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Abstract
How long does a quantum particle take to traverse a classically forbidden energy bar-
rier? In other words, what is the correct expression for quantum tunnelling time? This
seemingly simple question has inspired widespread debate in the physics literature.
I argue that we should not expect the orthodox interpretation of quantum mechanics
to provide a unique correct expression for quantum tunnelling time, because to do so
it would have to provide a unique correct answer to a question whose assumptions
are in tension with its core interpretational commitments. I explain how this conclu-
sion connects to time’s special status in quantum mechanics, the meaningfulness of
classically inspired concepts in different interpretations of quantum mechanics, the
prospect of constructing experimental tests to distinguish between different interpre-
tations, and the status of weak measurement in resolving questions about the histories
of subensembles.

Keywords Quantum tunnelling · Time in quantum mechanics ·
Interpretations of quantum mechanics · de Broglie-Bohm theory

1 Introduction

In both classical and quantum physics, it is easy to calculate the time taken by a free
particle to travel from point A to point B. Motivated by this simple picture, a whole
community of quantum theorists have asked: how long does a quantum particle take
to traverse a classically forbidden energy barrier? Or, in their terminology, what is
the correct expression for quantum tunnelling time? Unlike its free-particle counter-
part, this question does not seem to admit a straightforward answer, and has inspired
widespread debate in the literature.
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Various expressions for quantum tunnelling time have been proposed. Some track
internal properties of the tunnelling system, while others rely on coupling between
the tunnelling particle and an external physical system. The proposals are weighed
against each other on mostly pragmatic grounds, and tunnelling time, as a result,
is often described as a topic riddled with “confusion” and “controversy” (see e.g.
Sokolovski and Connor 1993, 4677 and Winful 2006, 1).

Many authors see this ambiguity in the definition of tunnelling time as part of
the fallout from how quantum mechanics treats time in general: as a parameter, not
an operator (see e.g. Challinor et al. 1997; Lunardi et al. 2011 and Peres 1980).
Others have gone so far as to describe the whole concept as meaningless within the
trajectory-free ‘orthodox’ interpretation of quantum mechanics (see e.g. Dumont &
Marchioro 1993; Leavens & Aers 1996 and Leavens 1993): tunnelling time does have
a clear and unique definition within the deterministic de Broglie-Bohm ‘pilot-wave’
picture. A few authors have even speculated about whether quantum tunnelling time
could thereby provide evidence for de Broglie-Bohm theory (see e.g. Cushing 1995;
Acuña 2019 and Leavens 1990).

Against this varied backdrop, recent high-profile experiments at the University of
Toronto claim to have used weak measurement to extract a traversal time of 0.61ms
for Bose-condensed 87Rb atoms tunnelling through a 1.3-micrometre-thick optical
barrier (Ramos et al., 2020).

The state of the literature on quantum tunnelling time therefore motivates four
questions of both physical and philosophical import. First, does the confusion about
tunnelling time really stem from the more general “problem of time” in quantum
mechanics—namely, the fact that time lacks an operator? Second, is tunnelling time
really a meaningless concept in the orthodox interpretation of quantum mechanics?
If so, why, and in what sense? Third, is it possible to use quantum tunnelling time to
gain concrete evidence for the de Broglie-Bohm interpretation? And finally, are weak
measurement techniques—and experimental realisations thereof—able to resolve the
decades-long debate and provide clear, unique and experimentally verifiable values
for tunnelling time?

This paper aims to answer each question in turn. Section 2 sets up the problem,
describing the physical scenario at the basis of the tunnelling time debate, and iden-
tifying in precise terms the question to which its proponents are seeking an answer.
Section 3 reviews the history of quantum tunnelling time and the state of the existing
literature, from the concept’s inception in 1931 to 1962 (Section 3.1) and from 1962
to the present (Section 3.2).

In Section 4.1, I assess the status of quantum tunnelling time in the trajectory-
free ‘orthodox’ interpretation of quantum mechanics, and I argue that we should not
expect that interpretation (or, in fact, any trajectory-free interpretation) to provide a
clear or unique definition of quantum tunnelling time. In Section 4.2, I introduce the
clear and unique definition of quantum tunnelling time that is provided by the de
Broglie-Bohm interpretation, and I explain why we should not be surprised to find
such clarity within an interpretation that provides particle trajectories.

Answers to the four questions follow in Section 5. As to whether the apparent
confusion and ambiguity surrounding tunnelling time can be traced back to the more
general problem of time in quantum mechanics, I argue ‘No’: the real source of
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the ambiguity is superposition, specifically the role that superposition plays in any
trajectory-free interpretation (Section 5.1). As to whether tunnelling time is meaning-
less in the orthodox interpretation, I argue that it is an attempt to answer a question
which the orthodox interpretation is not well-posed to answer (Section 5.2). On
the third question—whether we can or should use quantum tunnelling time as evi-
dence for the de Broglie-Bohm interpretation—I argue that we cannot and should
not (Section 5.3). Finally, as to whether weak measurement procedures are capa-
ble of resolving the controversy, I suggest that they offer another perspective, not a
resolution (Section 5.4).

These questions and answers are not all new. Each has been raised in some form in
the literature, but they have not yet been tied together, and where they do appear they
are inserted as brief comments within much longer technically-focused expositions.
Furthermore, they are all controversial: some existing works agree, either implicitly
or explicitly, with the position I present here, and some stand in opposition.

To the extent that I am drawing together ideas that have already been expressed,
I aim to offer a simple and focused explanation of why those ideas—and not their
proposed alternatives—are correct. To the extent that I am presenting new ideas,
I aim to show how quantum tunnelling time can shed new light on the relation-
ship between de Broglie-Bohm theory and other, trajectory-free, interpretations of
quantum mechanics.

2 Setting up the problem

Here I summarise the physical system on which discussions of tunnelling time are
based. The system has two components: a free particle with momentum k0 > 0 and
initial position x0 � x1, and a classically forbidden barrier extending from x = x1
to x = x2.

For x � x1, the wavefunction ψ(x, t) of the particle is a wavepacket sharply
peaked around some value of momentum k0, but containing various momentum
components:

ψ(x, t) =
∫ ∞

−∞
Ake

i(kx−wkt)dk. (1)

When the wavefunction ψ(x, t) reaches the barrier, in general it splits into a
reflected part and a transmitted part. An expression for quantum tunnelling time is
meant to be an expression for the average time spent in the region x1 < x < x2 by
the transmitted part —by particles that are eventually transmitted through the barrier.

The stationary components of the wavepacket take the following form:

ψ(x, k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

eikx + Rke
iβk e−ikx if x < x1

Cke
κx + Dke

−κx if x1 < x < x2

Tke
iαk eikx if x > x2.

(2)
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Rk is the reflection coefficient for energy component k and Tk is the transmission
coefficient for energy component k. |Rk|2 and |Tk|2 are the proportion of particles
described by ψ(x, k) that will be reflected and transmitted, respectively.

Bringing time back into the picture, the tunnelling process can be broken into three
steps (see Fig. 1):

1. The particle is approaching the barrier. The amplitude of the wavefunction is
negligible except to the left of the barrier region.

2. The particle is interacting with the barrier. The amplitude of the wavefunction
is non-negligible in the barrier region.

3. The particle has completed its interaction with the barrier. The wavefunction is
once again negligible within the barrier region. The full wavefunction now has
two peaks: one peak to the left of the barrier, moving to the left, and one peak to
the right of the barrier, moving to the right:

ψ(x, t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ψR(x, t) = ∫ ∞
−∞ Rke

iβk e−ikxe−i �k2
2m tdk if x < x1

0 if x1 < x < x2

ψT (x, t) = ∫ ∞
−∞ Tke

iαk eikxe−i �k2
2m tdk if x > x2.

(3)

A good expression for tunnelling time should provide the average time spent in
the region x1 < x < x2 by particles detected at x > x2. But the question is: how can
that kind of expression be extracted from the behaviour of ψ(x, t)?

