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Abstract
It is well-known that the global structure of every space-time model for relativistic
cosmology is observationally underdetermined. In order to alleviate the severity of
this underdetermination, it has been proposed that we adopt the Cosmological Princi-
ple because the Principle restricts our attention to a distinguished class of space-time
models (spatially homogeneous and isotropic models). I argue that, even assuming
the Cosmological Principle, the topology of space remains observationally underde-
termined. Nonetheless, I argue that we canmuster reasons to prefer various topological
properties over others. In particular, I favor the adoption ofmultiply connected universe
models on grounds of (i) simplicity, (ii) Machian considerations, and (iii) explanatory
power. We are able to appeal to such grounds because multiply connected topologies
open up the possibility of finite universe models (consistent with our best data), which
in turn avoid thorny issues concerning the postulation of an actually infinite universe.

Keywords Global spacetime structure · cosmology · general relativity ·
underdetermination · infinity

1 Introduction

Relativistic cosmology faces an underdetermination problem: there are many cosmo-
logical models compatible with our best observational data.1 At first blush, this may be
quite unsurprising given that cosmology deals with physics at extremely large scales.
A rather more surprising fact is that, even under strong hypotheses about the global
structure of space (the Cosmological Principle), this underdetermination persists. In
particular, we are still unable to ascertain the global topology of space.

Is there any way to break this topological underdetermination? I survey recent work
in observational cosmology that has aimed to provide definitive answers on this front

1 For discussion of underdetermination in cosmology and related issues see Beisbart (2009), Manchak
(2009), Smeenk (2013), and Butterfield (2014).
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and conclude that the prospects for empirically determining spatial topology are not
promising (Section 6). However, a familiar point in the philosophical literature is that
underdetermination by data may not be so worrisome (Laudan, 1990; Earman, 1993).
This is because one may be able to find significant epistemic reasons for preferring
one theory (or model) over another.

As such, I argue that we can muster epistemic reasons to prefer various topologies
over others. In particular, I argue that we should prefer cosmological models with
multiply connected topologies on grounds of simplicity, Machian considerations, and
explanatory power (Sections 7 and 8, respectively).We are able to ascribe such features
to multiply connected models because they generate spatially finite universe models,
which in turn avoid extremely thorny issues concerning the postulation of an actually
infinite universe. Thus, though a purely observational underdetermination remains, we
can avoid a more robust underdetermination, viz., one in which all epistemic reasons
underdetermine the choice of topology.

Aside from these conceptual claims, I also have the less ambitious aim of bringing
some recent cosmological research, viz., the study of cosmic topology, to a broader
audience. I believe that cosmic topology is deserving of philosophical attention, and
I hope my discussion makes clear why this is so.

2 Motivating our investigation

Here I would like to illustrate, in very general terms, the potential philosophical
dividends of our investigation. In short, my goal in this paper is to make precise a
particularly vexing form of underdetermination and to evaluate our prospects for deal-
ing with it. I thereby pave the way for a cogent discussion of broader philosophical
issues, especially the epistemic status of “global” spatial properties and the conse-
quences of underdetermination for scientific realism.2

First, it is important to note that the kind of underdetermination we will consider is
rather distinctive.3 Much of the philosophical literature on underdetermination focuses
on the case of the underdetermination of a theory by data (either the data we currently
have or all possible data). However, in the case of relativistic cosmology, we have
already selected a particular physical theory, general relativity. Even with this theory
fixed, our best observational data does not pick out a unique model of the theory, and,
as we will see, this almost always appears to be the case.

Second, underdetermination is canonically construed as an issue for scientific
realism.4 Following the excellent discussion in Earman (1993), this is because under-
determination generates a tension between two components of scientific realism:
semantic realism, which says that we should literally construe the claims of our scien-
tific theories, and epistemic realism, which says that observational evidence suffices
to provide good reasons to believe what a theory literally says about the world. Con-

2 I address these in a companion piece.
3 See references in footnote 1.
4 However, as emphasized by, e.g., Earman (1993) and Norton (2011), underdetermination poses a more
general challenge to inductive methods of justification.
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sider two distinct scientific theories T1 and T2. These are distinct because, literally
construed, they say different (and perhaps even incompatible) things about the world.
However, if T1 and T2 are underdetermined by observational data, they say the same
things about observables. But then we cannot maintain epistemic realism, since any
piece of observable evidence for T1 will also count as evidence for T2.

Earman continues by classifying two categories of response to this predicament.
Responses falling under the first category “retreat” by weakening either semantic or
epistemic realism. If we weaken semantic realism, we can say that two ostensibly
distinct, though empirically equivalent, theories T1 and T2 are really the same the-
ory in disguise. That is, T1 and T2 are superficially different ways of describing the
same factual states. If we weaken epistemic realism, we can say that both theories
are “empirically adequate,” but that what they say about unobservables need not be
true. Responses falling under the second category “defend” by denying that there
are interesting examples of empirically equivalent theories and/or questioning that
the existence of such theories actually undermines our ability to empirically choose
between them.

This classification provides us with a helpful way of situating the following discus-
sion. The topological underdetermination under investigation provides an interesting
example of empirically equivalent (or observationally indistinguishable) models of
a scientific theory. I say “interesting” because it is an instance of underdetermina-
tion that arises in scientific practice involving neither the postulation of cooked-up
skeptical scenarios nor anemic Quinean examples concerning the intersubstitution of
terms. Indeed, this topological underdetermination has long been recognized as such
an example: Earman himself briefly discusses it following earlier work by Glymour
and Malament.5 I think, however, there is more to say about the case than has been
recognized.

First, there have been impressive developments in observational cosmology relating
to the topological structure of space since the case was first discussed. This, on its
own, merits further investigation. Second, the topological properties I consider are
intimately connected to the infinitude (resp. finitude) of the spatial universe. This fact
is very important and has not been exploited in the philosophical literature. I use it to
argue that we have good epistemic grounds to prefer particular topologies (and hence
particular cosmological models) over others. This connection also helps to clarify the
responses to underdetermination sketched byEarman. In particular, it quite definitively
eliminates the possibility of the first “retreat” because, roughly, a universe model with
topology τ1 will be spatially infinite and, under suitable hypotheses, will thereby
contain infinitely much matter. On the other hand, a universe model with topology
τ2 will be spatially finite and will thereby contain only finitely much matter. Clearly,
then, these two models will be radically different from an ontological perspective.
They cannot be the same model “in disguise.”

5 See Glymour (1977) and Malament (1977). This question was treated more recently in Magnus (2005).
However, since the publication of this latter article, there has been a great deal of relevant philosophical
and scientific activity. See, in particular, Manchak (2009) and my discussion of observational cosmology
below. Furthermore, I believe that the notion of “simplicity” is rather more interesting and nuanced than
the treatment provided in Magnus (2005).
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Furthermore, there do not appear to be any good defensive responses to the topo-
logical underdetermination. It seems difficult to deny that this is an interesting case
of empirical equivalence and, as we shall see, it seems very unlikely that empirical
evidence will ever serve to provide reasons for believing one model is true rather than
another. This indicates that the second “retreat” is perhaps the most attractive philo-
sophical option remaining. However, this retreat need not take the form of, say, van
Fraassen’s constructive empiricism, nor even Earman’s “gentle empiricism” (Earman,
1993, 35). In particular, I believe that a suitably modified Kantian view, following
Michael Friedman’s work on the relativized a priori, is perhaps our best option. The
exact details of this proposal must wait for another time.

In any case, I hope it is now clear that the topological underdetermination to be
discussed is of wide-ranging philosophical significance. Let us then turn to making its
contours more precise.

3 Fundamentals of spacetime structure

I begin by rehearsing some of the basic details of relativistic cosmology. Speaking
circumspectly, we can say that cosmology is the study of the large scale structure of
the universe. By “universe,” wemightmean either everything that exists in the physical
sense or that which comprises everything that exists physically. Both of these notions
are useful and can be understood rigorously. Namely, we can think of the universe as
the spacetime in which everything is contained together with the distribution of matter
and energy in this spacetime. I am primarily interested in the former, though details
about the latter will become relevant later.

