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � Di � C3i

C1iþ2kxi

r

; i = 1; 2. . .; n ð18Þ

Among Eqs. (13)-(18), xi denotes the storage space

occupied by the i-th supply, Qi represents the order volume

of the i-th supply, and W signifies the largest storage space

allocated in the warehouse for critical supplies. Meanwhile,

Di stands for the requirements rate of the i-th supply, C3i

refers to the subscription charge for the i-th supply, and C1i

represents the storage amount of the i-th supply. Generally,

when there are less variables, the average total cost can be

obtained manually or by analysis method. On the contrary,

iteration methods or mathematical software like Matlab are

more suitable when there are more variables.

(2) The MSI model for scarce emergency supplies

Scarce supplies often involve high funds and usually

require strict management. Due to the low frequency of use

and the low demand of scarce supplies, it is often essential

to adjust the purchase quantity according to the market

situation and realistic demand. In this case, the inventory

strategy of fixed-point control method can be adopted for

the stock control of scarce supplies.

(3) The MSI model for time-sensitive emergency

supplies

For sudden public events, time-sensitive supply is the

most vital element that affects the emergency supplies

reserve mode (Guan et al. 2021). Time-sensitivity is the

first issue to be considered when dealing with emergencies.

Therefore, the stock control strategy for time-sensitive

supplies should focus on improving service quality while

minimizing management costs. Therefore, the quantitative

ordering method based on EOQ can be used for the stock

control of time-sensitive supplies. The key parameter Qk is

calculated as follows in the implementation of quantitative

ordering method. Based on requirements rate, the quantity

demanded D1 of the order cycle time is presented as

Eq. (19).

D1¼RP � Tk ð19Þ

Given the connection between the quantity demanded

D1 with order cycle time Tk and requirments rate RP, the

key parameter Qk can be obtained by Eq. (20).

Qk¼D1 ¼ Tk � RP ð20Þ

On the grounds of the rationale of minimum total cost,

the economic order quantities can be written as Eq. (21).

Q�¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2C0�Rp

C1

r

ð21Þ

In Eq. (21), C1 signifies the storage cost per unit time,

C0 represents the cost per order, and Rp denotes the

requirements rate.

3 Experimental design and performance
evaluation

3.1 Simulation verification of emergency supplies

inventory model

(1) Data collection and preprocessing

Through the query of data, the storage and management

of rescue supplies in an earthquake emergency case are

selected for the validation experiment of critical emergency

supplies inventory model. The medical supplies for rescue

are sorted out and divided into critical emergency supplies,

scarce emergency supplies, and time-sensitive emergency

supplies. Critical emergency supplies contain medical

gauze, blood cushion, bandage, alcohol, saline, and

sphygmomanometer. Scarce emergency supplies include

medical gloves, goggles, disinfectant, ventilators,
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respirator, and protective clothing. The time-sensitive

emergency supplies involve six types of medical rescue

supplies, namely glucose, epinephrine, dopamine, nitro-

glycerin, coral amine, and Lobeline. The demand, storage

cost, and cost price of the above rescue supplies are

counted respectively, and the statistical data are arranged

and plotted into tables.

(2) Critical emergency supplies inventory model

Critical emergency supplies in response to an earth-

quake contain blood pressure meter, medical gauze, ban-

dages, saline, alcohol, and blood-sucking pads. These six

types of supplies are denoted R1, R2, R3, R4, R5, and R6,

respectively. Assume that the maximum size of a stock-

room is 20,000 m3. Table 1 displays the stock control data

of the six types of supplies according to reference.

(3) Scarce emergency supplies model

Scarce emergency supplies in this experiment are divi-

ded into goggles, protective clothing disinfectant, mask,

ventilator, and medical gloves. These medical supplies are

marked as G1, G2, G3, G4, G5, and G6, respectively.

Assume that the arrival volume is 300 pieces, the physical

holding of stock is 700 pieces, and the planned trans-

portation volume are 280 pieces. Table 2 provides the

inventory data of the six types of scarce supplies according

to reference.