3 A brief history & the state of the literature

3.1 The early years: 1931–1962

The duration of quantum tunnelling was first raised by Condon (1931, 9) as an inter-
esting issue to explore. Condon himself, however, did not provide a proposed value
for tunnelling time. In fact, he suggested from the very start that it might be an
difficult value to define.

Soon after, in 1932, MacColl (1932) assessed the tunnelling problem and con-
cluded: “the transmitted packet appears at the point x = a [our x = x2] at about the
time at which the incident packet reaches the point x = 0 [our x = x1], so that there
is no appreciable delay in the transmission of the packet through the barrier” (621).

Thus, the first value ascribed to tunnelling time was zero. MacColl’s work sug-
gested that a tunnelling particle in general spends no time at all in the barrier region
before emerging on the other side. The problem then lay low for several decades until
technological advances brought a resurgence of interest in the early 1960s.1

1For more on the history of quantum tunnelling and the early development of quantum tunnelling time as
a concept, see Perovic (2017) and Merzbacher (2002).
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Fig. 1 The three steps of the tunnelling process

3.2 The variety of tunnelling times: 1962–Present

There have been three main developments in the literature on quantum tunnelling
time since those early years. First, a time known as the dwell time has been
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established as a clear, unique and uncontroversial expression for the average time
spent in the barrier by incident particles of well-defined energy regardless of whether
they are eventually transmitted or reflected (Section 3.2.1).

Second, multiple definitions of tunnelling time have been proposed by authors
working within the ‘standard’ or ‘orthodox’ interpretation of quantum mechanics,
on which particles exist and evolve as delocalized wavefunctions until they collapse
indeterministically to some localized state on measurement (Section 3.2.2).2 The vast
majority of authors who assess quantum tunnelling time are working from this point
of view.

Third, a minority of authors have assessed the tunnelling time problem from the
perspective of de Broglie-Bohm theory, on which quantum particles follow entirely
deterministic but epistemically inaccessible trajectories (Section 3.2.3).3 Four themes
have emerged alongside these developments (Section 3.2.4).

3.2.1 The dwell time

One well-established notion related to tunnelling time that does not depend on the
difference between the orthodox interpretation and de Broglie-Bohm theory is the
dwell time τd :

τd(k) =
∫ x2

x1

|ψ(x, t)|2dx/

(
�k

m

)
. (4)

(Hauge and Støvneng 1989, 920)
Introduced by Smith (1960), and adapted by Büttiker (1983) to the one-

dimensional case we are considering here (Hauge and Støvneng 1989, 920), the dwell
time is “defined within the context of a stationary-state scattering problem as the
average number of particles within the barrier region divided by the average num-
ber entering (or leaving) the barrier per unit time” (Leavens & Aers 1989, 1202). It
provides a measure of the average time spent in the barrier by an incident particle
of well-defined energy regardless of whether it is eventually transmitted or reflected
(Hauge & Støvneng 1989, 920).

Although well-established and uncontroversial, τd it is not a contender for tun-
nelling time, because it does not distinguish between transmitted and reflected
particles. Leavens has argued on this basis that it is precisely the attempt to distin-
guish between particles that will be eventually transmitted and particles that will be
eventually reflected that has led to so much confusion about tunnelling time within
the orthodox interpretation. He writes, “Since expression (5) [i.e. our Eq. 4] for the
mean dwell time is well established, it appears from the above considerations that
it is the ambiguity (within ‘conventional’ quantum mechanics) in the decomposition
into transmitted and reflected components that is at the heart of the ‘tunneling time
problem’” (Leavens 1996, 127).

Later on, in Section 4, I will argue that he is correct: within the orthodox interpreta-
tion, there is a fundamental problem with any attempt to decompose the wavefunction

2I will explain what I mean by ‘orthodox interpretation’ in more detail in Section 4.1.
3I will introduce the formalism at the basis of de Broglie-Bohm theory in more detail in Section 4.2.
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into transmitted and reflected components, and this is what has led to the prolifera-
tion of definitons for tunnelling time in that interpretation. Those various definitions
are what we will consider next.

3.2.2 Multiple ‘orthodox’ definitions

Many definitions of tunnelling time have been proposed by authors working in the
orthodox interpretation. Here I will present the phase time, the Larmor clock time, the
Salecker-Wigner-Peres clock time, Steinberg’s weak measurement time, and—very
briefly—a few other proposals.

The phase time Hartman reevaluated the duration of quantum tunnelling in 1962 in
light of technological developments that allowed for tunnelling across thin insulating
layers. His interest stemmed from a desire to understand “The transmission times for
metal-insulator-metal thin film sandwiches” (Hartman 1962, 3427).

Using the stationary phase approximation—and working, as with all the authors in
this Subsection, within the orthodox interpretation—he came up with an expression
for quantum tunnelling time now known as the phase time.

The phase time τ
φ
T (xa, xb, k0) associates tunnelling time with the phase that the

eventually transmitted peak ψT (x, t) seems to have picked up when it emerges on
the right hand side of the barrier in Step 3 of the tunnelling process (see Fig. 1 in
Section 2).

Given ψT (x, t) = ∫ ∞
−∞ Tke

iαk eikxe−i �k2
2m tdk (see Section 2), the phase time is

defined by

τ
φ
T (xa, xb, k0) := m

�k0

[
xb − xa + dαk

dk
|k=k0

]
, (5)

where xa is some point to the left of the barrier, xb is some point to the right of the
barrier, and τ

φ
T (xa, xb, k0) is meant to give the time taken by a tunnelling particle

to travel betweent those two points. Its values are in general positive and nonzero
(Hartman 1962, 3427).

Although appealing in its apparent simplicity, this expression for tunnelling time
suffers from significant problems. First of all, and most importantly, the phase time is
defined in terms of the characteristics of ψT (x, t), which only becomes well-defined
in what I have labelled Step 3 of the tunnelling process (see Section 2). In this sense,
the phase time can only be derived asymptotically (Hauge & Støvneng 1989, 924)—
with respect to the state of the system after the actual tunnelling event has taken
place.

However, we have assumed that we are dealing with a wavepacket which is narrow
in k-space, and will therefore necessarily be wide in x-space. So an appropriately
asymptotic treatment of τ

φ
T can only be derived for xa � x1 and xb � x2 (924).

It might nevertheless be tempting to extrapolate back from τ
φ
T (xa, xb, k0) to a time

spent between x1 and x2 by subtracting from τ
φ
T the time that a free particle travelling

with momentum k0 would take to traverse the distance (x1 − xa) + (xb − x2). This
would, however, be ill-advised, as Hauge & Støvneng (1989, 924–926) point out. On
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approach to the barrier, the peak of the incoming wavepacket interferes with front-
end components that have already been reflected (see Step 2 in Fig. 1); in Hauge
and Støvneng’s words, “free particle motion cannot be assumed all the way up to the
barrier” (924).

τ
φ
T is therefore unable to provide an accurate value for the time spent in the barrier

region by eventually transmitted particles; it can only provide an accurate value for
the time spent in a much wider region that includes the barrier.

In addition to this serious failure to answer the question at hand, the phase time
comes along with a strange and problematic feature: it predicts that tunnelling time
will approach a constant value as the width of the barrier increases towards infinity,
implying faster-than-light tunnelling for particles traversing a wide barrier (Hartman,
1962). This effect, now known as the ‘Hartman effect’, has been the source of con-
siderable unease in the literature (see e.g. Lunardi et al. 2011; Calçada et al. 2009;
Winful 2003, 2006 and Leavens 1990).

The Larmor clock time The Larmor clock time, introduced by Baz’ (1967) and
Rybachenko (1967), uses spin rather than phase as the marker of duration. A weak
magnetic field is applied in the direction perpendicular to the polarisation of the parti-
cle’s spin, throughout some region (xa, xb) including the tunnelling barrier. The idea
is that the particle will then precess at a constant rate in the plane perpendicular to
the applied field as it moves between xa and xb.