Given that gravitation is the dominant force at large scales, we must consider our
best extant theory of gravity: Einstein’s theory of general relativity. Thus, ultimately,
cosmology is concerned with finding models of general relativity that are consis-
tent with our data concerning the spacetime structure and energy distribution of the
universe at large scales.6 In terms of the standard formalism, we say that a model of
general relativity7 is a triple (M, gab, Tab), whereM is a connected four-dimensional
real smooth manifold without boundary of variable curvature,8 gab is a metric ten-
sor (field) of type (0,2),9 and Tab is the energy-momentum tensor (field). The metric
gab characterizes the geometric properties, e.g., curvature and geodesics, of M at a
given point, p ∈ M. Finally, Tab characterizes the energy distribution of M and is
described by suitable equations of state relating its components, again at a particular
point, p ∈ M.

We must now understand how these elements of models of general relativity inter-
act. In particular, we seek a field equation relating the metric gab, characterizing

6 This distinction between model and theory is slippery and usage varies, but my meaning should be
reasonably clear in what follows. See Butterfield (2014, 58-9.)
7 I will drop Tab later, but it is helpful here in describing the Einstein Equation.
8 See Hawking and Ellis (1973) and Wald (1984) for details.
9 More precisely, gab is a smooth, non-degenerate, pseudo-Riemannian metric of spacetime/Lorentz sig-
nature (–, +,+,+).
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geometry, and the energy-momentum tensor Tab, characterizing energy distribution.
This relationship is expressed as:

Rab − 1

2
Rgab +�gab = κ0Tab, (3.1)

which is now known as Einstein’s Equation.10 More precisely, the left-hand side
characterizes the curvature of M at a point p given the specification of gab.

Technically, Equation 3.1 expresses ten non-linear partial differential equations of
immense mathematical complexity. In order to obtain “exact solutions” that can be
studied both mathematically and physically, one must lay down plausible simplifying
assumptions that accord with observational data. I turn to these assumptions in a
moment; however, before complicating matters, we can already express a general sort
of cosmological underdetermination.

4 Underdetermination and the cosmological principle

In providing a model of general relativity, we provide a particular kind of ambient
manifold structure and a metric and energy distribution solving Einstein’s Equation.
How do we go about doing so? Certainly, we wish such a model to match our observa-
tions at a given point in spacetime. The hope is that our observational data can narrow
down a unique model (or unique class of models).

It should be noted that by “unique” we really mean “unique up to isometry.” That
is, we say that two models (M, gab, Tab), (M′, g′

ab, T
′
ab) are isometric if there is a

diffeomorphism11 ϕ : M → M′ such that ϕ∗(gab) = g′
ab.

12 This easily descends to
the local case of open sets on the manifolds. The crucial point is that two isometric
manifolds (resp. open sets of manifolds) do not constitute distinct physical possibil-
ities because they cannot be distinguished using observations. This is so because the
isometry preserves the metric structure across manifolds and thus preserves solutions
to Einstein’s Equation.

We can now state the conditions required for isolating a unique model/class of
models for general relativity. According to general relativity, anything we observe at
a spacetime point p (for some p ∈ M in some model) must be causally related to
p; however, signals cannot propagate faster than the speed of light. Thus, the events
with which we can have causal contact sit either on or within a particular region of
spacetime bounded by the paths of light that arrive at p. We denote this region by
J−(p) and call it the past lightcone at p or simply the observable universe at p.13 For

10 Here Rab is theRicci tensor, gab is themetric tensor, R is theRicci curvature scalar,� is theCosmological
Constant, κ0 = 8πG/c4 is the Einstein gravitational constant, and Tab is the energy-momentum tensor. �
was originally included in the field equations by Einstein to achieve a static cosmological model (among
other things). Today it is invoked as a dark energy candidate to explain the observed acceleration of the
expansion of the universe. See Earman (2001) for a nice discussion of �.
11 A smooth, bijective map with smooth inverse.
12 See Wald (1984) and Manchak (2009).
13 Also, technically, J−(p) must sit to the future of the time of decoupling.
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reasons of mathematical convenience, we followManchak (2009) and work primarily
with the interior of J−(p), denoted by I−(p).14 Let uswrite I−(p0) for our observable
universe.

Thus, ifwe are to pick out a unique class ofmodels compatiblewith our observations
at p0,15 we require:

Condition 4.1 Up to isometries, there is a unique model (M, gab, Tab) that has a point
q ∈ M such that I−(p0) and I−(q) are isometric.16

Unfortunately, it is well known that the uniqueness condition cannot be satisfied.
There are various ways to see this, but perhaps the slickest is by appeal to recent
results byManchak.17 In particular,Manchak shows that virtually anymodel (M, gab)
(subject to a few reasonable constraints18) will be observationally indistinguishable19

fromanothermodel (M′, g′
ab) that isnot isometric to (M, gab). Consequently, an ideal

observer at p ∈ Mwho knows allmetrical data about I−(p) can knowvery little about
the global structure of their spacetime, since there will be many spacetimes possessing
markedly different global properties that contain regions isometric to I−(p).

Thus, it would appear we are in very bad shape when we try to provide a unique
model of general relativity that matches our observational data. And thus we are
confronted with a severe underdetermination of models by data. What’s worse, by the
above results of Manchak, this almost always appears to be the case. However, the
severity of this underdetermination can be greatly reduced by restricting the models
of general relativity considered. Appeal is usually made to the following:

Principle 4.2 (Cosmological Principle) On average, at large scales, the universe is
spatially homogeneous and isotropic around every point.20

Thus expressed, the Cosmological Principle is essentially an a priori prescription
imposed on all possible models of general relativity. Once imposed, it has the effect of
restricting our attention to a particularly well-behaved class of models, theFriedmann-
Lemaître-Robertson-Walker (FLRW) models. There are many intricate arguments,

14 The I−(p)s are mathematically simpler because they are open sets, as opposed to the J−(p)s which
are closed. See Cinti and Fano (2021) for a brief discussion of the physical significance of this restriction.
15 When I write p0 and I−(p0) in Condition 4.1, I am not quantifying over points in different models.
These notions simply serve as shorthand for our observable universe from an arbitrarily selected spacetime
point p0.
16 Here I simply follow the requirement given in Beisbart (2009). It is a natural and widely acknowledged
one. See also Butterfield (2014).
17 See Manchak (2009). His results make rigorous ideas found in Malament (1977).
18 In particular, well-behaved causal structure.
19 Manchak defines two models of general relativity (M, gab), (M′, g′

ab) to be observationally indistin-
guishable iff for all p ∈ M, there is some p′ ∈ M′ such that I−(p) and I−(p′) are isometric. See Cinti
and Fano (2021) for alternative notions of observational indistinguishability.
20 As expressed in Wald (1984, 92-3). Also, before imposing the Cosmological Principle, one must
assume that space and time can be “split,” i.e., the entire spacetime manifold, M, can be written as
M3 × R, otherwise we could not make sense of imposing only spatial symmetry constraints. A strong—
but common—assumption that guarantees this is called global hyperbolicity. This condition amounts to
claiming we can determine the evolution of spacetime from our information about a spatial hypersurface,
�, at a given time.
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drawing on a wide variety of considerations (some empirical), for the Cosmological
Principle.21 These arguments are of great philosophical interest, for the Cosmologi-
cal Principle, if acceptable, would significantly reduce the underdetermination. I will,
however, simply assume the Cosmological Principle here. The reason for this is that,
even under the strong hypothesis of the Cosmological Principle, themodel underdeter-
mination persists when we consider topological properties of our spacetime manifold
M. Indeed, somewhat astonishingly, for each metric solution of Einstein’s Equation
internal to the class of FLRWmodels, there may be infinitely many compatible topolo-
gies. I will now discuss these models and the relevant topological properties in greater
detail.

5 FLRWmodels and topology

The Cosmological Principle amounts to the imposition of spatial22 symmetry con-
straints. In particular, spatial homogeneity means, roughly, that every point in space at
a given time “looks the same,” and spatial isotropy means that there are no preferred
spatial directions. We represent the spacetime manifold,M, as the product of a three
dimensional spatial manifold and a temporal continuum, i.e., M := M3 × R. The
spatial manifold can then be thought of as a “stack” of surfaces, each indexed by a
particular cosmic time. The metrical structure of these FLRW models is particularly
tractable, and, crucially for our discussion, the spatial sections have constant curvature
with values k = ±1, 0, respectively.

