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Abstract
It is common knowledge that the Aristotelian idea of an unmoved mover (Primum
Mobile) was abandoned definitively (from a mechanical standpoint, at least) with the
advent of modern science and, in particular, Newton’s precise formulation of mechan-
ics. Here I show that the essential attribute of an unmoved mover (in a non-trivial sense,
and in the context of infinite systems theory) is not incompatible with such mechanics;
quite the contrary, it makes this possible. The unmoved mover model proposed does
not involve supertasks, and (perhaps precisely for this reason) leads both to an
outrageous form of indeterminism and a new, accountable form of interaction. The
process presents a more precise characterization of the crucial going-to-the-limit
operation (which will admittedly require further development in future research). It
has long been acknowledged in the existing literature that, theoretically, in infinite
Newtonian systems, masses can move from rest to motion through supertasks. Numer-
ous minor variations on the original schemes have already been published. Against this
backdrop, this paper introduces three significant additions: 1) It formulates for the first
time a limit postulate for systematically addressing infinite systems; 2) It shows that an
Aristotelian unmoved mover (with no supertask) is possible in systems of infinitely
many particles that interact with each other solely by contact collision; 3) It shows how
interaction at a distance can emerge in systems of infinitely many particles (at relative
rest) that interact with each other solely by contact.
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1 Introduction

Attempting to model classical problems in philosophy in a detailed and precise way by
making use of physical and/or mathematical theories, whose formal structure is rea-
sonably well understood, is an expeditious and intellectually stimulating task. This
translation process usually entails some irreparable loss of content, but also perhaps
some gain in new intuitions which (if so) could yield greater conceptual enrichment of
the debates involved and, consequently, a broader vision regarding the nature of
precisely such problems.

Perhaps the best known domain where the above strategy has been developed is
that of the classical Zeno paradoxes (see, for example, Angel, 2001, from the
important body of literature). Various kinds of supertasks have also been widely
used as a modeling tool, even to deal with problems unrelated (or at least not
directly) to infinity. One of the most recent representative proposals in this regard
is Shackel (2018), where the author considers the age-old question of what
happens when the immovable object meets the irresistible force. The supertask
“in a Newtonian universe” that he proposes to represent it illustrates (supposedly)
what he terms “the Nothing from infinity paradox” (infinite mass and energy
disappear completely, leaving an empty space). Corral-Villate (2020) criticized
(rightly in my view) the technical aspects of Shackel’s analysis. The way in which
the immovable object and the irresistible force are modeled as particle systems in
the context of collision mechanics is also open to criticism (for example, it was
found that Shackel’s immovable object can even move by itself, as shown by
Laraudogoitia, 1998, although I will not elaborate on this here). Nonetheless, the
idea of modeling as such seems valuable and thought-provoking.

This paper argues that a Newtonian modeling of the Aristotelian idea of unmoved
mover exists. Given the incommensurability of the Aristotelian and Galilean-Newto-
nian notions of motion, this claim must be qualified. I do so in section 2 (without
intending it to be a scholarly analysis of the sources), where I clarify what should
be understood by unmoved mover in the Newtonian sense, and the resulting loss
of content. Section 3 is central as it rigorously defines the notion of unmoved
mover and introduces the limit postulate in detail. Section 4 shows (in simple
collision mechanics terms) how unmoved movers are possible in Newtonian
worlds of colliding particles. The reasoning, which is technically very simple (as
is the Newtonian model that eventually follows), is developed in four stages, in
close parallelism with a well-known supertask. Even though the way the unmoved
mover operates is not via a supertask, it does consist of an infinite particle system,
hence the relevance of this parallelism. To conclude, section 5 reflects on the
significance of the results obtained. In addition to the particular importance of
going to the limit in the study of infinite systems, it also reveals the surprising way
in which interaction at a distance emerges from contact interaction under the limit
postulate.

Finally, I would like to stress that this paper can be read (completely aside from
historical considerations) as the justification of a series of unexpected outcomes
regarding the causes of motion that clash with our most elementary Newtonian
intuitions.
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2 A look at unmoved movers in the history of philosophy

The aim of this section is neither historical comprehensiveness nor strict adherence to
texts by classical authors, which would be inappropriate for a paper such as this, whose
focus is on conceptual analysis rather than the interpretation of the foundational works
of philosophy.

The idea of the unmoved mover dates back to Aristotle, and is closely linked to his
proof of the existence of a prime mover (Primum Mobile). Writing on the superlunary
stage, he says:

“... for it is impossible that there should be an infinite series of movements, each
of which is itself moved by something else, since in an infinite series there is no
first term - if then everything that is in motion is moved by something, and the
first movement is moved but not by anything else, it must be moved by itself.”
(Aristotle, 1957, 256a).

Scholars have distinguished up to three different contexts in which Aristotle supplies as
many proofs of the existence of the Primum Mobile, with subtle differences between
them (Lang, 1978) in terms of the scope of their conclusion, i.e., in terms of the prime
mover’s attributes. A narrower and more useful perspective for our interests can be seen
(according to Sauvé, 1987) when considering:

“…the three principal claims that Aristotle makes of the capacity in virtue of which
something is an UMM [unmoved mover]:

1. that its exercise is not a movement
2. that it causes movement
3. that it stops the regress of causal explanation” (p. 175)

In light of these capacities, Thomas Aquinas’ argument in the first of his Five Ways is
crystal clear. It is based on what has come to be termed the Aristotelian mover-causality
principle: everything which is in movement is moved by another (implying that the
causal chain of movements is linear).

There has been considerable discussion surrounding the Aristotelian mover-
causality principle. However, viewed from the perspective that Galileo initiated in
physics (with his attention turned to primary qualities and measurability to the detri-
ment of essences and causes), which Newton consolidated, it clearly seems to be false.