For example, if the magnetic field is applied in the z direction, and the particle is
initially polarized in the x direction, its spin will precess in the x-y plane between xa

and xb.
In the limit where the characteristic frequency of the field ωL goes to zero, and

considering only one momentum component k (i.e. the stationary case), the expecta-
tion value of the spin acquired by the eventually transmitted particle, 〈Sy〉T , defines
a time (Hauge and Støvneng 1989, 921; Landauer and Martin 1994, 225):4

τL
y,T (xa, xb, k) := lim

ωL→0

〈Sy〉T
− 1

2�ωL

. (6)

Supporters of this Larmor clock time emphasize that it makes tunnelling time
accessible to experiment, not just pen and paper analysis (Landauer and Martin 1994,
217, 218). Landauer and Martin (1994, 217, 218) write of clock times in general,
“The strength of the clock approach: It is not only a path to analysis, but also tells us
how to do experiments”.

However, Falck and Hauge (1988) have convincingly argued that the Larmor clock
is only reliable when applied to a wavepacket; stationary treatment, whether theoreti-
cal or experimental, is not good enough. In their words, “[i]t is not sufficient to study
the stationary case, theoretically or experimentally, point to a plausible quantity with
the dimension of time, and thus identify the time taken by the process in question. Not
that the result of such a simplified procedure is necessarily wrong. The problem is

4ωL = gqB0
2m , where g is the gyromagnetic ratio, q is the charge of the particle, m is the mass of the

particle, and B0 is the magnitude of the applied magnetic field.
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that it is not necessarily right” (3294); “[s]tationary calculations of Larmor times cor-
respond to coherent superpositions of widely different scattering events, and cannot
therefore be interpreted as tunneling times” (3295).

In particular, this means that the Larmor clock time, like the phase time, must be
treated asymptotically (i.e. with xa � x1 and xb � x2 ). This is necessary in order
“[t]o prevent interference between the processes of entering and leaving the field
region on the one hand, and the tunneling process on the other” (3288). Entering
and leaving the magnetic field will affect the behaviour of the wavepacket, and if the
three steps of the tunnelling process are not all contained within the magnetic field
region, resulting values for traversal time will be contaminated by those affects.5

The only way to infer a time spent in the barrier region from the Larmor time
is thus, as with the phase time, to extrapolate “based on the simple motion of free
wave packets” (3294). But there is no reason why the problem that we found with
the phase time should not also apply here—such extrapolation ignores the presence
of interference effects on approach to the barrier.

In a serious way, the Larmor clock time therefore fails to answer the question it
set out to answer. This perhaps should not be surprising, given that τL

y,T reduces to
the phase time to first order when applied to a wide region (xa, xb) (3287, 3292).

Furthermore, when the tunnelling particle interacts with the applied magnetic
field, there are really two relevant time scales. As explained above, τL

y,T is the time
scale corresponding to the spin’s precession in the plane perpendicular to the direc-
tion of the applied field. But there is another time scale τz,T corresponding to the
spin’s tendency to align with the applied field (Hauge and Støvneng 1989, 921):

τL
z,T (xa, xb, k) = lim

wL→0

〈Sz〉T
− 1

2�wL

. (7)

The Larmor clock time completely fails to take this time scale into account.
Büttiker (1983, 6181) has proposed an alternative expression, the Büttiker-

Landauer time τBL
T , which accounts for both τL

z,T and τL
y,T :

6

(τBL
T )2 = (τL

y,T )2 + (τL
z,T )2. (8)

But it is fundamentally unclear which of τBL
T and τL

y,T more closely corresponds to

the concept we aim to capture (see e.g. Hauge and Støvneng (1989, 921)); both τBL
T

and τL
y,T are plausible markers of duration.

The Salecker-Wigner-Peres clock time The Salecker-Wigner-Peres (SWP) clock, like
the Larmor clock, couples the particle of interest with an external observable. In fact,
the SWP clock is equivalent to the Larmor clock in the limit of large spin (Sokolovski

5The recent University of Toronto weak measurement experiments, reported in Ramos et al. (2020), use a
magnetic field confined to the barrier region in spite of this problem.
6 τBL

T can be derived by invoking an oscillating barrier and associating tunnelling time with a transition
between low-modulation-frequency and high-modulation-frequency behaviour (Büttiker, 1983; Hauge &
Støvneng, 1989).
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and Connor 1993, 4679–4680; Lunardi et al. 2011).7 But where the Larmor clock
applies a small magnetic field in the region of interest and tracks the resulting spin
precession, the SWP clock applies a small x-independent addition of potential energy
VSWP in the region of interest and tracks the resulting change in phase.

First introduced by Salecker and Wigner (1958) and Peres (1980), the SWP clock
has been applied to the tunnelling problem by Leavens (1993), Leavens and McKin-
non (1994), Calçada et al. (2009), and Lunardi et al. (2011). The additional potential
energy introduced by the clock adjusts the tunnelling particle’s phase, and the aver-
age change in phase due to the presence of the SWP potential for particles detected
on the right hand side of the tunnelling barrier is read off as the SWP clock reading
for traversal time (Peres, 1980; Calçada et al., 2009; Lunardi et al., 2011).

This Salecker-Wigner-Peres clock time, conceptually just another version of the
Larmor clock time, suffers from the same central problem. It can only be consid-
ered reliable when applied to the time-dependent problem, for the reasons raised by
Falck and Hauge (1988) in the context of the Larmor clock; time-dependent treatment
requires asymptotic treatment, due to the wavepacket’s breadth in x-space; asymp-
totic treatment can only provide a traversal time for a region much wider than the
barrier region; and, finally, we cannot extrapolate a tunnelling time from that longer
traversal time due to interference effects on approach to the barrier.

Steinberg’s weakmeasurement time Steinberg, in 1995, introduced a new definition
of tunnelling time based on the theory of weak measurement developed by Aharonov
et al. (1988) and Aharonov and Vaidman (1990).

Weak measurement was developed precisely to deal with questions about
subensembles: questions about the average state of some operator for particles pre-
pared in a state |i > which are later found in a state |f >. Aharonov et al. show
that such an average can be theoretically defined and in principle measured, without
causing collapse of the wavefunction, by combiningminimally invasive measurement
with postselection of the final state.

For tunnelling time, we want to ask: on average, how long did a particle spend in
the barrier region, given that it ended up being detected on the right hand side of the
barrier? Steinberg suggests that we can use weak measurement to answer this ques-
tion, by applying imprecise individual measurements, postselecting for eventually
transmitted states, and averaging over the measurement outcomes (Steinberg 1995a,
b).

The operator of interest, in this case, is the projection operator which measures
whether a particle is in the barrier region (Steinberg 1995b, 2405, p. 2405). The state
|i > is defined as a stationary state with no left-moving components to the right of
the barrier, and the state |f > is defined as a stationary state with no left-moving
components to the left of the barrier (2407). A superposition of several states of the
first kind corresponds to a wavepacket incident on the barrier from the left hand side.

7Note that this implies equivalence between the SWP clock time and the phase time for large spin and
(xa, xb) much wider than (x1, x2), based on the equivalence between the Larmor clock time and the phase
time for (xa, xb) much wider than (x1, x2).
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A superposition of several states of the second kind corresponds to a wavepacket that
has traversed the barrier, having approached it from the left hand side.

The resulting value for tunnelling time τWeak
R is, in effect, a weak measurement

of the dwell time postselected for eventually transmitted states (Steinberg 1995a,
34–35). In general it is complex; its real part coincides with the in-plane Larmor
time τL

y,T , and its imaginary part coincides with the out-of-plane Larmor time τL
z,T

(Steinberg 1995b, 2407).
Indeed one of the main benefits of this weak measurement approach, from Stein-

berg’s perspective, is that it can be applied to the Larmor clock and thereby render
tunnelling time accessible to experiment.8 The complex components of τWeak

R , Stein-
berg argues, can be easily interpreted as soon as a physical measurement apparatus
is taken into account. The real part, he argues, corresponds to the movement of the
‘pointer’ or ‘clock’ being used, and should therefore be read off as the tunnelling
time (2406). The imaginary component corresponds to the backreaction of the mea-
surement apparatus on the tunnelling particle, and therefore—although physically
significant—should not be interpreted as a measure of tunnelling time (2406).