Once more, the essential point is that, even with all these simplifications, we have
said nothing about the topology ofM3. Until quite recently, it has been assumed in the
cosmological literature that the topology ofM3 is simply connected. Informally, in a
simply connected space, any loop through a point x0 can be continuously deformed
into any other closed loop through x0.23 However, neither observational data nor the
FLRW models themselves dictate such a choice. It is entirely possible that the spatial
sections are multiply connected, i.e., there is a “hole” (or many “holes”) that renders
such a continuous deformation impossible.24 For instance, a hypertorus25 is multiply
connected, while Euclidean space is simply connected.26

Let us consider the possible simply connected models (SCMs). There will then be
three candidates for the spatial sectionM3: the 3-sphere (S3), Euclidean 3-space (R3),

21 See Ellis (2007), Section 4, Beisbart (2009), Smeenk (2013), and Butterfield (2014).
22 This is crucial. We do not have spatiotemporal symmetries. Metrical structure is only preserved on
spatial hypersurfaces of M but not throughout M. The only exception among FLRW models is the de
Sitter universe, which neglects ordinary matter. The de Sitter universe satisfies the “perfect” Cosmological
Principle that imposes homogeneity and isotropy throughout space and time. I thank an anonymous reviewer
for reminding me of this.
23 More formally: a topological space X is said to be simply connected if it is path connected and the
fundamental group π1(X , x0) reduces to the identity element.
24 More formally: X is multiply connected if it has a non-trivial fundamental group.
25 T 3 = S1 × S1 × S1. See below.
26 For foundational texts on alternative topologies for space see Ellis (1971), Luminet and Lachiéze-Rey
(1995), and Luminet (2015).

123



   17 Page 8 of 28 European Journal for Philosophy of Science            (2024) 14:17 

Table 1 Mathematical Properties of SCMs

Spatial Section Geometry Curvature Topology Extent of Universe

S
3 Spherical k > 0 SC Finite

R
3 Euclidean k = 0 SC Infinite

H
3 Hyperbolic k < 0 SC Infinite

and the 3-hyperboloid (H3). These correspond, respectively, to the three possibilities
for constant curvature, viz., k > 0, k = 0, and k < 0, and will be equipped with
their respective classical geometries, viz., spherical, Euclidean, and hyperbolic. The
possible SCMs along with their central mathematical properties are summarized in
Table 1. When we deal with SCMs, note that the determinant of the spatial extent of
the universe is the curvature of M3 alone.

Let us now turn to multiply connected models (MCMs). The effect of a multiply
connected topology forM3 is equivalent to considering a particular simply connected
space (the universal covering space, denoted by ˜M3) tiled with particular polyhedra
(fundamental polyhedra).27 This tiling of the covering space is achieved by the action
of a group� on the covering space. Sincewe only deal with constant curvaturemodels,
we need only consider three universal covering spaces S3,R3,H3 under the action of
such a �. In order to get a multiply connected topology, we form a quotient manifold
˜M3/�, which is gotten by identifying points equivalent under the action of � on the
covering space ˜M3, where ˜M3 which is one of the three constant curvature SCMs.
For example, R3 /� ∼= T 3, the hypertorus, where � consists of discrete translations
identifying faces of the fundamental polyhedra (parallelepipeds) tiling R

3.
To summarize, we can re-write Table 1 with the choice of multiply connected

topology. See Table 2.
This will not affect the geometry of each case, so, e.g., geometrically R

3 and the
hypertorus T 3 are the same, and so will be observationally indistinguishable, provided
the topology cannot be empirically determined. However, the topology change will
affect the possible size of the universe, e.g., T 3 is finite, while R3 is infinite.

Thus, we see that the effect of considering MCMs (in addition to SCMs) produces
an explosion of newFLRWmodels of general relativity consistent with our best data.28

Once more, this is the case even under the very strong assumption of the Cosmological
Principle. Is there, then, any means of breaking the underdetermination of models? In
recent years, there has been active research in the field of cosmic topology whereby
cosmologists have attempted to empirically ascertain the global topology of space. I
will now briefly review the most promising aspects of this research.

27 See Wolf (1967), Ellis (1971), Luminet and Lachiéze-Rey (1995), and McCabe (2004) for further
mathematical details.
28 In particular, we see that spatial extent is no longer exclusively determined by the curvature of space as
in SCMs.
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Table 2 Mathematical Properties of MCMs

Spatial Section Geometry Curvature Topology Extent of Universe

M3 = S
3/� Spherical k > 0 MC Finite

M3 = R
3 /� Euclidean k = 0 MC Infinite or Finite

M3 = H
3/� Hyperbolic k < 0 MC Infinite or Finite

6 Recent investigations in cosmic topology

Crucially, consideringMCMs providesmany new options for finite universemodels.29

In contrast, when we consider Table 1, the only finite option is given by the spherical,
positive curvature case; however, this does not accord with our best data about the
“near flatness” of the universe.30 Various Euclidean MCMs, on the other hand, do
appear to be consistent with these observations.31 The hope is, then, that we live in
one of a distinguished class of the MCMs called Small Universes.32 Essentially, if this
were so, the observable universe at any point p, I−(p), exhausts the actual spatial
universe at p (where p is an arbitrary point in the spacetime manifold of any Small
Universe model). That is, I−(p) contains all ofM3. Both the spatial topology and size
of the universe would be, in principle, empirically determinable, and so the topological
underdetermination of models would be broken.

The basic idea underlying all recent attempts at determining the spatial topology
of the universe is the following. If we live in a “small” MCM, then space can be
represented via a universal covering manifold tiled by a fundamental domain. That is,
anMCM is topologically equivalent to an SCM subject to particular periodic boundary
conditions. The immediate physical effect of this periodicity is that sources of radiation
will producemultiple images (because therewill bemultiple shortest paths alongwhich
light travels) occurring at particular points in a lattice, which is in turn consistent with
a particular multiply connected topology. Figure 1 represents the universal covering
space of the two-torus, T 2, i.e., a two-dimensional MCM.33

The shaded region is the fundamental polygon, subject to periodic boundary con-
ditions, S is a source of radiation, O is an observer. S propagates light to O along
the “intuitive” geodesic (ray SO). However, this light would also scatter in infinitely
many directions, “wrap around” the universe, and generate the appearance of infinitely
many “apparent” or “ghost” images {S1, . . . , S8, . . .}. All recent work has attempted

29 In what follows, by virtue of assuming the Cosmological Principle, I restrict my attention to FLRW
models only.
30 For the most recent data see Spergel et al. (2007).
31 And even some spherical and hyperbolic MCMs.
32 Ellis and Schreiber (1986), Luminet and Lachiéze-Rey (1995), Ellis (2007), and Luminet (2015). Note
that “small” does not simplymean “finite.” There could be finite universes that still exceed our observational
horizon.
33 Image from Luminet (2015).
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Fig. 1 Universal Covering Space of T 2

Fig. 2 Universal Covering Space of T 3

to exploit a higher-dimensional version of this representation in some way. Figure 2
represents the case of T 3 viewed from a “corner” of real space with Earth closest to
us.34

Thus, let us turn to the most promising technique on offer for empirically determining
the topology of space, commonly called “circles in the sky.”35

34 Image generated using the Curved Spaces package by Jeff Weeks.
35 For excellent surveys of this technique, see Cornish et al. (1998), Levin (2002), Rebouças and Gomero
(2004), Cornish et al. (2004), and Luminet (2015).
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6.1 Circles in the sky

According to the standardBigBang theory, the universe is generated froman extremely
hot, dense energetic plasma. This plasma is entirely opaque to light because photons
will scatter off of hot charged particles. As the universe expands, the plasma cools
sufficiently to permit radiation to pass through it. This ancient scattered radiation has
by now cooled to be observable in the microwave spectrum and is called Cosmic
Microwave Background (CMB). This radiation carries coveted data about the very
beginning of the universe and, as it turns out, might be useful in detecting non-trivial
cosmic topologies. If we imagine the initial state of the universe as a “point,” thenCMB
would have scattered in every direction from this point to reach us now, forming a
“sphere” of radiation processing from the center of the sphere. This sphere of radiation
is called the “surface of last scattering” (SLS).