Newton introduced three different notions of force in the Principia: vis insita (innate
force of matter), vis impressa (impressed force) and centripetal force. The first two are
of interest here. He formulates the three laws of motion explicitly for impressed forces
(in the third law this is implicit, though not explicit). What is the role of vis insita?
Newton also calls it the force of inertia (but here it has a different meaning from that of
today), and he certainly saw the concepts of mass and force as two primary notions
(Dugas, 1988) rather than considering mass and acceleration as primary, as is usual
today. Vis insita is not seen as a cause of acceleration, and Jammer (1999) interprets it
as a mere concession to pre-Galilean mechanics. McGuire (1994) also agrees with this
assessment by arguing that Newton does not completely break with the Aristotelian
analysis of motion and its causes. In his view, on the surface of Newton’s ideas, vis
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insita is identifiable with inertia, but deeper down embodies the idea that it is the
inherent cause of a material body’s motion. In any event, this idea of innate force of
matter has been used to justify that there is self-motion in Newton’s conception of
mechanics (“It is clear that Newton conceives natural motion as a species of self-
motion”, 1994, p. 329). Nevertheless, this does not imply the possibility of unmoved
movers. As stated above, the Aristotelian mover-causality principle is false in Newto-
nian mechanics (while it is true that some moving objects are moved by others, not all
moving objects are moved by others; the principle is false as a universal statement.).
There is no infinite regress in the causal explanation of motion to be found. So, of the
three conditions characterizing an unmoved mover (according to Sauvé), only the first
two (1. that its exercise is not a movement; 2. that it causes movement) must be
maintained in a Newtonian context. Even so, there seems to have always been an
implicit consensus that the existence of an unmoved mover is incompatible (at least
under usual contact forces1) with the laws of classical mechanics. This idea will be
challenged below. I will show that the falsity of the Aristotelian mover-causality
principle in Newtonian mechanics does not prevent the possibility of unmoved movers
(even though for Aristotle, and Aquinas in his first way, their existence was deduced
using this principle).

3 Defining unmoved mover and introducing the limit postulate

The brief historical overview given in the previous section allows us to extract a notion
of unmoved mover which is valid in a Newtonian context. However, in order to address
the results hereafter (which are more technical and precise than those mentioned so far),
it would be wise to hone our ideas at this point. No commitment to a definite
conception (among the several existing) of what Newtonian mechanics is is required
to do so. Nor does the most general possible concept of unmoved mover within it need
to be considered. For the purposes of this paper, confining oneself (bearing in mind
footnote 1 and similar, easily-imaginable situations) exclusively to those cases where
gravitation is not considered is sufficient. Thus, the idea of unmoved mover outlined up
to this point can be described in greater detail as follows:

Unmoved mover: In the absence of gravitational interaction, an unmoved mover
M is a material body at rest in an inertial reference frame R (where all of M’s
parts are also at rest) with the following property: it is possible for material bodies
M* at rest in R (both the bodies themselves or any of their parts) to be
set in motion by M’s causal action without M or any of its parts ceasing
to be at rest in R.

Although no specific or detailed conception of Newtonian mechanics is ascribed to in
this article, as mentioned above, it is nonetheless important to realize that Newtonian

1 Consider the uniform gravitational field (g) created by a material plane Π of infinite extension and constant
mass density. Any particle P with mass m placed on it will move under the action of force mg exerted by Π.
However (given its infinite mass), Π will not move, thus acting (trivially) as an unmoved mover.
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mechanics (and not, for example, Hamiltonian mechanics) is specifically considered.
So, when the definition of unmoved mover refers to causal action, this concept is more
clearly circumscribed. Still, even within this narrower scope, there is no need for a
general definition of what a causal action is. In order to understand the definition of
unmoved mover and causal discourse that (partially) permeates my argument, one need
only acknowledge that, in a Newtonian formulation of mechanics: a) only a force can
be the causal agent of a material body’s change in velocity (i.e. change in the state of
motion) within an inertial reference frame; b) only a material body can exert a force
within an inertial reference frame. From a) and b), it follows that material body M can
be referred to, in a derived sense, as the causal agent of material body M*'s change in
velocity within inertial reference frame R: M exerts force F, which is the causal agent of
this change. Correspondingly, also in a derived sense, M’s causal action is force F’s
causal action, exerted by M. Given these clarifications, the above definition of un-
moved mover has been refined so as to better understand its role within the framework
of subsequent arguments.

Moreover, as stated in the introduction, the unmoved mover proposed involves the
intervention of material systems consisting of an infinite number of particles. Some-
thing should therefore be said at this point as to how to approach such systems. Clear
indications to this effect can be found in the theory of supertasks; indications that
incorporate a going-to-the-limit process based on finite configurations of particles.
However, these indications prove to be insufficient for the kind of infinite systems that
model unmoved movers. More specifically, an explicit explanation will be given below
on how to perform going to the infinite limit in the number of particles based on a
system with a finite number of particles. This indication shall be referred to as the limit
postulate (LP). It is an essential postulate for what follows, yet not particularly
committing. It basically states that in order to analyze the time evolution of an infinite
system, the limits of numerical sequences, in the sense of elementary mathematical
analysis, and limits of sequences of sets, in the sense of measure theory, must be
computed. For its proximate application, already performed in subsection 4.1, it is
presented as follows:

LP: In order to analyze the time evolution of a physical system S of infinite particles
from the initial instant t0 to a later instant t > t0, first consider the evolution from t0 to t
of a subsystem Sn with only n particles. Then:

– (I) take limit n → ∞ in the following, precise sense: a) according to the mathe-
matical meaning of the limit of a real numerical function of real variable on all this
class’ relevant functions that depend on n (for example, the real functions of real
variable xtm(n) and vtm(n), which respectively give the position and velocity of
subsystem Sn’s particle pm at instant t, 1 ≤ m ≤ n); b) according to the
mathematical meaning of the limit of a sequence of sets (a sequence that is a set-
valued function of real variable) on all the relevant increasing sequences of sets that
depend on n (for example, the sequence of particle sets S1 = {p1}, S2 = {p1, p2}, ...,
Sn = {p1, p2, ..., pn}, ... or sequences of particle parameter sets).

– (II) finally, if the limits mentioned exist, these therefore provide possible values for
the relevant physical magnitudes corresponding to system S = lim n → ∞ Sn of
infinite particles (for example, for each particle pm ∈ lim n → ∞ Sn = S, with m ≥ 1,
limits xtm(S) = lim n → ∞ xtm(n) and vtm(S) = lim n → ∞ vtm(n) respectively provide
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possible values for the position and velocity, xtm(S) and vtm(S), of system S’s
particle pm at instant t).

Note that in the limit postulate (where n → ∞ is performed) there are functions of n
whose values are real numbers (corresponding to sequences of numbers) and functions
of n whose values are sets (corresponding to sequences of sets). This entails very
careful consideration of the going-to-the-limit process, which (to the best of my
knowledge) has been specified here for the first time. For its part, the condition that
sequences of sets shall be increasing is eminently natural in view of the fact that the
limit postulate’s purpose is to study the evolution of sets with an infinite number of
particles.