(4) Time-sensitive emergency supplies model

Time-sensitive emergency supplies in this experiment

include Lobeline, epinephrine, coral amine nitroglycerin,

dopamine, and glucose. These medical supplies are deno-

ted as T1, T2, T3, T4, T5, and T6, respectively. Assume that

the order cycle time is 8 days, and the mean consumption

per day is 150 cases, and the largest consumption per day is

200 cases. Table 3 illustrates the storage details of the six

kinds of time-sensitive supplies according to literature.

3.2 Demand prediction of medical supplies based

on DL

The SAE algorithm utilizes several sparse auto-encoders,

which can reduce the vector space of model data by

gradually extracting data elements. In the SAE model, the

initial data is input into a training set in the encoder of the

initial layer. The hidden layer consists of multi-layer sparse

encoders. In addition, the output of the K-type sparse

encoder is the input of the K ? 1-type sparse encoder,

which can be used to sparsely represent the multi-layer

encoder. The initial data set with 7 dimensions is denoted

as [X1, X2, X3, X4, X5, X6, X7], and it enters the first

hidden layer with the pre-set capacity of 5 of the SAE

model, which generates the new data set [Y1, Y2, Y3, Y4,

Y5] and the initial weights and parameters. Then, the

output of the hidden layer is compared with the initial data.

If the training accuracy is satisfied, the reconstructed data

set is reduced to 5 dimensions. Otherwise, the data set is

returned for compensation by analogy. The five-dimen-

sional data set [Y1, Y2, Y3, Y4, Y5] is input into the

second hidden layer as training data, and a new four-di-

mensional data set is obtained after debugging model’s

parameters. A high-dimensional data set is finally attained

by constantly adding new input and output data, which is

simplified as the low-dimensional data set [Z1, Z2, Z3, Z4].

Figure 5 displays the formation process of the model after

a n-dimensional vector is sent to the SAE model. The

useful features of data can be obtained by processing dis-

crete data.

Each input value can generate a unique eigenvalue

through the layer-by-layer greedy algorithm. These eigen-

values are the input of the next training layer for learning.

By activating the representation of the next feature, the

feature of step is finally output, which is the input of the

regression model. The demand prediction model reported

here compares the characteristics of a given deep network

with numerical regression. The last learning network in

logistic regression model is different from the previous

classification of results using softmax model. Here, a

logistic regression model is indispensable to predicting

continuous variables. The predicted value is obtained by

linear superposition, and then, the true value and the error

of the predicted value are calculated and used as the matrix

in the sample.

Table 1 Inventory data of six types of critical supplies

Varieties Requirements rate Di (piece/per
year)

Subscription charge C3i

(CNY)

Storage amount C1i (piece/per

year)

Occupied warehouse space xi

(m3)

R1 3200 50,000 1 0.2

R2 2400 50,000 1 0.3

R3 2000 50,000 2 0.2

R4 2500 50,000 2 0.2

R5 3000 50,000 1 0.3

R6 2600 50,000 1 0.3
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3.3 Verification results of the MSI model for critical

emergency supplies

Maximizing the use of storage space is of paramount

importance to the stock control of critical supplies. Based

on the given conditions and DL technology, the EOQ is

calculated not under the constraints on the stockroom area

when Q1* = 17,889, Q2* = 15,492, Q3* = 15,142, Q4* =

17,361, Q5* = 12,247, Q6* = 11,401, respectively. In this

way, the occupied area of six types of critical supplies can

be determined: 17,889 9 0.2

? 15,492 9 0.3 ? 15,142 9 0.2 ?

17,361 9 0.2 ? 12,247 9

0.3 ? 11,401 9 0.3 = 21,820.4 (m3). However, the best

inventory quantity (21,820.4 m3) obtained by the above

calculation exceed the largest storage space (20,000 m3).

Obviously, it is not practicable to store critical supplies

according to this schedule.