How can the SLS be used to detect cosmic topology? If the universe has a multi-
ply connected topology, then, as we have seen, it can be represented as its covering
space tiled by fundamental polyhedra. Each “copy” of the observer in each poly-
hedron (that is, each analogous point in each fundamental polyhedron) will come
associated with its own SLS; provided that the diameter of the fundamental poly-
hedron does not exceed that of the diameter of the SLS, then the SLS spheres will
intersect, generating a “circle” of CMB radiation. Since there will be an observer and
their “copy,” these intersections will come in pairs viewed in different directions. The
presence of pairs of circles in CMB radiationwill then be a sign of non-trivial topology.

Fig. 3 Circles in the Sky for T 2
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See Fig. 3 for the circles method applied to the 2-torus with fundamental polygon a
square.36

One very important advantage of “circles in the sky” over other techniques on offer
is that it will apply to all MCMs, and the model can be directly reconstructed from the
radius, number, and distribution of the circles. However, there are still observational
issues involved in the circles method. In particular, the velocity and density of the
SLS can become obscured, thus affecting the accurate detection of circles (e.g., the
gravitational pull of coalescing galaxies could be a potential obstruction). On the
whole, however, this appears to be a very powerful method for detecting cosmic
topology.

6.2 Evaluation of empirical techniques

Have traces of “small” MCMs been found by the above method? Unfortunately, the
results thus far are not promising, though they have been fiercely debated. It seems
that many of the favored “small” MCMs have been ruled out: no matching circles
have been found for hypertori nor for other important models. However, the results
employed to rule out these models do not apply to allMCMs; in particular Aurich et al.
(2004) has claimed to have found some evidence for a multiply connected hyperbolic
model called the Picard Horn. The Picard Horn is particularly interesting because,
though one direction of its fundamental polyhedron is infinite, the space as a whole
has finite volume.

Thus far, we have considered the “best case scenario” for empirically determining
cosmic topology, i.e., Small Universes. It is worth asking whether we can lift this
assumption and consider cases in which the universe is finite and exceeds the observa-
tional horizon, but only by a “negligible” amount. Astonishingly, there has been some
recent work that has shown it would be possible to distinguish an infinite universe from
a finite, though technically non-observable, universe for particular multiply connected
topologies. This means that, even if we did not live in a small universe, but rather a
“relatively” small universe, both the topology and size of space could be empirically
detectable (Fabre et al., 2013).

Despite these developments, there has been no especially compelling evidence for
a multiply connected spatial topology. As I have tried to indicate in this section, this
does not, of course, rule out the possibility. It does seem, though, that the set of models
both (i) consistent with our best evidence and (ii) either small or “relatively” small is
shrinking.

6.3 The topological underdetermination thesis

Before turning to further complications, let us summarize our findings and make
explicit our underdetermination thesis. We have taken the Cosmological Principle on
board as an assumption about the global structure of space. An immediate consequence
of this assumption is that wemust restrict our attention to the FLRWmodels of general

36 Image from Luminet (2015).
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relativity.We then saw that, internal to this highly symmetric class ofmodels, wemight
distinguish between simply connectedmodels (SCMs) andmultiply connectedmodels
(MCMs). The existence of a tractable (because spatially finite and particularly small)
subset of MCMs, the so-called Small Universes, suggested that we might empirically
investigate spatial topology. However, given the lack of empirical evidence that we
live in a Small Universe, combined with the many sensitivities and difficulties of the
empirical techniques used, we postulate:37

Thesis 6.1 (Topological Underdetermination Thesis) For any simply connected
FLRW model (M, gab), there exists a multiply connected FLRW model (M′, g′

ab)

that is not isometric to (M, gab) such that (M, gab) and (M′, g′
ab) are observationally

indistinguishable.38

For example, let the spatial section M3 of M be R
3. This is simply connected

and infinite. Let the spatial section M′
3 of M′ be T 3, the hypertorus. This is mul-

tiply connected and finite. These two models share the exact same kinematics and
dynamics and so, given the observational difficulties noted above, are observationally
indistinguishable.39

In sum, despite some impressive advances in the study of cosmic topology, I believe
that we are still faced with a severe underdetermination of spatial topology by obser-
vational data. And this is so even under the assumption of the Cosmological Principle.

6.4 MCMs, Manchak’s theorem, and isotropy

Finally, let us consider whether our topological underdetermination would vanish
if strong evidence for a particular MCM emerged, e.g., matching circles of CMB
indicating a particular multiply connected topology. The first issue to examine is the
nature of the “empirical evidence” that could be adduced for MCMs. Obviously, the
meaning of “empirical evidence” heremust be quite generous in that sense thatwe infer
a particular topology from its “signature” in the CMB. Second, there are a number of
worrisome restrictions on popular techniques for determining topology. For example, it
has emerged that some techniques have complicated dependencies upon the geometry
(viz., group of isometries) of a given manifold; thus, a “negative” result may not in fact
be such given that some possible models cannot be detected by the technique. Finally,
even the preferred circles method is susceptible to many observational difficulties.

But let’s proceed in the spirit of optimism. If it becomes clear that a particular
MCM is the best explanation for a given set of observational data, have we dispensed
with the topological underdetermination? Initially, it would appear that the answer is
no. This is because the models we are considering are causally well-behaved, and so
Manchak’s theorem on observationally indistinguishable spacetimes still applies. It

37 Note that, in general, my underdetermination thesis does not follow from Manchak’s result in Manchak
(2009). This is because I impose further conditions on (M′, g′

ab); in particular, that it be an FLRWmodel.
38 Again, following Malament (1977), we say that two models (M, gab), (M′, g′

ab) are observationally
indistinguishable if for all p ∈ M, there is some p′ ∈ M′ such that I−(p) and I−(p′) are isometric.
39 More precisely, these models are governed by the exact same FLRW solutions to Einstein’s Equation.
See Luminet and Lachiéze-Rey (1995) and Luminet (2015) for details.
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is not worth rehearsing the exact details of his proof here, but the basic point is that
we can form spacetimes by cutting and pasting together subsets of other spacetimes
(Manchak, 2009, 55). Assume that we have been convinced that we live in a Small
Universe, i.e., such that I−(p0), our observable past from point p0, contains all of
space. It can then be shown that I−(p0) can be attached to various other regions in
the future of p0, thereby generating a spacetime that is globally different from the
assumed Small Universe model.

The significance of this result for Small Universes is somewhat unclear and ulti-
mately depends upon a complicated set of considerations. For instance, one might
already be concerned about the body of assumptions laid down internal to which the
above observational data would be considered evidence. The fact that, even after all
these assumptions have been stated, there is still the possibility that strong empirical
evidence for an MCM would not break our underdetermination could incline one to
a skepticism about knowledge of spatial topology. On the other hand, one might be
relatively unconcerned about the assumptions in question and further contend that
Manchak’s result, in the face of evidence for an MCM, lacks bite. Namely, the cutting
and pasting technique generates a spacetime that has a decidedly “cooked-up” look,
and this is a much less reasonable explanation for the evidence in question.