Note also that the LP seeks to describe the situation with n → ∞ on the basis of
what is known for finite n, i.e., relating it to what is known for finite n. Not by relating it
in any fashion, rather by means of a rigorous and formally manageable procedure:
going to the limit. On the one hand, the going to the limit used by the LP is neither ad
hoc nor artificial. Quite the contrary, it uses notions that are familiar and used widely in
conventional mathematics. I believe this to be the strongest argument in favor of its
plausibility. On the other, it seems to me that employing some notion of limit is the
only way to refer judiciously to infinite systems on the basis our experience with finite
systems.

In the LP applications that follow, not only real functions such as xtm(n) and vtm(n)
will be considered, namely functions giving positions and velocities. However, it will
be clear from the context that the use of some other different real functions (e.g. tn ≡
t(n) functions with values in time, basically for the sake of convenience) could always
be avoided in favor of standard xtm(n) and vtm(n)-type functions (positions and
velocities). Hence, only trivial transformations would mediate.

4 The road to an unmoved mover

4.1 First stage

The unmoved mover model presented here involves the use of an infinite particle
system (using the term in its broad sense; a particle is in general a rigid body of finite
size which, for the sake of explanatory simplicity, can be regarded as having zero
volume). However, this is not a supertask; there is no infinite sequence of interactions
or collisions. Even so, some of the well-established theory of supertasks will be useful
to illustrate the going-to-the-limit processes applied. So as to avoid misunderstandings,
it may be useful to briefly specify what is meant by supertask. In my understanding of
the term (which I believe to be in line with most of the literature), a supertask requires
the execution of an infinite sequence of tasks in a finite time, yet not in null time! (If the
tasks are simultaneous, there is no sequence). Moreover, the unmoved mover acts
instantaneously (in null time) and therefore does not execute a supertask in the usual
sense. A broader notion of supertask (excessively broad, in my opinion) dispenses with
the idea of sequence: an event (not process) could be a supertask in this sense. In
contrast, the narrower concept advocated here affords a very characteristic and exclu-
sive type of well-known conceptual difficulties, which justifies introducing it apart.
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The most suitable (and, at the same time, simplest) example of a supertask for our
purposes is provided by Laraudogoitia, 1996. Let us consider an infinite set of identical
point particles pn (n > 1), each of unit mass, at rest at coordinate points x = 1/(n - 1).
The system is approached from the right by another identical particle p1 at unit velocity.
The collision between p1 and p2 occurs at t = 0. This gives rise to a perturbation, which
propagates through the system as an infinite sequence of successive collisions (a
supertask), and ends at t = 1 with all particles at rest (pn at point x = 1/n, n ≥ 1).
The outcome is a 1/2 magnitude loss of energy and unit magnitude loss of momentum.
Although this outcome is justified on the basis of our initial intuitions regarding the
type of infinite system considered, it will be interesting (for what follows) to deduce it
as a consequence of going to the limit (n → ∞) based on the analysis of a finite n-
particle system. For this purpose, we shall take a finite set of identical n particles {p1,
p2, p3, ..., pn} of unit mass. p2, p3, ..., pn are initially at rest at their respective points 1/1,
1/2, ..., 1/(n - 1) while p1 approaches them at unit velocity from the right and collides
with p2 at t = 0. A perturbation now also occurs, which propagates through the
system as a finite sequence of successive collisions, and ends at t = (1/1) - (1/(n -
1)) = (n - 2)/(n - 1) with particles p1, p2, ..., pn - 1 at rest at their respective points
1/1, 1/2, ..., 1/(n - 1). But that is not all: as of t = (n - 2)/(n - 1), the “last particle”,
pn, (moving leftwards at unit velocity) takes away all the energy and momentum
initially held by p1. Going to the limit n → ∞ now has a precise sense according to
the limit postulate (LP). It is performed: a) according to the mathematical meaning of
the limit of a real numerical function of real variable on all this class’ relevant functions
that depend on n; b) according to the mathematical meaning of the limit of a sequence of
sets on all the relevant increasing sequences of sets that depend on n. The only relevant
numerical function is t = (n - 2)/(n - 1), and clearly limn → ∞ (n - 2)/(n - 1) = 1. The two
relevant sequences of sets are: a) the sequence of sets of particles P2, P3, P4, ... Pi, ... where
Pi = {p1, p2, p3, ..., pi} and b) the sequence of initial locations I2, I3, I4, ... Ii, ... where Ii =
{1/1, 1/2, ..., 1/(i - 1)}. Since both sequences are increasing (P2 ⊆ P3 ⊆ P4 ⊆ ... ⊆ Pi ⊆ ...
and I2 ⊆ I3 ⊆ I4 ⊆ ... ⊆ Ii ⊆ ...), one reasonable definition for a limit2 is, in each case, the
union (Edgar, 1992): P = ∪ k > 1 Pk and I = ∪ k > 1 Ik . Clearly, P = {p1, p2, p3, ..., pi, ...}
and I = {1/1, 1/2, ..., 1/i, ...}. Therefore, the description of the resulting state of affairs
after going to the limit is clear. Now based on an infinite set of identical particles

2 This definition is not arbitrary but rather a particular case of the standard, general definition of the limit of a
sequence of sets (see, e.g., Resnick, 1999, p.6). Given the arbitrary (infinite) sequence of sets B1, B2, B3, ... Bn,
... it is said that limn → ∞ Bn = B if and only if ∪ n = 1

∞ ∩ k = n
∞ Bk = ∩ n = 1

∞ ∪ k = n
∞ Bk = B. As can be

easily seen, ∪ n = 1
∞ ∩ k = n

∞ Bk is the set formed by the elements belonging to all the sets of the sequence,
save perhaps a finite number of them. Analogously, ∩ n = 1