Steinberg describes his approach as “a sensible way to define conditional probabil-
ities in quantum mechanics, assuming only Bayes’s theorem and standard quantum
theory” (Steinberg 1995a, 32). But others beg to differ. Sokolovski and Akhmatskaya
(2021), Rivlin et al. (2021) and Chuprikov (2014, 13–14) are among those who have
directly criticized Steinberg’s proposal.

Sokolovski and Akhmatskaya (2021)’s critique is especially severe. They empha-
size that weak measurement of the Larmor clock time probes the probability
amplitudes associated with different durations, not the probabilities associated with
those durations. Unlike probabilities, which are in general real and non-negative,
probability amplitudes are complex. They are only constrained by the requirement
that they must add up to unity when summed over all possible pathways. But, as
Sokolovski and Akhmatskaya (2021, 3) show, this is not an especially stringent
requirement; one can find probability amplitudes which satisfy it for any chosen
resulting value of the Larmor clock time, including completely unreasonable values.

In their words,

“[i]f you consider all possible experiments of this type, some of them will give
seemingly reasonable outcomes, whereas other ‘times’ would be negative, too
short, too long, etc. This is necessary, and is possible because such ‘times’
can be expressed as the combinations of probability amplitudes which, unlike
probabilities, have few restrictions on their signs and magnitudes. Though your
result of 0.61 ms does look plausible you cannot recommend using it the way
you would use a classical time scale just because of this.” (4)9

We should therefore be cautious in how we interpret the physical meaningfulness of
τWeak
R .

8This is exactly what Ramos et al. (2020) accomplish in their recently reported experimental results.
9The reference to “0.61 ms” is an acknowledgement of the experimental results reported in Ramos et al.
(2020). I will say more about those results in Section 3.2.4.
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Sokolovski’s critique of the weak measurement approach to tunnelling time fits
with his stance on weak measurement in general; Sokolovski (2015, 2016a, b) argue
that any weak measurement procedure will produce unreasonable values, including
values outside the spectrum of the operator in question, given an appropriate choice
of initial and final states. This all boils down to the distinction between probabilities
and probability amplitudes, and the fact that weak measurement probes the latter not
the former.10

Other proposals The expressions described above are just four of the main con-
tenders for tunnelling time on the orthodox interpretation—there are many more. A
time based on Feynman path integrals is supported by Sokolovski and Baskin (1987,
4611), among others, as “the natural generalization of the classical traversal time”,
but yields genuinely complex times—not just complex times whose real and imagi-
nary parts need to be appropriately interpreted (Sokolovski and Baskin 1987; Hauge
& Støvneng 1989, 922; Pollak & Miller 1984; Pollak, 1985). The Büttiker-Landauer
time τBL

T (related to τL
y,T and τL

z,T by Eq. 8) has been disputed, as we saw above. The
Stevens procedure (Stevens, 1980) measures tunnelling time by tracking the move-
ment of a discontinuity in the wavepacket, but its accuracy has been undermined by
later work (Hauge & Støvneng 1989, 920). Overall, no proposal has been accepted
as the ‘correct’ expression for tunnelling time on the orthodox interpretation, except
in its authors’ own eyes.

3.2.3 de Broglie-Bohm treatment of the problem

Alongside the development of this varied landscape in the orthodox literature, a
handful of authors have assessed the quantum tunnelling time problem from the
perspective of de Broglie-Bohm theory.

By reinterpreting the wavefunction and postulating the existence of underly-
ing point particles, de Broglie-Bohm theory is able to maintain the mathematical
formalism of the standard interpretation but simultaneously adopt a completely
deterministic underlying dynamics.11

The wavefunction is reinterpreted as a field that guides the time-evolution of
underlying localised quantum particles, but simultaneously conceals information
about which trajectory any particle is actually following. Only a measurement can
reveal that information; and the collapse that we see during measurement is thereby
demoted from a genuine indeterministic change in the state of the system to some-
thing that only seems indeterministic because it reveals information about the system
that we previously could not access.

10For more on the interpretation of weak measurement, see e.g. Svensson (2013a, b).
11Throughout I restrict myself to the traditional version of de Broglie-Bohm theory that I describe here—
other proposals for the ontology underlying the pilot wave program, although fascinating in their own
right, do not bear on the conceptual points I aim to make in this paper.
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The tunnelling time problem, when viewed through this lens, becomes much more
tractable. For a given wavefunction ψ(x, t), tunnelling time can be clearly and sim-
ply defined as the average time spent within the barrier region for de Broglie-Bohm
trajectories that eventually continue past the barrier (Leavens 1990, 924–925).

Following Leavens (1990, 924–925) and Leavens and Aers (1996, 112–114), a de
Broglie-Bohm particle initially at position x0 will later spend a time in the region
(xa, xb) given by:

t (x0, xa, xb) =
∫ ∞

0
dt�[ξ(x0, t) − xa]�[xb − ξ(x0, t)] (9)

where � is the unit step function, i.e.

�(y) =
{
1 if y > 0
0 if y < 0,

(10)

and ξ(x0, t) is the position of the particle as a function of time t and its initial position
x0.

This can be used to construct an expression for tunnelling time, simply by setting
xa = x1 and xb = x2 and taking the average value <>T of t (x0, x1, x2) only over the
subensemble of initial positions x0 that lead to transmission through the barrier:12

τdBB
T :=< t(x0, x1, x2) >T . (11)

This expression is unique and uncontroversial within de Broglie-Bohm theory; it
has even been called “trivial” (Muga et al. 2008, 9). It was first introduced by Leavens
and Aers (1989), and has since been assessed by Leavens (1990, 1996), Leavens and
Aers (1996), Muga et al. (2008) and Cushing (1994, 1995), among others.

The de Broglie-Bohm interpretation, in its traditional form, therefore provides a
clear and unique answer to a question that the standard interpretation has not been
able to answer clearly or uniquely. Many existing reviews of the history of quantum
tunnelling time do not even consider this perspective—including, for example, Win-
ful (2006) and Hauge and Støvneng (1989). But, I suggest, it is an important and
informative perspective to consider.

3.2.4 Four emerging themes

Four themes, which I label (1) Problem of time, (2) Meaninglessness, (3) Cru-
cial test, and (4) Weak measurement, have emerged alongside and within these
developments.

1. Problem of time
Various authors have blamed the apparent ambiguity of quantum tunnelling

time on the fact that time enters quantum mechanics as a parameter, not a self-
adjoint operator. Abolhasani and Golshani (2000, 1) write, for example: “In

12Since this expectation value is taken only over the eventually transmitted components of the original
wavefunction, it needs to be renormalized by a factor inversely proportional to the probability of transmis-
sion |T |2. This renormalization factor is absorbed into my notation for the restricted expectation value,
<>T .
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quantum mechanics, time enters as a parameter rather than an observable (to
which an operator can be assigned). Thus, there is no direct way to calculate tun-
neling times.” Challinor et al. (1997) write, “There have been many attempts to
define a physical time for quantum mechanical tunnelling processes... Orthodox
quantum theory is unable to give a definite answer to this problem since time is
not an observable (in the sense of being represented by an Hermitian operator)
in the conventional formulation.” This list is far from exhaustive; almost every
paper on tunnelling time mentions time’s status as a parameter as at least part of
the reason for the existing controversy.13

2. Meaninglessness
The proliferation of mutually exclusive definitions highlighted in Section 3.2

has led some authors to dismiss tunnelling time as meaningless within the ortho-
dox interpretation. Dumont and Marchioro (1993, 85) write that the question,
“How much time does a tunneling particle spend under the barrier?... has no
meaning as it requires the simultaneous measurement of incompatible observ-
ables”. Leavens and Aers (1996, 137) write: “There is no consensus among
proponents of conventional interpretations on whether or not transmission and
reflection times are meaningful concepts. The point of view that they are not
meaningful appears to be a consistent one within conventional interpretations”.
Leavens expresses the same view in Leavens (1993, 781). But not everyone
agrees. Sokolovski (2017, 11) writes, “we disagree with the final conclusion of
[37] [i.e. Leavens (1993)] that ‘it is only the dwell time, which does not distin-
guish between transmitted and reflected particles, that is a meaningful concept
in conventional interpretations of quantum mechanics.’ The dwell time is, we
argue, just a special case of the complex time and is no more, and no less,
meaningful than the tunneling and reflection times in Eqs. (62) and (63)”.