Following the discussion in Cinti and Fano (2021), we can make our concerns
about Manchak’s result more precise.40 Their primary contention is that Manchak’s
construction is not physically reasonable and thus the implications of his result for
physical cosmology are overstated. That is, Manchak has only shown that “[...] the
mathematics of General Relativity allows for certain structures, not that these struc-
tures are physically relevant, and thus relevant to our actual attempts at modelling
the universe” (Cinti & Fano, 2021, 104). In particular, they argue that the space-
time (M′, g′

ab) produced by Manchak is “pathological” because it possesses features
that lack a physical explanation in terms of some physical process. This is because
(M′, g′

ab), in virtue of its production by the cutting and pasting construction, has
singularities in the form of deleted boundaries of 3-spheres.41 However, no physical
explanation is provided for the existence of these singularities, e.g., gravitational col-
lapse of a body. In fact, by Manchak’s own lights, no such physical explanation could
ever be produced because such a physical process would violate another property of
(M′, g′

ab) stated in his theorem, i.e., that (M′, g′
ab) and (M, gab) are locally isomet-

ric.42 Clearly, if there were such a physical process responsible for the singularities in
(M′, g′

ab), there would be no corresponding process in (M, gab), thereby violating
the local isometry of (M, gab) and (M′, g′

ab). The authors continue by isolating a
particular formal condition, local b-boundary inextendibility, which they argue char-
acterizes a physically reasonable spacetime, and show that Manchak’s (M′, g′

ab) fails
to satisfy this condition.43

40 I thank an anonymous reviewer for drawing my attention to this work.
41 My reader is encouraged to consult Manchak (2009) and Cinti and Fano (2021) for full technical details.
42 Two spacetimes (M, gab) and (M′, g′

ab) are said to be locally isometric if, for each p ∈ M, there is
an isometry from a neighborhood U of p to a neighborhood U ′ of p′ ∈ M′. Local isometry guarantees
that the local physics for each observer in (M, gab) and (M′, g′

ab) will be the same.
43 See Cinti and Fano (2021, p. 109) for technical details.
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I find the discussion of Cinti and Fano (2021) quite compelling. As such, we should
conclude that, if strong evidence supporting a particularMCMemerges, e.g.,matching
circles in the CMB, then we should accept this evidence on its face rather than appeal
to Manchak’s skeptical scenario. However, as I have noted, there are many reasons to
doubt that such evidence is forthcoming. Furthermore, Cinti and Fano (2021) bolsters
the aims of the present paper insofar as it indicates the importance of topological
underdetermination.44 This is because I have not merely provided “possible geomet-
ric objects which might be studied in General Relativity,” but rather have shown that
there are spacetimes that are both physically reasonable and observationally indistin-
guishable. Thus, I have produced a case of “genuine” underdetermination in physical
cosmology.

I would like to close this section by making our statement of the Cosmological
Principle more precise. This is because all MCMs45 violate the global isotropy of
space, i.e., there will be “principal” or “preferred” directions in space reflecting the
identification of faces of the fundamental polyhedron under the action of group �.
However, these preferred directions will only be present beyond a particular length
scale, and so “local isotropy everywhere” still holds in MCMs.46 This local isotropy,
along with spatial homogeneity, ensures consistency with our best data. Thus, we have
identified precisely the assumption that would rule out MCMs, viz., the imposition
of global isotropy. Providing an argument for this claim would be difficult indeed,
and typically something weaker is assumed (Ellis, 2007; Beisbart, 2009). In any case,
given the difficulty in justifying global isotropy and the potential benefits imparted
by MCMs (see below), our Cosmological Principle should take the form of “spatial
homogeneity + local isotropy everywhere."

I will now argue that, though an observational underdetermination of spatial
topology seems unavoidable, there are nonetheless reasons to prefer MCMs thereby
avoiding a robust underdetermination. I consider reasons that exploit the relationship
between multiply connected topologies and finite universe models compatible with
our best data.

7 Issues concerning the infinite

It is a truism that many questions arise when we countenance an infinite universe. Can
the actual infinite be instantiated in the physical world? What are some philosophical
implications of an actually infinite universe? I cannot, of course, do justice to these
questions here; rather, I wish to illuminate how they relate to our topological underde-
termination. The logical flow of the argument is as follows: by Thesis 6.1, the topology
of space is observationally underdetermined. However, in virtue of the relationship
between the infinitude-finitude of the spatial universe and spatial topology, MCMs
enjoy theoretical virtues that SCMs do not. In particular, here I will argue that MCMs
possess a particular kind of simplicity because there are spatially finiteMCMs consis-

44 Indeed, in their conclusion, they suggest that results about topological underdetermination would be
“extremely valuable.”
45 With one exception, real projective space, RP3. See Luminet and Lachiéze-Rey (1995).
46 See McCabe (2004) for a definition of local isotropy everywhere.
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tent with our best data.47,48 In virtue of this finitude (and hence simplicity), particular
MCMs avoid difficulties latent in cosmological models that postulate the existence
of an actually infinite universe.49 Thus, we have good reasons for preferring MCMs,
thereby providing a means for dispensing with a robust topological underdetermina-
tion, viz., an underdetermination in which all epistemic reasons underdetermine the
choice of topology.

Before turning to my main discussion concerning the relationship between spatial
topology and the size of the universe, I must clear some ground. In recent years,
various authors have claimed that it is a direct consequence of inflationary theory that
the universe is actually infinite, and this claim has been used to support substantive
philosophical conclusions.50 However, the claim that inflationary theory implies an
actually infinite universe relies upon a feature of the idealized mathematical model of
inflation that is difficult to support on either physical or philosophical grounds (Ellis &
Stoeger, 2009). In virtue of this fact, along with the various ontological and physical
scruples one might have about inflationary theory, we should resist arguments from
inflationary theory for the infinitude of the universe.

Consequently, it would appear that the topology of the spatial sections will be the
primary determinant of the size of the spatial universe (constrained by the value of
curvature k). As such, our choice of topology is immediately related to questions of
the cogency of an actually infinite universe. Thus, if there are serious philosophical
and physical problems with an infinite universe, this should motivate the choice of a
topology that avoids ascribing an actually infinite size to space.

7.1 Actual infinities in cosmology

I would like to begin by considering Brundit and Ellis (1979) in which a particularly
strange consequence of an actually infinite universe is dramatized. Although the con-
clusion drawn by the paper is not my primary objection to positing actually infinite
universemodels, the discussion serves as a useful starting point for a few reasons. First,
it is one of the few articles that emphasizes the difficulties latent in the use of infinite
universe models.51 Second, the authors realize the possible theoretical dividends of

47 In particular, consistent with the near flatness of the universe thus far observed, i.e., the value of spatial
curvature is k ≈ 0.
48 Another very important consideration that could be discussed under the auspices of “simplicity” is the
fact that a universe with compact spatial sections would exclude various cases of the classical multiverse.
See Ellis and Larena (2020). This is deserving of an independent discussion, so I set it aside for future work.
I thank an anonymous referee for this suggestion.
49 In particular, as discussed above, if our topology is simply connected, the only cosmological models
consistent with our best data about the curvature of space are spatially infinite.
50 For a discussion of inflationary theory, see Guth (1981). For a discussion of possible philosophical
consequences, see Knobe et al. (2006).
51 G.F.R. Ellis makes similar remarks in Ellis (2007) and Ellis (2014). For a more recent discussion, see
Ellis et al. (2018). This paper distinguishes “placeholder” and “essential” uses of infinity in mathematized
physical theories. The authors suggest that our best physical theories, even at the most fundamental level
of analysis, should not involve essential uses of infinity, i.e., the use of actual infinities. This is because
actual/essential infinity satisfies relations that “cannot occur in physical reality; in essence, it fails to obey
conservation laws” (Ellis et al., 2018, 770).
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positing a multiply connected topology, though they dispense with this option much
too quickly.

Brundrit and Ellis argue that, provided we live in an FLRW universe that is nearly
flat (k ≈ 0), it is highly probable that52

[...] there exist infinitely many worlds on which there are ‘duplicate’ populations
(i.e., populations identical in number and genetic structure) to that on our own
world (Brundit & Ellis, 1979, 37).

Furthermore,

It soon becomes clear that it is difficult to provide a precise argument against
there existing elsewhere in the Universe an identical person reading the identical
article on ‘Life in the Infinite Universe’...for, with an infinite family of histories
to look at, it is difficult to provide an incontrovertible argument as to why a
particular history should occur only once. [...] There is no need to postulate some
hypothetical statistical ensemble—it exists in the infinite universe! (Brundit &
Ellis, 1979, 38)

This is a remarkable and somewhat dizzying conclusion. Nonetheless, though the
reduplication is odd and unsettling, its strangeness need not incline us to posit one
model over another. However, I will show that there are a number of theoretical dis-
advantages that come with the postulation of an actually infinite spatial universe and
the attendant possibility of infinite populations and infinitely much matter.