∞ ∪ k = n
∞ Bk is the set formed by all the elements

belonging to infinite sets in the sequence. When the sequence is increasing (B1 ⊆ B2 ⊆ B3 ⊆ ... ⊆ Bi ⊆ ...), it is
evident that both sets are equal to ∪ k ≥ 1 Bk, which is therefore the limit of the sequence. The general definition
of the limit of a sequence of sets is of interesting application to Ross’s paradox. Suppose that we possess an
infinitely large urn and an infinite collection of balls labeled ball number 1, number 2, number 3, and so on.
Consider an experiment performed as follows: “At 1 minute to 12 P.M., balls numbered 1 through 10 are
placed in the urn and ball number 1 is withdrawn; at 1/2 minute to 12 P.M., balls numbered 11 through 20 are
placed in the urn and ball number 2 is withdrawn; at 1/4 minute to 12 P.M., balls numbered 21 through 30 are
placed in the urn and ball number 3 is withdrawn; ... and so on. .... how many balls are in the urn at 12 P.M.?”
(Ross, 2010, p. 46). The surprising answer that the urn is empty at 12 P.M. is an immediate consequence of the
general definition of the limit of a sequence of sets. If Un designates the set of balls in the urn at tn = 12 −
(3/2)(1/2n), then limn → ∞ Un = ∅, i.e. the urn is empty at 12 P.M. = limn → ∞ tn.
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{p1, p2, p3, ..., pn, ...} of unit mass. p2, p3, ..., pn, ... are initially at rest at their respective
points 1/1, 1/2, ..., 1/(n - 1), ... while p1 approaches them at unit velocity from the right
and collides with p2 at t = 0. A perturbation then occurs, which propagates through the
system in the form of an infinite sequence of successive collisions, and ends at t = 1 with
particles p1, p2, ..., pn, ... at rest at their respective points 1/1, 1/2, ..., 1/n, ... . That is all. As
there is no “last particle”, p∞, nothing can take away the energy and momentum initially
held by p1. So, as from t = 1, this energy and momentum have been lost. Thus, the
outcome first obtained on the basis of a direct intuition of the situation is retrieved.
Reconsidering such a situation in terms of a more elaborate limit calculation may seem
futile at this point, but will prove useful shortly.

Naturally, whether the consequences of the limit calculation performed corre-
spond to “the facts” is something that cannot be guaranteed a priori. Introducing
such a calculation for prediction purposes actually implies the assumption of an
additional postulate (referred to above as the “limit postulate”, LP). This, added to
the underlying Newtonian theoretical structure, enables precise conclusions to be
drawn on infinite systems. Some authors (Atkinson, 2007; Laraudogoitia et al.,
2002) have speculated on the possibility that neither energy nor momentum is lost
in situations such as the beautiful supertask. I will not discuss such alternatives
here, although it seems clear that LP leads to conclusions more in line with the
stability of matter characterizing Newtonian possible worlds (according to
Peijnenbug & Atkinson, 2010), which are of interest to me here. Moreover, one
might expect that a suitable LP formulation for more complex infinite systems
than those considered in this paper would require greater sophistication: in order
to obtain not only reasonable but also well-defined outcomes (see note (2) to this
effect). This would be the road to a general infinite systems theory. However, my
goals here are more unassuming, and the LP version outlined above is sufficient
for the infinite systems to be considered.

4.2 Second stage. Sudden stop

The LP will now be applied to the analysis of a simple infinite system where no
supertask is executed. Figure 1 shows a rigid ball, B, of unit radius (and unit mass)
moving (at unit velocity) towards Cartesian plane YZ (plane x = 0). B’s geometric
center is displaced on the X-axis (points (x, 0,0)) and there is a denumerable infinity of
rigid rings an on the YZ plane (of zero thickness, for the sake of simplicity) at rest all
centered at the origin of coordinates O(0,0,0) and with respective radiuses rn = 1/n
(only the first four rings are shown in the Fig. 1). All the an are independent of one
another, and of the same mass, equal to B’s mass. Assuming that, in its rightward
movement, the center of B reaches point (1,0,0) at instant t = 0. How will the infinite
system evolve henceforth? The LP will again be applied to the finite situation where the
number of rigid rings is finite. Note that, in principle, only the a1, a2, a3, ..., an are
present. In these conditions of finitude the future is clearly prescribed. B will continue
to make further progress rightwards with no perturbation for a certain additional
distance, a, up to a point where it will collide with ring an. The value of a is easy to
calculate (see Appendix I), and the result: a = 1 - (1/n)√(n2–1). After B’s collision with
an (obviously at instant ta = 1 - (1/n)√(n2–1)), B will be stopped, while an will take
away all its kinetic energy and momentum moving rightwards thereafter at unit velocity
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(note that the masses of B and an are equal). The other rings present remain forever at
rest. It will be seen below that the evolution from t = 0 in the infinite case is also clearly
prescribed by applying the LP. The only relevant numerical function is a = ta = 1 -
(1/n)√(n2–1)), and obviously limn → ∞ [1 - (1/n)√(n2–1))] = 0. And the only relevant
sequence of sets is A1, A2, A3, ... Ai, ... where Ai = {a1, a2, a3, ..., ai}. Since it is
increasing (A1 ⊆ A2 ⊆ A3 ⊆ ... ⊆ Ai ⊆ ...), as before limn → ∞ An = A = ∪ k ≥ 1 Ak =
{a1, a2, a3, ..., ai, ...}. The description of the resulting state of affairs after going to the
limit is then clear. Starting now from B and an infinite set of rings {a1, a2, a3, ..., an, ...}
with radii rn = 1/n, each of unit mass. a1, a2, a3, ..., an, ... are initially at rest on the YZ
plane centered at point (0,0,0) while B approaches them at unit velocity from the left, its
geometric center reaching point (1,0,0) at instant t = 0. Since a = ta = 0, B will make
no further progress rightwards, so it will collide at that instant and stop. That is all. As
there is no “last ring”, a∞, B collides with no ring, nor is there any ring that can take
away the energy and momentum that B initially held. So, as of t = 0, this energy and
momentum are lost. All that has happened is that B has stopped instantaneously, with
the subsequent loss of energy and momentum, but no ring has moved at any time
throughout the whole process. The collision stopping B is an example of what is termed
in the literature as a global collision (Laraudogoitia, 2005): B collides with all the rings
(i.e. collides with the set of rings, with the physical system formed by the rings) without
colliding with any one ring separately. To date, the circumstances in which energy and/
or momentum could be lost involved infinite sequences of collisions in the context of
supertasks (excluding inelastic collisions since, at all times, only frictionless rigid-body
dynamics are considered). What is surprising is that no supertask is executed in our
example. Just one collision (without the required presence of others) leads to such a
loss. The existence of a collision between rigid bodies (no supertask and no friction)
where no energy is conserved reveals, surprisingly, that the philosophically interesting
properties of infinite systems reach far beyond what the theory of supertasks can tell us

Y

Z

X

B

Fig. 1 A rigid ball on collision course with a denumerable infinity of rigid rings
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about them. This judgment will be more forcefully sustained when the “Aristotelian”
unmoved mover model is later discussed.3

If the idea of global collision is considered problematic, there will be some reser-
vations concerning the argument above, which supports it. One may then suspect that
perhaps the configuration in Fig. 1 (upon which the argument above is built) is not in
fact well defined; a fundamental indefiniteness that the usual notion of limit would be
unable to address. In response, I reject that Fig. 1’s configuration is poorly defined.
Rather, the usual notion of limit (confined to calculating the limits of real functions of
real variable) is insufficient in itself to study this configuration. In my view, potential
critics would be considering the problem from this constrained notion of limit (which
only takes clause (I) a) of the limit postulate LP into account); hence the impression of
indefiniteness. When studied with the help of the limit postulate LP “in full”, all
indefiniteness vanishes and the approach taken in this section can immediately be
followed.