3. Crucial test
The existence of a unique and clear expression for quantum tunnelling time

in de Broglie-Bohm theory, contrasted with the total lack of consensus on the
definition of tunnelling time in the orthodox interpretation, has led to specula-
tion about whether tunnelling time could provide evidence for de Broglie-Bohm
theory. Cushing (1995, 274–277) made the most substantial such suggestion in
his paper ‘Quantum Tunneling Times: A Crucial Test for the Causal Program?’.
There he argues that since tunnelling time is well-defined in de Broglie-Bohm
theory, an experimental test of tunnelling time could in principle function as a test
of whether de Broglie-Bohm’s predictions are empirically adequate.14 He even
proposes a rough sketch of an experimental setup: a detector placed to the left
of the barrier, designed to ‘click’ when the incident particle is released towards

13See e.g. Challinor et al. (1997, 143), Leavens (1990, 923), Lunardi et al. (2011, 415), and Peres (1980,
552).
14Cushing entertains the same possibility, although in less detail, in Chapter 4 of his 1994 book on the
historical dominance of standard quantum mechanics over de Broglie-Bohm theory (see pages 54–55 and
72–75 of Cushing (1994) in particular).
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the barrier, and a detector placed to the right of the barrier, designed to ‘click’
when hit by an eventually transmitted particle. Although he eventually drops this
suggestion in the face of an objection by Bedard (1997), various authors have
expressed similar views, albeit without proposing an experimental set-up for a
possible test (see e.g. Acuña 2019, 21 and Abolhasani and Golshani 2000, 1).
Others, without going quite so far as to suggest that tunnelling time could provide
a crucial test of the Bohmian program, have argued that “reasonable” features
of the Bohmian definition for tunnelling time should stand in contrast to unrea-
sonable features of the various orthodox definitions (including, for example, the
Hartman effect) as “concrete evidence in support of Bohm’s interpretation of
quantum mechanics” (Leavens 1990, 927).

4. Weak measurement
Recent experimental realisations of Steinberg’s proposal for probing tun-

nelling time have raised the idea that weak measurement might be able to resolve
the long-standing controversy and provide empirical measurements of quantum
tunnelling time that come along with a clear interpretation. In a 2020 Nature
paper, Ramos et al. (2020, 529) claim to have measured a traversal time of
“0.61(7) milliseconds at the lowest energy for which tunnelling is observable”
for “Bose-condensed 87Rb atoms tunnelling through a 1.3-micrometre-thick
optical barrier”. They apply a weak magnetic field within the barrier region and
postselect for eventually transmitted particles, using the Larmor clock to read
off the time spent in the barrier region by particles that are eventually detected
on its right hand side. The authors write, “This experiment lays the groundwork
for addressing fundamental questions about history in quantum mechanics: for
instance, what we can learn about where a particle was at earlier times by observ-
ing where it is now” (529). However, the physical meaning of these experimental
results has been directly questioned by Sokolovski and Akhmatskaya (2021), as
we saw in Section 3.2.2. In addition to the arguments provided by Sokolovski
and Akhmatskaya (2021), which challenge the fruitfulness of trying to measure
the Larmor time at all, Rivlin et al. (2021, 1) claim to “show that these experi-
ments cannot reveal the Larmor time, due to finite energy width of the incident
particles”.

The existing literature therefore leaves us with four unanswered questions. First,
does the confusion about tunnelling time really stem from the more general “prob-
lem of time” in quantum mechanics—namely, the fact that time lacks an operator?
Second, is tunnelling time really a meaningless concept in the standard interpre-
tation of quantum mechanics? If so, why, and in what sense? Third, is it possible
to use quantum tunnelling time to gain concrete evidence for the de Broglie-Bohm
interpretation? And finally, are weak measurement techniques—and experimental
realisations thereof—able to resolve the decades-long debate and provide clear,
unique and experimentally verifiable values for tunnelling time?

In the next Section I will attempt to provide the groundwork for answering these
questions by looking more closely at how tunnelling time features in the orthodox
interpretation (Section 4.1) and in de Broglie-Bohm theory (Section 4.2).
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4 Where was the particle right before measurement?

The difference between the orthodox intepretation and de Broglie-Bohm theory that
will weigh most heavily on the issues just raised is revealed by the question: where
was the particle right before a position measurement? The orthodox interpretation
answers that it was not at the measured position, or any position at all. It gen-
uinely existed as a spread-out probability amplitude over various position states —as
ψ(x, t). In Griffith’s words, on the standard textbook interpretation “[a] particle sim-
ply does not have a precise position prior to measurement, any more than the ripples
on a pond do; it is the measurement process that insists on one particular number, and
thereby in a sense creates the specific result, limited only by the statistical weight-
ing imposed by the wave function” (Griffiths 1995, 4). The Bohmian interpretation
answers instead that the particle was exactly in the measured position, and that it had
been following a well-defined, localised path at every time leading up to the time of
measurement.

These answers clearly do not permit the same analysis of a tunnelling particle’s
behaviour before detection. The orthodox interpretation must claim that immediately
before a particle corresponding to Step 3 of the tunnelling system is detected either to
the right of the barrier or to the left of the barrier (see Fig. 1), it did not exist on either
side: it was spread out over both sides of the barrier, in every location with nonzero
ψ(x, t). In Section 4.1, I will argue that this makes the question at the basis of the
tunnelling time problem ill-posed within the orthodox interpretation. De Broglie-
Bohm theory, by contrast, can assert that the particle was exactly in the measured
position immediately before measurement, and furthermore that it followed a well-
defined and deterministic trajectory to get there. In Section 4.2, I will argue that this is
exactly why de Broglie-Bohm theory is able to provide a clear and unique expression
for tunnelling time.

4.1 Tunnelling time in the orthodox interpretation

By the ‘orthodox interpretation’, I mean the interpretation—broadly construed—
on which quantum particles do not have well-defined trajectories and collapse
indeterministically to seemingly determinate values only when they are measured.

In particular, I refer to any interpretation in which a normalised quantum state

ψ(x, t) =
∑
j

cQj
(t)ψQj

(x) (12)

is taken to evolve deterministically according to the Schrödinger equation in the
absence of measurement, and then collapse at time t0 to ψ(x, t0) = ψQj ′ (x) with
probability

Prob(result qj ′) = |cQj ′ (t0)|2 (13)

when disturbed by a measurement process corresponding to operator Q, where the
ψQj

’s are Q’s eigenstates.
As reviewed in Section 3.2.2, several definitions of tunnelling time have been put

forward by authors who subscribe to this intepretation. No single option has been
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unanimously accepted as ‘correct’; in general they contradict each other and are rec-
onciled only in certain limits. And although many authors have suggested that the
problem might not admit a unique solution from the orthodox perspective, some still
write as if such a solution should be sought.15 Calçada et al. (2009, 1), for example,
claim that “[a]n unambiguous definition of tunneling time is an important problem in
quantum mechanics, due to both its applications and its relevance to the foundations
of the theory”.

4.1.1 An ill-posed question

If we are working within the orthodox interpretation, however, then we have no
choice but to take the state of a quantum particle to be identical to the amplitude
of its wavefunction; it evolves deterministically when not being measured but col-
lapses indeterministically on measurement to any of the observable states for which
the previous amplitude was nonzero. For the tunnelling time system, this means that
the state of an incident particle evolves as outlined in Fig. 2 below. The particle inter-
acts with the barrier as a complex probability amplitude, and then evolves into a state
with two peaks: one to the left of the barrier and one to the right of the barrier. On
detection, this state collapses to a sharp peak at some point where the previous state
had nonzero amplitude. If the point of collapse is to the left of the barrier, we appear
to have detected a particle that reflected from the barrier.