Before detailing these disadvantages, I would like to examine the options available
to us for dispensing with them. First, further developments in quantum theory or in
our understanding of how “very small” variations of parameters may affect popula-
tion formation might be of use. A survey of these possibilities would, however, merit
an extensive independent discussion. Brundrit and Ellis themselves propose that one
could: (i) deny the application of probability theory to scientific models; (ii) deny the
Cosmological Principle; (iii) assume that the spatial sections have multiply connected
topologies. Option (i) seems incredibly restrictive and should be set aside. Option (ii),
though a licit possibility, is a standing assumption of this paper and is employed in
much cosmological research. Finally, option (iii), as we have seen, provides particular
universe models in which the spatial sections are finite, thereby disrupting the redu-
plication argument and the postulation of infinite quantities. It is set aside in Brundit
and Ellis (1979) because

[T]here appears to be no philosophical reason—based on the uniformity prin-
ciple, or any other principle—why the space-sections should not have their
‘natural’ [simply connected] topologies (40).

I would like to press on this reasoning. Indeed, it seems that this is a case in which
appeal to the classical theoretical virtue of simplicity may be of use. Of course, the
notion of “simplicity” is extremely slippery andmulti-faceted (though nomore so than

52 For the details of the argument, see Brundit and Ellis (1979, pp. 37-8).

123



   17 Page 18 of 28 European Journal for Philosophy of Science            (2024) 14:17 

that of “naturality”). As such, let us try to be a little more precise.53 Two distinct sorts
of simplicity are commonly acknowledged: ontological and syntactic. Ontological
simplicity is given by the number and complexity of entities postulated by a theory,
while syntactic simplicity is given by the number and complexity of the laws of the
theory.54 Following Quine, these two aspects are often thought to be inversely related:
an expansion in ontology usually results in a contraction in laws, while an expansion
of hypotheses/laws usually results in a contraction of entities. However, as we shall
see, this relationship is highly non-obvious and difficult to evaluate.

Another distinction is also required: when considering ontological simplicity, one
can have either a qualitative species or a quantitative species. In the former, the
number of kinds (however one construes a “kind”) is minimized, while in the latter the
number of entities simpliciter is minimized. I am here concerned with the quantitative
ontological simplicity of MCMs. Let me now elucidate the theoretical advantages
afforded by this simplicity.55

First, one might think that the postulation of actual infinities is unscientific in the
sense that an actually infinite quantity is untestable.56 So, if one thinks that science
should deal with statements that are at least in principle testable, actual infinities, e.g.,
actually infinite spatial sections, actually infinite populations of organisms, should be
avoided. Put differently: our best science should not postulate entities that are, by their
nature, beyond the scope of science itself. Furthermore, it would seem that, since actual
infinities are unobservable and untestable, any scientific theory thatmakes use of actual
infinities (in an essentialway) is committed to some formofmathematical platonism.57

Platonism, as is well-known, involves a host of philosophically questionable theses,
most notably that abstract entities are assumed to exist independently of any means of
human definition, construction, or observation. Furthermore, on its face, platonism is
at odds with scientific realism, especially its epistemic component (see Section 2). I
think it preferable to avoid these issues whenever possible.

Second, if one finds this response too hard-nosed, there are a few specific conse-
quences of an infinite universe that would require explanation: most obviously, the
generation of infinitely much space at the time of the Big Bang. Furthermore, since
we are working under the auspices of FLRW models, we will also have to explain
the generation of infinitely much matter (due to the homogeneity of these models).58

Of course, one might then ask why the existence of infinitely much matter and space

53 The literature on what, exactly, “simplicity” amounts to is vast. My remarks on the notion of simplicity
employed here are, of necessity, skeletal. See Baker (2016) for the following distinctions and discussion.
See also (Sober, 2015) for an extended discussion of simplicity.
54 In our case, the models of a theory.
55 For some recent discussions that support conclusions about space and time friendly to my own (though
from more metaphysical perspectives) see: Nolan (2022), Sorensen (2014), and Tallant (2013). For a more
general consideration of quantitative simplicity (or parsimony), see Nolan (1997).
56 See Ellis et al. (2018, p. 772.)
57 This remark applies to many contexts, especially in physics, since the real numbers R are constantly
used. For a nice discussion of related issues see Feferman (1998). It goes far beyond the scope of this paper
to address the relationship between the postulation of infinite space and the use of continua; I set this aside
for future work.
58 In essence, matter does not occur in “distinguished” regions of the universe. Thus, since matter is
uniformly distributed throughout an infinite universe, there is infinitely much matter.
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is more in need of explanation than the existence of finitely much. I would then be
inclined to fall back on the first consideration: the existence of finitely much matter
and space is in principle testable, while this is not true in the infinite case.

Finally, considered in the context of extant theories of quantum gravity (and more
broadly grand unification programmes in physics), the existence of actually infinite
space is problematic. In particular, if one subscribes to string theory, then one deals
with additional “small” compactified dimensions.Without any reason for thinking that
our three “ordinary” spatial dimensions are distinguished in some way, it seems much
more reasonable that our “ordinary” dimensions are also compact, as given by a finite
MCM.59

7.1.1 Objection: syntactic complexity

However, following the Quinean insight above, the use of an MCM will require the
postulation of additional laws and hypotheses, thus increasing the syntactic complex-
ity of our cosmological model. Starting from a strictly mathematical perspective, an
MCM is rather more complicated than an SCM:wemust pass to the universal covering
space, consider which polyhedra tile the space, etc. This requires the use of various
theorems linking SCMs, MCMs, and their geometries. Even from a physical perspec-
tive, an MCM could generate a further complexity: the need to reinterpret particular
observations of radiation as “ghost images.” Namely, in an SCM, there is (generally)
a 1-1 correspondence between an object in space and an event in spacetime, e.g., a
star produces observable radiation.60 In an MCM this correspondence fails; there are,
rather, multiple spacetime events associated with a single entity in space. However,
unlike the complexities generated by positing an infinite universe, e.g., why infinitely
much space and matter, we have a good handle on the mathematics and physics under-
lying the added syntactic complexity. Thus, I am inclined to think the ontological
simplicity gained outweighs the additional syntactic complexity of MCMs.

Finally, adopting an MCM would raise the question: why that particular multiply
connected topology (with its particular fundamental polyhedron of particular size)?
However, if we no longer expect spatial topology to be empirically determinable, I do
not see why we should expect our best cosmology to answer this question. Indeed, no
explanation is provided for the preference of a simply connected topology, and so this
issue is a wash.61

In sum, I propose that we have good reason to prefer MCMs over SCMs in virtue of
their simplicity (of the kind indicated) and the advantages this simplicity affords our
physical theorizing. Thus, though we have a topological underdetermination by obser-
vational data, we can still avoid a robust underdetermination by attending to theoretical
virtues. More explicitly, consider Thesis 6.1 once more. Let (M, gab) be an FLRW
model with simply connected topology and let (M′, g′

ab) be an FLRW model with
multiply connected topology such that (M, gab) and (M′, g′

ab) are observationally

59 For an excellent survey on quantum gravity, see Rovelli (2008).
60 There is one case of a simply connected space in which this 1-1 correspondence fails.
61 Again, pending a workable theory of quantum gravity, which would hopefully provide insight into the
topological structure of the early universe.
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indistinguishable. I have argued thatwe should select (M′, g′
ab) as our preferredmodel

in virtue of the fact that such a model could have finite spatial sections consistent with
our best data. In virtue of this spatial finitude, (M′, g′

ab) enjoys the sort of simplicity
discussed above and avoids the difficulties presented by models that employ actually
infinite spatial sections. Thus, we have good theoretical reasons to prefer MCMs, and
thus we need not resign ourselves to a robust topological underdetermination.

7.2 Einstein andMach’s principle

Another consideration that might dispense with a robust topological underdetermi-
nation involves Mach’s Principle. In its original formulation, Mach’s Principle was
developed as a challenge to a substantivalist conception of space.62 Mach’s central
idea was that the inertia of a given body derives from its relation to the “fixed stars”
and matter throughout the universe rather than its relation to the “absolute space” pos-
tulated by Newton. In more modern terminology, we might say that Mach’s Principle
is the claim that all inertial properties of an object are entirely determined by the
distribution of mass-energy throughout space.63 I now turn to an argument originat-
ing from Einstein that relates Mach’s Principle to the extent of space (and thus to its
topology).