Therefore, the finite inventory space constraint model is

adopted. Figure 6 reveals the results of the equation by

introducing different fixed values. In Fig. 6, with the

increase in the number of iterations, the quantity of dif-

ferent medical supplies that need to be purchased changes

Table 2 Inventory data of six types of scarce supplies

Varieties Quantity demanded (piece/per year) Storage cost (CNY/per year) Order cost (CNY) Average inventory demand

G1 730 600 2000 45

G2 700 600 2000 30

G3 650 600 2000 40

G4 800 600 2000 25

G5 1000 600 2000 55

G6 820 600 2000 50

Table 3 Inventory data of six types of time-sensitive supplies

Varieties Requirements per year (box) Storage cost per year (CNY/per box) Order cost (CNY) Mean storage requirements

T1 36,000 5 1800 150

T2 39,000 5 1800 200

T3 32,000 5 1800 120

T4 30,000 5 1800 100

T5 28,000 5 1800 88

T6 31,000 5 1800 92
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Fig. 5 DL network model based on SAE
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greatly. When ordering 11,075 pieces of bandages, 14,386

pieces of blood-sucking pads, 16,319 pieces of gauze,

13,105 pieces of sphygmomanometers, 12,072 pieces of

alcohol, and 12,108 pieces of saline, the maximum

inventory is 19,772.9 m3, and the maximum inventory

utilization rate is 98.86%.

3.4 Verification results of the MSI model for scarce

emergency supplies

It is vitally important for the MSI model for scarce emer-

gency supplies to determine the order cycle time and the

maximum inventory. According to above analysis, the

EOQ cycle of scarce supplies can be determined, namely

T1 = 35, T2 = 34, T3 = 33, T4 = 36, 51 = 38, T6 = 36,

respectively. Figure 7 indicates the change in the maxi-

mum inventory under different demands. With the increase

in demands, the maximum inventory continues to increase.

In addition, when the demand quantity is 1000, the corre-

sponding order cycle time is 35 days. Then, the order batch

at this time is 630 pieces, and the maximum inventory is

1350 pieces. In concrete scenarios, for the EOQ order

method, the batch size of each order is difficult to deter-

mine, and it may perform poor in operating cost and eco-

nomic benefit are obvious disadvantages. Therefore, this

order approach is only is only applicable to supplies that

are crucial, scarce, few varieties, and high value.
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3.5 Verification results of the MSI model for time-

sensitive emergency supplies

It is of paramount importance for the stock control of time-

sensitive emergency supplies to determine the safety

inventory and order point. Based on the given prerequisite,

the order quantity of time-sensitive supplies are deter-

mined, i.e., Q1* = 16,100, Q2* = 16,757, Q3* = 15,179,

Q4* = 14,697, Q5* = 14,199, Q6* = 14,940, respectively.

Figure 8 illustrates the changing trend of order batches of

time-sensitive emergency supplies under different amounts

of safety inventory. According to Fig. 8, the changes in

safety inventory continue to increase as demand increases.

Moreover, when the safety stock of supplies is 400 cases,

the order point is 1600 cases, the order quantity is 16,100

cases, and the use effect of the model is optimal.

3.6 Prediction results of emergency supplies

demand based on DL

After training the supply inventory model 50 times and 150

times, the predicted values of this model are compared with

the actual values to investigate the influence of training

times on the prediction accuracy of supplies inventory. The

results are shown in Figs. 9 and 10, where the abscissa

refers to the node of each material supply stockroom, and

the ordinate denotes the size of the supply. Through Fig. 9,

there is a significant gap between predicted values of the

model and actual values after 50 times of training. With the

increase in training times, the output value of the model is

even closer to the actual value. After 150 trainings, the

error between the predicted value of the model and the

actual value is less than 30, indicating that the prediction

accuracy is significantly improved.

Furthermore, the prediction results of the SAE algorithm

model are compared with those of the traditional shallow

learning model. The back propagation neural network

(BPNN) and the radial basis function network (RBFN) are

selected for comparison. Specifically, the same data is

input into the three comparative models respectively. Each

model is trained 170 times, and the mean absolute error

(MAE) value is used as the evaluation index of the per-

formance of the models. Figure 11 describes the compar-

ison results. In Fig. 11, as the amount of training sample

data enlarges, the MAE values of the three models are

decreasing. However, compared with BPNN model and

RBFN model, the MAE value of SAE model is signifi-

cantly reduced. With the increasing amount of training

sample data, the SAE algorithm model shows even more

obvious advantages. After 170 times of network training,

the MAE values of BPNN model and RBFN model are

31.98 and 73.73, respectively, but the MAE value of SAE

algorithm model decreases to 21.32, which is significantly

superior to other two models.