If the point of collapse is instead to the right of the barrier, we appear to have
detected a particle that tunnelled through the barrier. But immediately before detec-
tion the particle had not reflected or tunnelled—rather it existed as a complex
probability amplitude including a reflected peak and a transmitted peak. It is there-
fore in contradiction with the basic tenets of the orthodox interpretation to attempt to
extract an expression for the average duration-behaviour-in-the-barrier of eventually
transmitted particles, because according to those basic tenets, any property corre-
sponding to a particle detected on the right hand side of the barrier was attained not
by a particle destined to be detected as such, but by the probability distribution in the
‘During interaction with barrier’ step of Fig. 2.

Any proposal for extracting a tunnelling time from the orthodox interpretation
will encounter this problem.16 The phase time, for example, associates time spent
in the barrier region by eventually transmitted particles with the average extra phase
picked up by particles that are detected as eventually transmitted. But according to
the reasoning outlined above, a particle detected as eventually transmitted did not
pick up its extra phase as an eventually transmitted particle. The Larmor clock time
associates tunnelling time with the average spin picked up by particles detected as
eventually transmitted. But a particle detected as eventually transmitted did not pick
up its spin as an eventually transmitted particle.

15For authors who argue that we should not expect to find a unique expression within the standard inter-
pretation, see e.g. Hauge and Støvneng (1989, 917), Muga et al. (2008, 21), and Sokolovski and Baskin
(1987, 4604).
16Definitions based on weak measurement might at first sight seem to present an exception; this possibility
will be discussed in Section 5.4.
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Fig. 2 The orthodox account of the state of a particle described by the tunnelling time problem, in three
stages: during interaction with the barrier, after interaction with the barrier but before detection, and after
detection

Within the orthodox interpretation, the question “how long did a particle spend
in the barrier region, given that it was eventually transmitted?” is therefore ill-
posed in an important sense. It requires us to access information about how a particle
was behaving before detection based on where it ended up being detected. But the
orthodox interpretation is not set up to provide that kind of information.

4.1.2 A double slit analogy

A loose analogy with the familiar double slit experiment illustrates the force of this
point. For the double slit experiment, we want to ask: given many individual runs
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that produce an interference-pattern-shaped probability distribution on the detec-
tion screen, which of the two slits did each individual particle go through? For the
tunnelling time problem, we want to ask: given that a particle is detected on the
right hand side of the barrier, on average how much time did it spend in the barrier
region? Both are questions about how to infer information about a quantum parti-
cle’s previous behaviour given information about the state to which it collapsed on
measurement.

But the orthodox interpretation explicitly prohibits this kind of inference.17 It
claims that knowledge of the collapsed state of a quantum particle does not give us
any extra information about which component of its previous superposition state was
“veridical”, because all of the components of its previous superposition state were
veridical. The particle’s previous state was no more and no less than the amplitude
of its wavefunction, and cannot be separated into ‘eventually transmitted’ and ‘even-
tually reflected’ behaviour for the tunnelling time problem, any more than it can be
separated into ‘went through left slit’ and ‘went through right slit’ behaviour for the
double slit experiment.

4.2 Tunnelling time in de Broglie-Bohm theory

There are two sides to the underlying dynamics of de Broglie-Bohm theory, both of
which can be derived by mathematical manipulation of the orthodox formalism: the
wave dynamics, and the particle dynamics. In three spatial dimensions, they are given
by:

1. The wave dynamics
The wavefunction ψ(x, t) evolves according to the Schrödinger equation, as in
the standard interpretation:

i�
∂ψ(x, t)

∂t
= − �

2

2m
∇2ψ(x, t) + V (x)ψ(x, t). (14)

2. The particle dynamics
Subject to the assumption that the probability distribution of underlying particles
matches the density of the wavefunction18—i.e. ρ(x, t)dx = |ψ(x, t)|2dx—
each underlying quantum particle follows a trajectory ξ(t):19

dξ

dt
= �

m

[
Im

(∇ψ(x, t)

ψ(x, t)

)]
|x=ξ(t). (15)

For ψ(x, t) of the form ψ(x, t) = A(x, t)eiS(x,t)/�, this reduces to:

dξ

dt
= 1

m
[∇S(x, t)]|x=ξ(t). (16)

17The correspondence between the tunnelling and double slit scenarios is not exact, but it is not intended
to be; the analogy is enough to demonstrate this key point.
18It is disputed whether this assumption needs a dynamical justification or should just be taken as a matter
of postulate. For a recent review, see Valentini (2019).
19See e.g. Bohm (1961, 169–172).
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The wave ψ(x, t) guides the motion of the particle, since dξ
dt

depends on ψ(x, t).
However, a given ψ(x, t) permits various particle trajectories ξ(t), upholding the
uncertainty principle and allowing de Broglie-Bohm theory to reproduce standard
results.

Each underlying particle is in reality following a perfectly well-defined and deter-
ministic trajectory, on this view; but we cannot come to know which one without
gravely disturbing the outcome of our measurement.

The interpretation as a whole can be criticized on various grounds: among other
issues, it is strongly nonlocal, and relies on the controversial assumption that the
probability distribution of underlying particles matches the density of the wave-
function. But, as introduced in Section 3.2.3, de Broglie-Bohm theory provides
an expression for tunnelling time that is clear, unique and uncontroversial—not
in general, but from a Bohmian perspective. That expression, τdBB

T , is the aver-
age time spent in the barrier region by eventually transmitted de Broglie-Bohm
trajectories.

4.2.1 A well-posed question

Within this interpretation of quantum mechanics, each tunnelling particle travelled
through the barrier in a state that was destined to end up being transmitted, or in a
state that was destined to end up being reflected. See Fig. 3, for example, for a space-
time diagram showing the distribution of de Broglie-Bohm trajectories for a particle
incident on a rectangular classically forbidden barrier.

It is the uncertainty principle that blocks us from being able to see, by looking at
a particle’s behaviour in the barrier region, which of these trajectories it is follow-
ing: we only have access to the behaviour of the wavefunction, which permits both
eventually transmitted and eventually reflected trajectories.

Thus, whereas in the orthodox interpretation, a tunnelling particle interacts with
the barrier in a superposition state that cannot be broken into eventually transmit-
ted and eventually reflected components, in de Broglie-Bohm theory it makes sense
to speak of a particle interacting with the barrier in a state that is destined to be
eventually transmitted.

This makes the question at the core of the tunnelling time debate —“how long did
a particle spend in the barrier region, given that it was eventually transmitted?”—
well-posed within the Bohmian framework.

4.2.2 A double slit analogy

The same double slit analogy can be introduced here. On the Bohmian view, each
particle incident on a double slit goes through either the left slit or the right slit on a
localized, deterministic trajectory. It is the uncertainty principle that blocks us from
being able to see, by tracking a particle’s behaviour at the double slit, which slit it
is going through: we only have access to the behaviour of the wavefunction, which
permits both left-slit and right-slit trajectories.

Any attempt to try to measure which slit a given particle is going through destroys
the interference pattern on the screen, because the measurement apparatus interacts
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Fig. 3 Space-time diagram showing a representative sample of possible particle trajectories for the case of
a plane-wave packet incident from the left on a rectangular potential barrier. Image and caption reproduced
with permission from Norsen (2013, 264).

with the underlying wave field ψ(x, t), and the resulting change in the evolution of
the wave field changes the evolution of the particle trajectories.20

So we cannot know whether a given particle went through the left or right slit
just by subscribing to de Broglie-Bohm theory; but at least it makes sense to ask the
question.

5 Morals

Tunnelling time, I have argued, is therefore an inherently unclear and ambiguous con-
cept on the orthodox interpretation, because it stems from a question about particle
histories that the orthodox interpretation is not set up to answer. It is an inherently

20For more details on the double slit experiment in de Broglie-Bohm theory, see e.g. Bricmont (2016,
134–137) and Gondran and Gondran (2014, Section 3).
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clear and unambiguous concept in de Broglie-Bohm theory, because de Broglie-
Bohm theory has the trajectory infrastructure to be able to answer a wide range of
questions about particle histories.