In The Meaning of Relativity, Einstein provides three arguments “against the con-
ception of a space-infinite” (Einstein, 1950, 107). The first argument is of the same sort
I have offered above: namely, from the standpoint of general relativity, the postulation
of a finite universe is “very much simpler” (though he does not give any indication of
what this is supposed to mean) than the infinite case. He does not mention topological
considerations, but, as we have seen, multiply connected topologies appear to be the
only possible way that the universe could turn out finite.64 In any case, I take this
argument to be further grist for my mill.

Let us now turn to his second argument from Mach’s Principle:

But in the second place the theory of relativity makes it appear probable that
Mach was on the right road in his thought that inertia depends upon the mutual
interaction of matter. For we will show in the following that, according to our
equations, inert masses do act upon each other in the sense of the relativity of
inertia, even if only very feebly. What is to be expected along the lines of Mach’s
thought? (Einstein, 1950, 100)

Einstein then proceeds to list three consequences of Mach’s Principle and demon-
strates that, internal to the formalismof general relativity, these consequences are borne
out.65 Given his derivation of these consequences, he concludes that our interpretation
of general relativity should validate Mach’s Principle. He continues,

62 See the classic account given by Sklar (1974).
63 See the various formulations given in Wheeler (1964).
64 And, again, consistent with our current value of k.
65 As Einstein notes, these effects are so minuscule as to rule out the experimental confirmation.

123



European Journal for Philosophy of Science            (2024) 14:17 Page 21 of 28    17 

The idea that Mach expressed, that inertia depends upon the mutual action of
bodies, is contained, to a first approximation, in the equations of the theory
of relativity; [...] But this idea of Mach’s corresponds only to a finite universe
(Einstein, 1950, 107-108).

The point here is one that we have already seen. Einstein’s Equation does not specify
solutions that can be studied from a physical standpoint. Further assumptions, usually
expressed as “boundary conditions at infinity,” are required. However, these bound-
ary conditions simply replace the role played by Newtonian absolute space. This is
because, when boundary conditions are specified, it is no longer simply the presence
of mass-energy that determines the geometry of spacetime, and hence mass-energy
no longer determines the inertial properties of any given object. For instance, gen-
eral relativity appears to validate the idea that, in a universe without matter, there is
nonetheless an “absolute” flat (Minkowskian) spacetime structure, as dictated by the
imposition of natural Minkowskian boundary conditions.

In response to these concerns, Einstein suggested a radicalway to dealwith the prob-
lem: simply postulate a finite universe model, thereby obviating the need for boundary
conditions at infinity that contradict Mach’s Principle. Concisely, we might say, “[I]t
is likely that the requirement of Mach’s Principle is identical with the requirement of
a finite universe” (Wheeler, 1964, 306). Thus, since our best experimental evidence
indicates that the universe is not sufficiently dense to force finiteness, the presence
of a multiply connected spatial topology would be the only way to produce a finite
universe model. And so, if one is convinced by (some version of) Mach’s principle,
one should be compelled to select a multiply connected spatial topology.66

The reasons for preferring a multiply connected topology that proceed from
Machian considerations are not obviously of the same sort adduced above. It is, how-
ever, possible to think in these terms, since we get both an ontological and syntactic
simplicity. The former is clear; the latter occurs because, instead of having to specify
boundary conditions for each possible solution of Einstein’s Equation, we add a single
stipulation (multiply connected topology) to the mathematics of our physical theory
that eliminates the need for boundary conditions. Nonetheless, as in both Mach’s case
and Einstein’s case, the reason for eliminating boundary conditions is not a desire
for simplicity, but rather a preference for a highly plausible metaphysics of space
and characterization of inertial properties (as well as the purely formal consequences
derived by Einstein).

8 The explanatory power of MCMs

To close, I would like to consider the explanatory power of positing a finite MCM. I
examine two sorts of recent cosmological data for which a finite MCM would appear
to be a good (or even the best available) explanation.

Following the common practice of cosmologists, we have assumed the Cosmologi-
cal Principle and thereby have considered FLRWmodels. However, as we have noted,

66 For extremely brief mention of “Machian considerations,” see Fagundes (1983), Ellis and Schreiber
(1986), and Ellis (2007).
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the assumption of the Cosmological Principle is an a priori prescription imposed on all
possible models of general relativity. To what extent is the spatial isotropy and homo-
geneity67 assumed in the Principle observationally justified? It turns out that spatial
isotropy about our location is strongly supported by observational evidence, consist-
ing of both the observation of luminous sources and the CMB radiation discussed in
Section 6. As George Ellis has noted,

Considered on a large enough angular scale, astronomical observations are very
nearly isotropic about us, both as regards source observations and background
radiation; indeed the latter is spectacularly isotropic, better than one part in 104

after a dipole anisotropy, understood as resulting from our motion relative to
the rest frame of the universe, has been removed. Because this applies to all
observations (in particular, there are not major observed matter concentrations
in some other universe region), this establishes that in the observable region
of the universe, to high accuracy both the space-time structure and the matter
distribution are isotropic about us (Ellis, 2007, 1225).

Clearly, this isotropy (and homogeneity) cannot be explained by the commonly used
FLRW models, as such models assume these properties. It would be desirable, how-
ever, to have some sort of explanation for them. It is commonly postulated that spatial
homogeneity results from an inflationary period in the early universe (Guth, 1981) and
(Gibbons et al., 1983); however, it has been shown that inflation would only produce
the observed homogeneity if the pre-inflationary universe were already sufficiently
homogeneous (Luminet&Lachiéze-Rey, 1995). Thus, inflationary theory only pushes
the problem back. As usual, a fully developed theory of quantum cosmology and quan-
tum universe formation would deal with this issue, but no such theory is yet operative.

However, the postulation of a finite MCM seems a reasonable and readily available
explanation of the phenomenon of homogeneity.68 More precisely, a finite MCMwith
especially small volume would produce the special initial conditions necessary for a
“chaotic” (in the sense of inhomogeneous) early universe to transition to a homoge-
neous one. The details here are extremely complex and depend upon the dynamics of
the precise models considered, but the basic point is that, at a sufficiently young age,
a small MCM is causally connected. In virtue of causal connectedness at an early age,
the universe can homogenize before the the scattering of the CMB. Thus, the isotropy
of the CMB reflects the homogeneity of the early universe, which is itself explained
and made possible by a causal process occurring in a sufficiently small MCM.69 It is
worth noting that more calculations have to be done before MCMs can confidently
discharge this explanatory role. Nonetheless, they serve as one of the best available
explanations of the homogeneity and isotropy of space.

Iwould like to closewithwhat I take to be the strongest explanatory function of finite
MCMs. As we have noted, the key data for observational cosmologists are surveys of

67 Spatial isotropy along with some version of the so-called Copernican Principle, i.e., we are not distin-
guished observers, implies spatial homogeneity. See Ellis (2007), Section 4.2.2 for discussion.
68 This possibility is hinted at in Ellis and Schreiber (1986).
69 For full details see RichardGott (1980). For an investigation of a different possible model see Hayward
and Twamley (1990).
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the CMB.70 It was hoped that CMB data could decisively reveal the spatial topology of
the universe via suchmethods as circles in the sky; however,we have adopted a position
of justified pessimism towards this endeavor. Nonetheless, particular measurements
of the CMB may provide reasons to posit a finite MCM. I will now show why this is
so.