4 Discussion

Here, medical supplies are classified into three categories

according to their characteristics, and different order con-

trol methods are adopted accordingly. Moreover, the pre-

diction effect of the MSI model is verified through the

training of DL network. A logical finite MSI model is

indispensable for the rational and efficient use of supplies.

Here, the EOQ method of finite inventory is employed to

build the MSI model for critical emergency supplies, which

can evenly assign space based on the consumption of

supplies without the constraints on the stockroom area, to

enhance efficiency in utilization of space. The order

quantity decided in accordance with the particular condi-

tion competently meets the storage capacity of the stock-

room (Fig. 4). Zhang and Wen (2020) established a multi-

index pricing model for emergency supplies procurement

through constraint theory, and determined the bottleneck

factors of procurement pricing through simulation experi-

ments. Jiang et al. (2020) evaluated the elementary factors

affecting the reliability of emergency logistics system

through multi-attribute decision-making method. He et al.

(2021) studied the allocation of emergency supplies in

emergencies. They adopted the improved non-dominated

sorting genetic algorithm to solve the multi-objective

optimization model. Although this approach solved the

supply and demand matching problem of emergency sup-

plies of public health emergencies, the emergency supplies

demand workflow selected by the model was static, so it
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was inapplicable to the dynamic change of emergency

supplies demand. In short, although these traditional

methods can manage the MSI in emergency, the emergency

supplies management system cannot immediately respond

to adjust the supply–demand relationship in time in emer-

gent situations. The training method based on DL is

adopted to repeatedly train medical supply data, and the

emergency supplies management is innovatively classified

into three categories. The emergency supplies management

model reported here runs fast and accurately, improving the

efficiency of medical supply emergency management, and

providing a new research idea for the storage and man-

agement of emergency supplies.

5 Conclusion

After reading a considerable number of works of reference

for reference, MSI models for critical emergency supplies,

scarce emergency supplies, and time-sensitive emergency

supplies are proposed and applied to improve the stock

control of emergency supplies. Among them, the MSI

model for critical emergency supplies is established by the

EOQ method with finite inventory. The MSI model for

scarce emergency supplies is constructed via the optimized

periodic order of the maximum and minimum period

method. The MSI model for time-sensitive emergency

supplies is built through the quantitative ordering method

based on safety inventory. Besides, the present work pro-

vides the construction methods and procedures of these

models. Then, an earthquake emergency is selected for the

case analysis. The emergency supplies are classified into

three categories, namely critical supplies, scarce supplies,

and time-sensitive supplies. The MSI models reported here

are more logical and workable than the existing stock

control methods, dramatically enhancing the space and

capital utilization, and strengthen the stock control of

emergency supplies. Besides, the prediction model of

emergency supplies supply based on DL has lower algo-

rithm error and more prominent advantages than traditional

shallow learning models. It realizes the cost-effective and

efficient stock control of emergency supplies, and

strengthens the risk management capability, which is of

significant value to handling public emergencies.

However, the present work still has plenty room for

improvement. On the one hand, considering that emer-

gency supplies generally have enormous amounts and

difficulty in stock control, the emergency supplies are

classified into three categories in this experiment. How-

ever, the classification reported here is qualitative, and

there lacks quantitative research. It is expected to utilize

regression analysis and analytic hierarchy process and

fuzzy comprehensive evaluation method for further

analysis of the sorting of emergency supplies in the follow-

up work. On the other hand, the quantitative order method,

traditional EOQ method, and conventional order method

are optimized and applied to construct the emergency MSI

models for various medical supplies. However, the appli-

cation of the model test is still at the exploration stage. For

instance, the multi-variety joint order requires flexible

quantitative order methods, and it is essential to find more

precise methods to determine a rational scale of safety

inventory. It is worth carrying out further research on

diversified categories of inventory models in future.
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