Ideally, a precise definition of the term “collision” would dispel all doubts about the
legitimacy or otherwise of the discourse on global collisions. For example, providing
the necessary and sufficient conditions for a collision would settle such doubts. This is
a difficult task that will not be discussed here, given the enormous complexity involved
in the countless infinite-particle systems imaginable. Fortunately, neither is this neces-
sary. A conjunction of conditions simply needs to be provided which, as a conjunction,
is clearly sufficient for a collision. It is assumed that the conjunction of the following
four conditions is clearly sufficient to conclude that rigid body D collides at instant t
with material system C (being itself a rigid body or system consisting of rigid bodies).
1) Contact condition: at instant t, D is in contact with C (i.e. at zero distance from C). 2)
Discontinuity condition: at instant t, D undergoes a discontinuous change in its
velocity. 3) Condition of relative motion: at t - 0 (also usually denoted as t−), there is
relative motion between D and at least one part of C. 4) Condition of causal
effectiveness: without C’s presence, there would have been no discontinuous change
in D’s velocity at t.

If rigid ball B is taken as D and system A of the infinite concentric rings as C, it is
clear that (given the analysis in this subsection) B collides with A at t = 0. And, as
noted earlier, the collision’s “global” character simply reflects the fact that B does not
collide at t = 0 with any of the rings an forming part of A.

4.3 The road to an unmoved mover. Third stage

Even more philosophically significant than the beautiful supertask described in 4.1 is its
time reversal. Here we start from identical particle system pn at rest at points x = 1/n (n
≥ 1) and invert the process there observed. Suddenly (at an undetermined instant in
time, say t = 0), the system is self-excited by an infinite sequence of binary collisions
where different pi successively gain and lose unit velocity until finally (for t > 1) all of
them are at rest (pn at point x = 1/(n - 1), with n > 1) barring p1, which moves away

3 The sudden stop in this section could perhaps be avoided by questioning the use of the limit postulate (LP) in
this section. However, there would then be a problem: explaining why such use is unsuitable here and not in
the case of the beautiful supertask discussed in section 4.1. And, to my mind, considering that it is also
unsuitable in the latter case entails rejecting the beautiful supertask as such.
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from the others at unit velocity. Energy and momentum have been spontaneously
created for t > 0, which are transported through the system until they eventually reach
p1. Since the direct process was an infinite sequence of reversible collisions, the
possibility of this reverse process follows in an intuitively evident way. Even so, it
will be instructive to see how it can be reached by applying the going-to-the-limit
procedure (n → ∞) based on the analysis of a finite n-particle system (using the limit
postulate, LP). To this end, let us take a finite set of identical n particles {p1, p2, p3, ...,
pn} of unit mass. At instant tinitial = 1/n, all particles p1, p2, p3, ..., pn are at their
respective points 1/1, 1/2, ..., 1/n but, while the first n - 1 are at rest, pn (the “last
particle”) approaches them, moving at unit velocity from the left. pn collides with pn - 1
at tperturbation = 1/n + [1/(n - 1) - 1/n] = 1/(n - 1), causing a perturbation that propagates
through the system (in the form of a finite sequence of successive binary collisions) and
ends at tfinal = (1/1) - (1/(n - 1)) = (n - 2)/(n - 1) with particles p2, p3, p4, ..., pn at rest at
their respective points 1/1, 1/2, ..., 1/(n - 1), and p1 moving rightwards at unit velocity.
p1 takes away all the energy and momentum that the “last particle” pn initially held.
Going to the limit n → ∞ is now also clear. The only relevant numerical functions are
tinitial = 1/n (with limn → ∞ tinitial = 0), tperturbation = 1/(n - 1) (with limn → ∞ tperturbation =
0) and tfinal = (n - 2)/(n - 1) (with limn → ∞ tfinal = 1). The two relevant sequences of
sets are: a) sequence of particle sets P2, P3, P4, ... Pi, ... where Pi = {p1, p2, p3, ..., pi} and
b) sequence of initial locations I2, I3, I4, ... Ii, ... where Ii = {1/1, 1/2, ..., 1/i}. Clearly
limn → ∞ Pn = P = ∪ k > 1 Pk = {p1, p2, p3, ..., pi, ...} and limn → ∞ In = I = ∪ k > 1 Ik =
{1/1, 1/2, 1/3, ..., 1/i, ...}. Therefore, the description of the resulting state of affairs after
going to the limit is unambiguous. Starting from an infinite set of identical particles {p1,
p2, p3, ..., pn, ...} of unit mass, all of which are at rest at their respective points 1/1, 1/2,
..., 1/n ... at instant tinitial = 0 (there is no “last particle” in motion, p∞, approaching
them). A perturbation then occurs at tperturbation = 0 (albeit not caused by any specific
collision, there is no “first collision” between p∞ and p∞ - 1 because there are no such
particles) which propagates through the system in the form of an infinite sequence of
successive collisions, and ends at tfinal = 1 with particles p2, p3, p4, ..., pn, ... at rest at
their respective points 1/1, 1/2, ..., 1/(n - 1), ... and p1 moving rightwards at unit
velocity. p1 takes away all the energy and momentum that initially emerged from the
perturbation. Since this perturbation is internal to particle system P (it does not derive
from any external action) and does not result from a specific collision, the term self-
excitation is justifiable for describing it. The outcome first obtained on the basis of a
direct intuition of reversibility in the beautiful supertask is thus retrieved.

Use of the limit postulate (LP) in this subsection will be the pattern to follow in order
to reach the unmoved mover in the following subsection.