Of particular interest are temperature fluctuations (anisotropies) in the CMB as
these can yield information about the physical conditions of the early universe. (It is
worth noting that these anisotropies are, on the whole, minuscule, so they in no way
impugn the large scale isotropy of the CMB; see Ellis’s quote above.) It is believed
that the early universe was crossed by acoustic waves soon after the Big Bang and,
in turn, these waves left imprints on the universe (≈ 380,000 years after the Big
Bang) as density fluctuations in the primordial plasma. The anisotropies detected in
the CMB reflect these density fluctuations, which can be mathematically constructed
from vibrational modes of space.71

Suppressing the mathematical details of the spherical harmonics, the crucial
quantity for measuring anisotropies is the full-sky two-point correlation function of
temperature fluctuation δT (n̂), observed for our sky in the direction of unit vector n̂.
This function is written as

Cobs(θ) := 〈δT (n̂), δT (n̂′)〉 (8.1)

where n̂ · n̂′ = cos θ . The brackets denote averaging over directions n̂ and n̂′ separated
by angle θ . Using CMB datasets, values of Cobs(θ) have been computed for 0 ≤ θ ≤
180 (degrees). However, there are a number of “intriguing discrepancies” between the
observational values ofCobs(θ) and predictions of the “standard” cosmological model,
which is flat, infinite, and Euclidean with simply connected topology (this model is
often written as �CDM). In particular, for angular scales over 60 degrees, there is
very little correlation between the CMB observations and �CDM simulations. As has
been noted in very recent studies, especially Aurich et al. (2021), this discrepancy
finds “a natural explanation in cosmic topology.” That is, a finite MCM would make
good sense of this discrepancy because the spatial sections are finite and so space is
not large enough to support the longer wavelengths produced by larger angles. Indeed,
as of yet, there appears to be no other explanation of this phenomenon of “angular
power spectrum suppression.”72

It is important to note, however, that this does not impugn our underdetermina-
tion thesis (Thesis 6.1). The observational constraints and extreme sensitivities of
even our best methods (circles in the sky, statistical techniques for anisotropies) war-
rant a healthy does of skepticism. Nonetheless, especially given the discussion of
anisotropies, finite MCMs remain a live possibility and, furthermore, provide the best
explanation for our current data.

70 The most recent space probe missions are WMAP (Wilkinson microwave anisotropy probe; active life-
time 2001-2010) and Planck (Planck probe; active life-time 2009-2013).
71 For exhaustive details see Levin (2002).
72 For a very convincing and thorough discussion see Aurich et al. (2021). See also the earlier paper Aurich
et al. (2008).
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9 Conclusion

I have argued that, even assuming the Cosmological Principle, the topology of space
is underdetermined by observational evidence. Indeed, even if we had strong evidence
for a particular spatial topology, it would still be a live option that the underdetermina-
tion persists (recall, however, the concerns about Manchak’s theorem). Nonetheless,
I believe that we have good reasons to prefer multiply connected topologies; in par-
ticular, I argued that we should prefer MCMs on grounds of simplicity, Machian
considerations, and explanatory power. Thus, we have good reasons to think that a
robust underdetermination is avoidable.

I think that, in our case,we should retain a good deal of epistemicmodesty. Problems
concerning global spacetime structure are famously intractable,73 and so our conclu-
sions about them should be tentative. My hope is that further scientific developments,
especially in quantum gravity, will help to shed light on the topology of space and the
attendant philosophical issues here discussed. Let me conclude, then, by discussing
(extremely coarsely) some exciting results in quantum gravity that involve non-trivial
topologies.

Over the past 50 or so years, a central area of research in quantum gravity has been
that of black hole thermodynamics. In the early 1970s, it was argued that black holes
described by classical general relativity, when taken in isolation, behave like ordinary
thermal systems.74 This idea was significantly strengthened by the discovery ofHawk-
ing radiation, i.e., the discovery that black holes emit thermal radiation when quantum
field theory is applied to a black hole spacetime (Hawking, 1975). Since then, the stan-
dard story has been that “the laws of black hole thermodynamics [...] are the ordinary
laws of thermodynamics applied to a black hole” (Wald, 1994, 174).75 In particu-
lar, given that familiar thermodynamical systems all admit a statistical-mechanical
description, so too should black holes. Crucially, then, it makes sense to study the
entropy of a black hole.76

We are now in a position to introduce “the” information loss paradox in black
hole thermodynamics. Following Wallace (2020) and Cinti and Sanchioni (2021), we
distinguish two main versions: (1) the Black Hole Information Paradox (BHIP) and
(2) the Page Time Paradox (PTP).77 I begin with BHIP as this is the most commonly
discussed.

Thediscovery ofHawking radiation implies that themass (and thus surface area) of a
black hole could decrease due to the emission of thermal radiation. Furthermore, given
sufficiently much time and a sufficiently small black hole, the black hole in question
could “evaporate.”This leads to some troubling consequences first detailed inHawking
(1976). Here Hawking argued that the evolution of a closed system containing an

73 See a nice discussion of this point in Norton (2011).
74 See Wallace (2018) and the references therein.
75 Note, however, that there has been a good deal of recent debate concerning this conclusion. See, in
particular, Doughtery and Callender (2016) and Wallace (2020).
76 This had been suggested prior to the discovery of Hawking radiation in (Bekenstein, 1973).
77 See Wallace (2020) and Cinti and Sanchioni (2021) for details. Both of these go further in considering
the very recent “Firewall” or “AMPS” paradox.

123



European Journal for Philosophy of Science            (2024) 14:17 Page 25 of 28    17 

evaporating black hole will fail to be unitary. However, failure of unitarity is troubling,
first, because black hole evaporation is a quantum process and every quantum process
is unitary. Second, as the title of Hawking (1976) suggests, failure of unitarity indicates
the breakdown of (various senses of) predictability in physics, e.g., we start with “a
system in a pure initial state [...] for which there is some non-degenerate observable
whose valuemay be predictedwith certainty,” but end upwith a system in amixed state
for which there is no such observable (Belot et al., 1999, 190). Thus, we can conclude
that “information” about the universe is lost in the course of black hole evaporation.78

There has been a great deal of controversy over BHIP, e.g., whether it is, in fact,
a paradox or simply an argument for the failure of unitarity in black hole evapora-
tion. On the other hand, as stressed in Wallace (2020), PTP appears to be a genuine
paradox and is deemed a serious concern by many high-energy physicists; it is also
the relevant version of the paradox for our purposes (see below). In essence, it con-
cerns the inconsistency between Hawking’s computation of black hole entropy in
semi-classical gravity and the predictions of black hole statistical mechanics.79 PTP is
typically discussed in the context of string theory and many proposed solutions appeal
to the AdS-CFT (anti de Sitter-conformal field theory) duality. I cannot touch upon the
details here, but the point is that many physicists, by virtue of this duality, have been
convinced that black hole evaporation is in fact unitary.80 The question thus becomes:
how is this possible?

This brings us to some recent proposed solutions and their connections to non-trivial
topologies.81 A useful tool for measuring information loss is the fine-grained or von
Neumann entropy (for Hawking radiation). In the process of black hole evaporation,
this entropy initially increases, given the entanglement of Hawking radiation with
particles in the black hole interior. However, if evaporation is unitary, as many now
believe, the entropy must fall to zero, following the so-called Page curve. Unfortu-
nately, Hawking’s calculation of entropy in Hawking (1975) predicts that the entropy
will monotonically increase. The task then becomes: how can Hawking’s calculation
be corrected in order to agree with unitarity? In Almheiri et al. (2020), the authors
propose that “the first principles computation of the fine-grained entropy using the
gravitational path integral receives large corrections from non-perturbative effects”
(ibid., 2). In particular, the computation of the gravitational path integral using (n
copies of) the original black hole agrees with Hawking’s initial calculation of the von
Neumann entropy. However, the authors incorporate “replica wormholes,” additional
gravity configurations that come to dominate the gravitational path integral and ulti-
mately lead to an entropy that agrees with unitarity. Importantly for our purposes,
these replica wormholes are gravity configurations with non-trivial topology. Thus,
the results of Almheiri et al. (2020) (and related work), suggest that the presence of a
non-trivial topology could be indicated by emerging empirical evidence, e.g., compu-
tations of black hole entropy, in new theoretical frameworks. In any case, it should be

78 See Belot et al. (1999) for an extremely careful discussion of BHIP. For more recent papers see Mathur
(2009), Maudlin (2017), and Wallace (2020).
79 See Section 3 of Cinti and Sanchioni (2021) for a very helpful discussion.
80 Even Hawking himself. See Hawking (2005).
81 I heartily thank an anonymous referee for pointing out this work to me.
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clear that the topological properties with which we have been concerned sit at a nexus
of ongoing work in physics that promises to yield rich food for philosophical thought.
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