These conclusions shed light on the four issues raised in Section 3.2.4: on whether
the tunnelling time controversy stems from the more general problem of time in
quantum mechanics, on whether tunnelling time is meaningful in the orthodox inter-
pretation, on whether tunnelling time can provide evidence for de Broglie-Bohm
theory, and on whether weak measurement can offer a resolution to the long-standing
tunnelling time debate. I will elaborate on the implications for each of these themes
in Sections 5.1, 5.2, 5.3 and 5.4, respectively.

5.1 Why the trouble is not with time

As reviewed in Section 3.2.4, many authors have suggested that tunnelling time is
difficult to define on the standard interpretation precisely because time is difficult to
define in quantum mechanics in general. It is a parameter, rather than an self-adjoint
operator.

Even before considering the conclusions of the previous section, this view is called
into question by the fact that quantum clock observables can be defined: they just
cannot be represented by PVMs (Pashby 2014, Chapter 6, Chapter 7, Chapter 8).
And as we saw in Section 3.2.2, various quantum clocks have been applied to the
tunnelling time problem, but within the orthodox interpretation, controversy persists.

Furthermore, quantum theory has no problem providing a clear and unique expres-
sion for other duration-based concepts, including, for example, the time of flight of
a free particle. In most cases we can simply exploit functional relationships between
time and other quantities, like position and momentum, that can be represented by
self-adjoint operators.

The conclusions established in Section 4 confirm that the confusion over quan-
tum tunnelling time should not be attributed to the fact that time lacks a self-adjoint
operator. Rather, it should be attributed to the status of superposition in the orthodox
interpretation, which forbids us from asking about how a particle was behaving then
based on where we observe it now.

Tellingly, the time spent within the barrier region is not ambiguous even for tun-
nelling, provided no attempt is made to distinguish between eventually reflected and
eventually transmitted particles. As shown in Section 3.2.1, the dwell time is an
uncontested expression for the average time spent in the barrier by an incident par-
ticle regardless of whether it is eventually reflected or transmitted. Ambiguity arises
only when an attempt is made, within the orthodox interpretation, to specify the ear-
lier behaviour of a tunnelling particle based on the state in which it is eventually
measured.

The confusion surrounding quantum tunnelling time can therefore be traced back
to problems about distinguishing between eventually reflected and eventually trans-
mitted particles, vindicating several authors’ claims to that effect (see e.g. Leavens
and Aers 1996, 107; Sokolovski 2017; Steinberg 1995a, 32 and Leavens 1996, 127).
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5.2 Tunnelling time: meaningful or not?

As discussed in Section 3.2.4, several authors have dismissed tunnelling time as
“meaningless” in the orthodox interpretation—but are they correct, and if so, what
can they mean by “meaningless”?

Meaningless is perhaps too strong a term. What we can assert with confidence is
that tunnelling time requests an answer to a question that the orthodox interpretation
is unable to provide, having committed itself to the state of a particle just being its
wavefunction, even if that wavefunction is a superposition with respect to the quantity
of interest.

Within the de Broglie-Bohm interpretation, tunnelling time is not problematic in
this sense, simply because the de Broglie-Bohm interpretation does not commit itself
to the wavefunction being a full and complete description of a particle’s state. Rather,
it posits an underlying dynamics that includes deterministic and localised trajectories.

I suggest that we should, nevertheless, hesitate to call tunnelling time “mean-
ingless” in the orthodox interpretation. Various definitions have been proposed, and
some are even experimentally measurable. Even if we admit that no unique ‘cor-
rect’ definition will ever be established, we can weigh the existing expressions on
pragmatic grounds, as authors have indeed done for decades.

Authors have assessed proposed orthodox expressions based on their generality,
experimental accessibility, convergence on classically expected results, on whether
they involve stationary or time-dependent treatment, asymptotic or local treatment,
the absence or presence of the Hartman effect, the satisfaction or violation of a
weighted average identity that reduces to the dwell time, and on whether the values
they yield are real or complex. Each of these features might be considered desirable
or undesirable by authors with different aims.21

In a sense, the proliferation of different orthodox definitions for tunnelling time
is similar to the proliferation of interpretations of quantum mechanics as a whole.
They have provoked the same kind of debate: a debate that is largely considered
to be unresolvable, but which is not thereby rendered meaningless. We can identify
desirable and undesirable criteria for orthodox definitions of tunnelling time, just
like we can identify desirable and undesirable criteria for different interpretations of
quantum mechanics.

21For a consideration of generality, see e.g. Sokolovski and Baskin (1987). For experimental accessibility,
see e.g. Potnis (2015), Steinberg (1995b), and Landauer and Martin (1994). For convergence on classically
expected results, see e.g. Davies (2005) and Sokolovski and Baskin (1987), and for stationary vs. time-
dependent treatment, see e.g. Lunardi et al. (2011), Winful (2006), Falck and Hauge (1988), and Hauge
et al. (1987). The importance of asymptotic vs. local treatment is considered by e.g. Lunardi et al. (2011),
Davies (2005), Leavens and McKinnon (1994), Leavens (1993), Hauge and Støvneng (1989), Falck and
Hauge (1988), and Büttiker (1983), and the Hartman effect is considered by e.g. Lunardi et al. (2011),
Calçada et al. (2009), Winful (2006), and Leavens (1990). A weighted average identity that reduces to
the dwell time is discussed by various authors, including e.g. Lunardi et al. (2011), Calçada et al. (2009),
Steinberg (1995b), Hauge and Støvneng (1989), and Leavens and Aers (1989). The merits of real vs.
complex values are discussed by e.g. Lunardi et al. (2011) and Hauge and Støvneng (1989).
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5.3 No crucial test

Various authors have suggested that tunnelling time could be used to provide exper-
imental evidence for de Broglie-Bohm theory (Section 3.2.4). Their suggestions are
inspired by the clarity, naturalness, and uniqueness of the expression for tunnelling
time within the de Broglie-Bohm interpretation, and the proliferation of mutually
inconsistent and controversial candidate expressions for tunnelling time within the
orthodox interpretation.

Two versions of this idea have been raised: first, the idea that tunnelling time
could be used to set up a crucial test of the Bohmian program, capable of confirming
or disconfirming its predictive accuracy, and second, the somewhat weaker idea that
desirable features of tunnelling time could or should be used to provide evidence in
support of de Broglie-Bohm theory.

These suggestions, especially of the first kind, have been controversial—even
Cushing, the first to provide a detailed proposal for a crucial experimental test based
on tunnelling time, eventually gave up the idea. But some speculation remains—and
besides, where authors have dismissed the possibility they have not always based
their arguments on the same reasoning.

Bedard (1997), for example—in a direct response to Cushing—argues that even if
his experimental proposal could measure de Broglie-Bohm tunnelling time, its out-
come would not be able to falsify de Broglie-Bohm theory without simultaneously
falsifying the standard interpretation. This is because, she argues, the two interpre-
tations “(for all practical purposes) make the same predictions”; they only differ in
their interpretation of experimental results (Bedard 1997, 186). Thus, although quan-
tum tunnelling time in the standard interpretation and quantum tunnelling time in
de Broglie-Bohm theory are “two different properties which are not coextensive and
are perhaps measurable in different ways” (186), an experiment designed to measure
tunnelling time in one is still a well-defined experiment in the other. If it produces an
unexpected outcome, it has provided a falsification of both interpretations.

Belousek (2005, 680) seems to agree:

“Regarding the question of whether the ‘transit’ or ‘tunneling’ times in Bohmian
mechanics constitute excess empirical content over ‘orthodox’ quantummecha-
nics (cf. Ref. 31), I am of the view that, while the ontology of particles follow-
ing definite trajectories does constitute surplus physical content, this does not
generate any excess empirical content in the sense of novel predictions. Instead
of novel prediction, Bohmian mechanics allows a more detailed interpretation,
and perhaps a more satisfactory explanation, of the measurement outcomes of
certain experiments in terms of the dynamical quantities definable within its
own theoretical framework. What one has here is a case not of excess empirical
content but rather of the well-known ‘theory-ladenness of observation’.”