4.4 The road to an unmoved mover. Last stage

Here it will be seen how the key which leads to the unmoved mover is to apply the LP
as used in the previous subsection (4.3) to the analysis of an infinite system where no
supertask is executed (as in 4.2).

Figure 2 shows a rigid ball, B, with unit radius (and unit mass) at rest and in point
contact with Cartesian plane YZ (plane x = 0). B’s geometric center is located on the X
axis (at point (1,0,0)), and on the YZ plane there is a denumerable infinity of rigid rings
an (of zero thickness, for the sake of simplicity) at rest, all of which are centered at the
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origin of coordinates O(0,0,0) and with respective radiuses rn = 1/n (only the first four
rings are shown in the Figure.). All the an are independent of one another and have the
same mass, equal to B’s mass. How will the infinite system evolve henceforth? One
obvious possibility is the perpetuation of all its components’ state of rest. Surprisingly,
however, this is not the only possibility. Another possibility is that the infinite system
of rings an acts as an unmoved mover.

In order to observe this, we shall start by considering a situation similar to the one
just described (shown in Fig. 2) but with two modifications: a) the set of rings present is
finite {a1, a2, a3, ..., an}; b) at instant tinitial = 0 there is only one single ring, an (the “last
ring”) which, albeit momentarily centered at O(0,0,0), is moving leftwards at unit
velocity, progressively approaching B. The calculation made in the Appendix I clearly
shows that an will collide with B at tfinal = 1 - (1/n)√(n2–1), with B moving leftwards
from then on at unit velocity (and an, of course, is at rest from that instant, as are the
other rings). B takes away all the energy and momentum that the “last ring” an initially
held. Going to the limit n → ∞ in this case is also equally clear. The only relevant
numerical function is tfinal = 1 - (1/n)√(n2–1) (with limn → ∞ tfinal = 0 = tinitial). And the
only relevant sequence of sets is A1, A2, A3, ... Ai, ... where Ai = {a1, a2, a3, ..., ai}. As
before in 4.2, limn → ∞ An = A = ∪ k ≥ 1 Ak = {a1, a2, a3, ..., ai, ...}. The description of
the resulting state of affairs after going to the limit is therefore unambiguous. Now
based on from B and an infinite set of concentric rings {a1, a2, a3, ..., an, ...} of unit
mass, all of which are at rest and centered at O(0,0,0) at instant tinitial = 0 (there is no
“last ring” in motion, a∞, approaching B). A perturbation then occurs at tfinal = tinitial =
0 (albeit not caused by any specific collision, there is no collision between a∞ and B
because there are no a∞) which sets B in motion leftwards at unit velocity, whilst the
rings remain at rest. From the outset, B takes away all the energy and momentum
originated from the perturbation. Since this perturbation is internal to the system

Y

Z

B

X

Fig. 2 A rigid ball at rest in contact with a denumerable infinity of rigid rings
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formed by B and the infinite rings (it does not derive from any external action on the
system), and does not result from a specific collision, the term self excitation is now
also justifiable for its description. There is, however, a qualitatively and philosophically
relevant difference between this self excitation and that discussed in section 4.3. In 4.3
the cause of each movement is a previous movement: what set pn in motion was the
previous (causally responsible) movement of pn + 1, which was altered accordingly
(particle system P as such does not move because its center of mass does not move).
Now, however, what sets B in motion is not a previous movement that thus becomes
altered. The system of infinite rings A = {a1, a2, a3, ..., ai, ...} is causally responsible for
B’s movement, but neither A nor any of the ai alters its permanent state of rest as a
consequence. A is literally an unmoved mover. Note that it is system A of rings that
interacts at a distance with B, but no one ring in particular. This is consistent with the
implicit assumption throughout this discussion that any ring can only interact with B
(or with any other ring) by contact collision.4

Even though the above analysis of the unmoved mover only considered the relevant
numerical function tfinal = 1 - (1/n)√(n2–1), there is nothing preventing the study of
other additional numerical functions. To better illustrate the procedure, two others will
be briefly considered: radius(an) ≡ radius(an in An) = 1/n and, at instant tinitial = 0,
velocity (an in An) = 1 (velocity(an) is not well defined, and is therefore not a function).
At limit n → ∞ these functions reach the respective values limn → ∞ radius(an in An) =
0 and limn → ∞ velocity(an in An) = 1. Therefore, there still seems to be a “ring” at
velocity 1 (and radius 0) at the limit, which would not make B’s subsequent movement
surprising and, incidentally, would dismantle the assumed unmoved mover model. Yet
here the same mistake is being made as alluded to at the end of section 4.2: that is,
considering only the limit of real functions of real variable, whilst overlooking the fact
that the limit postulate LP also requires that the limit of sequences of sets be taken
(which are also functions of real variable, although their range is not real numbers).
When this is done, the problem disappears. As previously seen, the limit of the
sequence of sets A1, A2, A3, ... Ai, ... is limn → ∞ An ≡ A∞ ≡ A = {a1, a2, a3, ..., an,
...}, it transpires that in limit set A (responsible for B’s movement), there is in fact no
a∞, that is, no ring with radius 0 or at velocity 1. Therefore, the description of the
resulting state of affairs after going to the limit is clear: at the infinite limit there is no
ring with radius 0 or at velocity 1.

It is interesting to note that the LP is not only a formal calculation resource but also
serves as a guide to refer clearly and unambiguously to causality, as can be seen in this
presentation of the unmoved mover. The LP connects the case of a finite number of
rings (where the causal relation is clear) with the case of an infinite number. It is
precisely the going-to-the-limit process that the LP entails which guides our intuition
on causal efficacy when taking this “leap to infinity”. It is precisely along this path that
the Limit Postulate provides solid grounds to contend that the ball is just a passive
receiver of the causal influence from the infinitely many rings.

4 The unmoved mover’s action in this section could perhaps be avoided by questioning the use of the limit
postulate (LP) therein. However, there would then be a problem: explaining why such use is unsuitable here
and not in the case of the spontaneous self-excitation supertask discussed in section 4.3. And, to my mind,
considering that it is also unsuitable in the latter case entails rejecting spontaneous self excitation as such.
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The set of rings’ action on B is yet another example of global action (Laraudogoitia,
2005). It shows is that an unmoved mover acts globally (although it is a uniquely
interesting and surprising type of global action). It can be seen that none of the rings
does anything (performs no task). Indeed, if the ring, take a10, were to act in some way
on ball B (and, in a Newtonian context such as this, to act is to do so by means of a
force) then the Newtonian law of action and reaction would require that also B act
on a10, yet the latter does not occur because a10 is at permanent rest and separated
from the other bodies all the time! Hence, only the set of rings acts on ball B.
Naturally, B also acts on the set of rings but, since this set has infinite total mass,
the reaction force produces no acceleration and, since the rings were initially at
rest, no movement.

4.4.1 Unmoved mover and inertia

By way of supplementary explanation, it is interesting to consider the role of Newton’s
first law (FNL, principle of inertia) in this analysis of the unmoved mover. Since
infinite systems are being addressed, the general formulation of this principle may be
controversial. Fortunately, for present purposes, nothing resembling a general formu-
lation is needed. A special case will suffice, which, one assumes, will be free of
controversy in a Newtonian formulation of mechanics:

(Special FNL): the state of rest or uniform motion of a particle P (not necessarily a
point particle; it may be a rigid body or even a system consisting of a finite number of
rigid bodies) within an inertial reference frame can only be altered by an external force
acting on P.

Appealing to forces is not essential in all formulations of classical mechanics (for
example, it is not in the Lagrangian formulation), but it is essential in all formulations
of Newtonian mechanics, which is the theory considered in this article. Reference to
external forces in (Special FNL) is also essential. If the qualifier “external” is dispensed
with, (Special FNL) therefore becomes virtually devoid of any content because, in such
a case, any non-point particle could, in principle, self-accelerate at any instant and at
any acceleration. The self-acceleration “mechanism” is simple, and was first posited by
Laraudogoitia (2002) (see also Lee, 2011 for a further application of the same idea).
Without going into details that would detract from the main point, it is based on the fact
that parts of any finite rigid body R can suddenly exert finite forces on other parts of R
in such a way that the body as such undergoes arbitrary, and arbitrarily time-varying,
acceleration. The internal forces developing in R do, of course, obey Newton’s third
law (principle of action and reaction), but their resultant (determined by the acceleration
experienced by R) is non-zero, and thus a reflection of R’s action on itself. (Special
FNL) effectively blocks this type of pathology, due precisely to the explicit reference to
external forces in its formulation. Note, however, that LP is useless to this effect:
dealing, as we know, with possible forms of evolution of infinite-particle systems, it
says nothing about the dynamics of a single (or finite number of) particles and,
consequently, nothing about their self-acceleration. LP is of no use to circumvent this
kind of problem. Note also that (Special FNL) does not prevent a material body from
exerting a force on itself (in a trivial sense). System U + V formed by particles U and V
colliding at instant t exerts a force on itself at t by means of the force that U exerts on V,
and also by means of the force that V exerts on U. What (Special FNL) prevents is that
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the force exerted by a material body on itself alters its state of motion within an inertial
reference frame.

Another good reason to believe that ball B, studied in this section, is a passive
recipient of the causal influence of infinite-ring system A follows from this analysis of
the principle of inertia (see Fig. 2). B goes from being at rest in an inertial system for t
< 0 to moving at unit velocity for t > 0. According to (Special FNL), this can only be
due to the action of an external force on B. Given that, in Newtonian mechanics, forces
in an inertial system are exerted only by material bodies, it is clear that the instanta-
neous force acting on B is exerted by A (which is consistent with the LP-based analysis
of the unmoved mover performed above).

5 Philosophical intimations with the unmoved mover

Much of the philosophical literature on infinite dynamical systems has been heavily
influenced for some time by the use of supertasks. However, the unmoved mover
model discussed above is not of this type. It does not resort to any infinite sequence of
de facto, real operations (typically, in these contexts, collisions). Nor do infinite sets of
merely potential operations need to be considered (even when none of them ever
become actualized, as in Angel, 2001, and several other variants of Benardete’s
paradox (Pruss, 2018)). Now infinitude only appears as the mere cardinality of a set
of rings that is not altered at any instant. None of the rings changes its state or interacts
with anything. Set A, containing all the rings, simply enables a rigid ball to separate
“cleanly” from A. I believe that, even for a scrupulous finitist, such economy of means
for description must be striking, to say the least.

While the unmoved mover can be a cause of movement, it can also be a cause of
stoppage (transition to rest), as seen in section 4.2. Ball B colliding with A in the
manner considered here transitions directly to rest, without transferring its energy
elsewhere. This is interesting because, if the rings in A were rigidly attached to one
another, then the outcome of the collision would be completely different: the energy
would be conserved in B’s backward movement (at the same speed as it was originally
traveling but heading in the opposite direction).5 Contrary to what might be expected,
freeing the rigid union constraint fails to open up further possibilities as to how the
energy can be distributed among the new degrees of freedom present. Quite the
opposite: the energy cannot be distributed in any way, but it can disappear. Note the
extent to which there was no “experience” of this in the classical literature on the
subject. The significant explanatory and predictive role of the Limit Postulate can be
very clearly seen here. If the rings are rigidly bound together, the LP leads to B
bouncing (it should not be forgotten that in this case there is still an infinite denumer-
able number of rings, albeit not free), but if the rings are subject to no constraints (such
as, for example, being rigidly bound together), then the LP implies that the ball can
simply be stopped. Thus, B’s behavior depends on the characteristics of the target of
rings (so as not to break continuity, see a detailed discussion of this in Appendix II.).
Furthermore, this dependence does not undermine the LP; but rather the LP reveals it.

5 This would simply be B’s standard binary collision with another body of infinite mass (composed, however,
of infinite rings rigidly bound together).
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The spontaneous self-excitation process in section 4.3 could have been obtained
(according to our direct intuitions concerning reversibility) solely from the beautiful
supertask direct process (section 4.1) by simple time reversal: the time reversal of the
collisions in the former becomes the collisions in the latter. However, it is debatable
whether the unmoved mover’s action in section 4.4 could also have been obtained from
the sudden stop in section 4.2 by time reversal. This is because the time reversal of the
collision that the sudden stop consists of (and which formally leads to the unmoved
mover’s action) does not seem to be a collision, at least at first sight. So, if it is not a
collision, neither is it clear that it should be admitted as a possible process in classical
collision mechanics (were it not admitted, classical collision mechanics would defin-
itively cease to be a time reversal invariant theory). This potential source of criticism
was avoided by deducing the possibility of self excitation (in section 4.3) in a second
way: by referring to a sufficiently detailed form of the LP. Later, in section 4.4, the
same postulate was applied in an essentially similar way to reach the unmoved mover.
This point highlights the particular importance of going to the limit (and its precise
definition) in the study of infinite systems.