Cushing, in a response published as a postcript to Bedard’s paper, agrees that his
original proposal is unviable, but for a slightly different reason. The problem, in his
view, lies not only with how to interpret a successful observation of de Broglie-Bohm
tunnelling time, but with whether de Broglie-Bohm tunnelling time is observable at
all (Bedard 1997, 186).
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I suggest, based on the conclusions of Section 4, that there is a simple explanation
for why we should not expect to be able to construct a crucial test using tunnelling
time. The possibility of a tunnelling-based experimental test of de Broglie-Bohm the-
ory is in principle precluded by exactly the same feature that preserves its empirical
equivalence with the orthodox interpretation in other contexts: namely, the fact that
we only have access to the indeterministic behaviour of the wavefunction, not the
underlying deterministic dynamics (see Section 4.2).

The double slit, once again, provides a useful analogy. De Broglie-Bohm theory
tells us whether a particle went through the upper or lower slit based on where it
appears on the screen far beyond the slits. But it is still not possible to put a detection
device at the slits, and measure which slit each individual particle is going through,
without changing the particle trajectories and destroying the interference pattern on
the screen. Even though the theory distinguishes left-slit from right-slit trajecto-
ries, we cannot experimentally isolate either set of trajectories without running into
exactly the same problems that we would run into in the standard interpretation.

The situation is similar for tunnelling time. De Broglie-Bohm theory tells us, based
on whether a particle ends up being detected as eventually transmitted or eventually
reflected, how long on average it spent in the barrier region. But it is still not possible
to use a measurement device to pick out the eventually transmitted particles before
they have been transmitted, and track their duration behaviour, without changing the
particle trajectories themselves. Even though the theory distinguishes between even-
tually transmitted and eventually reflected trajectories, we cannot experimentally
isolate either set of trajectories and keep the underlying dynamics intact.

This aligns closely with Cushing’s own last word on the topic. He writes: “for
Bohm all measurements are ultimately position measurements and the distribu-
tion of these results must be given by |ψ |2, both in Bohm and in Copenhagen.
Hence, this does not appear to be a promising avenue for the resolution of our
underdetermination” (Cushing and Bowman 1999, 92–93).

On the weaker question of whether we should take the reasonableness of tun-
nelling time in de Broglie-Bohm theory as evidence for the Bohmian program, I
suggest that we should not even go that far, because we should not expect the ortho-
dox interpretation to provide a reasonable answer to a question it is not well-posed to
answer. We should not be surprised that de Broglie-Bohm theory offers a clear and
unique definition for tunnelling time while the orthodox interpretation does not: its
ability to provide such a definition stems from its ability to provide particle trajec-
tories. Its ability to provide particle trajectories, in itself, can be seen as a desirable
feature of de Broglie-Bohm theory. But the clear tunnelling time that stems from
those trajectories should not be interpreted as additional evidence for the Bohmian
program.

5.4 Weakmeasurement as a perspective, not a resolution

Experiments like the one reported in Ramos et al. (2020) use the Larmor clock to per-
form weak measurement combined with postselection, and might therefore seem to
be able to evade the fundamental issue established in Section 4: namely, the orthodox
interpretation’s inability to answer questions about the histories of subensembles.
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I suggest, however, that they do not, as long as their results are still interpreted
from an orthodox perspective. A weak measurement approach to tunnelling time does
make progress, in some sense, precisely because it uses postselection. At least it
leaves the quantum tunnelling time question well-posed: we can reasonably ask an
experiment based on weak measurement to provide a time spent in the barrier specific
to transmitted particles.

The problem lies in the interpretation of those results, because it is not clear what
measurements like those in Ramos et al. (2020) represent within a framework that
does not allow for well defined particle trajectories. We already saw in Section 3.2.2
that Sokolovski warns against overinterpretation of the values provided by weak
measurement, including those reported in Ramos et al. (2020), on the grounds that
they probe probability amplitudes not probabilities (Sokolovski 2015, 2016a, b;
Sokolovski and Akhmatskaya 2021). Other authors like Svensson (2013a, b), and
Bhati (2022) urge similar caution.

This is a general problem for weak measurement, and it is the reason why weak
measurement is not taken to “resolve” the double slit which-way question, despite
having revealed average trajectories for single photons in a double slit interferome-
ter.22 It is simply unclear what such results mean physically, if we are committed to
an interpretation on which localised particle trajectories do not exist.

The point stands quite aside from concerns about whether the Larmor clock is a
reliable clock for measuring tunnelling, and about whether the implementation of the
Larmor clock reported in Ramos et al. (2020) is optimal. Falck and Hauge (1988)
and Hauge & Støvneng (1989, 930–932), for example, argue that the Larmor clock is
only reliable when applied to a field much wider than the barrier region. This would
discredit the experimental setup reported in Ramos et al. (2020), which applies a
magnetic field confined to the barrier region.

Thus weak measurement offers a new perspective on the tunnelling time problem,
not a resolution. It would, nevertheless, be interesting to see a weak measurement
experiment extract average trajectories for particles incident on a tunnelling barrier—
and to see whether they coincide with the Bohmian trajectories, as was shown to be
the case for the double slit experiment (see Kocsis et al. 2011, 1173). In a recent
paper, Spierings and Steinberg hint that they might be undertaking such a project in
the near future. They write, “[f]uture work will study the distinct histories of trans-
mitted and reflected particles, not only due to the role of atomic interactions, but
more fundamentally because of the differing forbidden regions these subensembles
probe” (Spierings and Steinberg 2021, 5).

6 Conclusion

The orthodox interpretation does not deny us the information we rely on to cal-
culate expectation values for position, or momentum. In general, it does not even
deny us the information we need to track duration. But it does deny us exactly

22For the paper which reports these average trajectories, see Kocsis et al. (2011).
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the information we need to distinguish between eventually transmitted and eventu-
ally reflected behaviour of a tunnelling particle within the barrier region, just like it
denies us the information we need to distinguish between went-through-left-slit and
went-through-right-slit behaviour in the double slit experiment.

On this basis, I have argued for answers to four controversial questions about
quantum tunnelling time. Motivated by the links that have been drawn in the litera-
ture between the tunnelling time problem and the more general “problem of time” in
quantum mechanics, I asked whether the confusion and ambiguity surrounding tun-
nelling time on the orthodox interpretation can really be traced back to time’s status
as a parameter rather than an operator. I argued ‘No’: the lack of clarity stems from
the status of superposition in the orthodox interpretation, not the fact that time can-
not be represented by a self-adjoint operator. In fact it does not have much to do with
time at all.

Motivated by claims in the literature about the meaninglessness of tunnelling time
on the orthodox interpretation, I asked whether tunnelling time is in fact meaningless
on the orthodox view, and if so, in what sense. I argued that the question at the basis
of the tunnelling time problem is one which the orthodox interpretation is ill-posed
to answer. But I suggested that this does not make tunnelling time meaningless in an
absolute sense; the various competing orthodox definitions for tunnelling time might
all be useful in different contexts.

Several authors have suggested that tunnelling time could be used to extract evi-
dence for the Bohmian program, and I asked whether this is something we can or
should aim to do. I answered that we cannot, and should not, in two senses. First, any
experimental test of tunnelling time will be predicted to provide the same results on
both de Broglie-Bohm theory and the standard interpretation, and therefore we cannot
hope to be able to construct a crucial test of the Bohmian program using tunnelling
time as the deciding factor. Second, pragmatically desirable features of tunnelling
time in the de Broglie-Bohm interpretation (including, for example, its simplicity and
clarity) should not be interpreted as outright evidence for that interpretation, because
we should not expect the orthodox interpretation to provide a reasonable value for a
concept that it is ill-posed to define.

Finally, I asked whether recent experiments based on weak measurement offer a
solution to the orthodox interpretation’s inability to track duration behaviour specific
to eventually transmitted particles. I argued that they do not, because the meaning
of weak measurement results —within a framework of quantum mechanics that does
not endorse the veridicality of particle trajectories—is bound to remain unclear.

These answers will, I hope, bring some clarity on a topic that remains genuinely
controversial amongst physicists, and largely unknown within philosophy of physics.
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