5.1 How interaction at a distance emerges from contact

So, is the way the unmoved mover (as such) operates a collision? It does not seem so.
Intuitively, the idea of collision is associated with “reciprocal thrust” relating to the
impenetrable nature of matter. Collision avoids interpenetration. This is what occurs,
for example, in the sudden stop in section 4.2. If no collision were to take place here,
ball B would interpenetrate an infinity of an rings. However, the way that the unmoved
mover operates by setting B in motion does not avoid any interpenetration. If B were
not set in motion, simply nothing would happen. Everything would remain eternally in
place. This new form of interaction is puzzling. It should be remembered that, as stated
at the beginning of section 3, only a material body can exert a force within an inertial
reference frame. Furthermore, also note that, in Newtonian mechanics, there are no
three-body forces nor, in general, n-body forces, except for n = 2 (the n = 1 case of a
body’s force on itself is trivial and, as seen from the example in section 4.4.1, ultimately
amounts to the n = 2 case). Consequently, an interaction in Newtonian mechanics is a
reciprocal action between two material bodies performed by forces obeying the prin-
ciple of action and reaction (Newton’s third law). If, however, gravitational interaction
is excluded (as it is here from the outset), the only scope would seem to be for
interactions under conditions of contact between the material bodies involved (at least,
if only configurations of material bodies with uniformly bounded velocities are per-
mitted). Indeed, it is precisely under these conditions (namely under contact conditions)
that the interaction’s puzzling nature, which sets B in motion, is revealed in the first
place. It does not appear to be a collision even though it is formally the time reversal of
a collision. The same conclusion is reached if it is argued that the condition of relative
motion presented at the end of subsection 4.2 (“at t - 0, also usually denoted as t-, there
is relative motion between D and at least one part of C”) is a necessary condition for
collision at t between D and C provided that joint system D + C is an isolated system
(not subject to external perturbations). It is eminently plausible that what is termed here
the condition of relative motion is a necessary condition for collision between D and C,
when D + C is an isolated system. Besides being plausible, it is also relevant to the
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situation at hand, because D and C are now B (the ball) and A (the set of rings)
respectively, and B + A is an isolated system in the model. Having acknowledged this,
it then becomes clear that unmoved mover A does not set B in motion by collision. Of
course, if the condition of relative motion is not considered a necessary condition for
collision (not even in the specific circumstances of an isolated total system as
mentioned), in principle, the possibility remains open that the model in section 4.4 is
still a collision model. It would certainly be a qualitatively different collision to usual
collisions (B’s spontaneous and unpredictable motion would not be preceded by any
previous relative motion between certain parts of total system B + A). It could be
termed spontaneous collision. Whether collision is mentioned or not in this case, the
interesting problems do not end here, as shall be seen below. Is the way the unmoved
mover operates (as such) at least a contact interaction? Neither does it seem so. In a
contact interaction (collision, friction), contact is essential, not circumstantial. If it
disappears, so does this form of interaction (although other forms, such as
gravitation, may be present). The problem is that when unmoved mover A sets B in
motion, contact is irrelevant. They do not have to be in contact initially, as Fig. 2 and
the analysis in Section 4.4 may misleadingly suggest. A can act on B from a distance as
an unmoved mover by spontaneously setting it in motion. In other words, if the plane
containing the rings is separated from ball B by distance D (as graphically shown in
Fig. 3), then the unmoved mover can operate at that distance (regardless of D’s value).
To see why this is so, the same reasoning as in section 4.4 needs only to be followed
with the following modification. When considering the finite set of rings {a1, a2, a3, ...,
an} at instant tinitial = 0, an (the “last ring”) will not be centered at O(0,0,0), but at
(D,0,0) (although it is moving, as before, at unit velocity leftwards, progressively
approaching B). Everything remains the same from here on: again an will collide
with B at tfinal = 1 - (1/n)√(n2–1), moving B leftwards thereafter at unit velocity ......
etc.. And the conclusion (having applied the LP) is also the same: a) We start from B
and from an infinite set of concentric rings {a1, a2, a3, ..., an, ...} of unit mass, all of
which are at rest and centered at O(0,0,0) at instant tinitial = 0 (there is no “last ring” a∞
in motion, approaching B); b) A perturbation then occurs at tfinal = tinitial = 0 which sets
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Plane YZ 

(plane of rings)

Fig. 3 How the unmoved mover can operate at a distance
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B in motion leftwards at unit velocity, while the rings remain at rest. Despite the initial
separation distance D, from the outset, B takes away all the energy and momentum
arising from the perturbation. Consequently, the way the unmoved mover operates (as
such) does not appear to be a contact interaction because it can take place at a distance.
However, it cannot be characterized as a distance interaction in the usual sense either,
because distance magnitude is irrelevant to the interaction (moreover, given that it can
also take place under contact conditions). In any case, note that it is system A of rings
that interacts at a distance with B, but no one ring in particular. This is consistent with
the assumption implicit throughout this discussion that any ring can only interact with
B (or with any other ring) by contact.

Finally, if B’s movement, caused by the unmoved mover, is not a collision, we are
then presented with a qualitatively new (and I would also say outrageous) case of
indeterminism. The two main varieties of indeterminism known thus far in classical
mechanics were linked either to the non-uniqueness of the solution to the differential
equation of motion (e.g. Norton, 2008, with precedents in the early nineteenth century,
as described in detail in Van Strien, 2014) or to the non-existence (at least in the set of
ordinary functions) of the differential equation of motion itself due to the presence of
rigid collisions (trivial indeterministic multiple collisions or indeterministic sequences
of deterministic collisions, as in the case of supertasks).6 If B’s spontaneous movement
caused by the unmoved mover is not a collision, it is therefore neither of these types. In
any event, this novel form of indeterminism (whose rejection would seriously compro-
mise time-reversal invariance in classical mechanics, as stated above) points to the need
for a more thorough investigation of the significance, scope and limitations of math-
ematical going-to-the-limit processes.

The above conclusion is strengthened when it is considered that contact is also
irrelevant in B’s sudden stop by A seen in section 4.2. B and A do not necessarily have
to end up in contact, as Fig. 1 and the analysis in section 4.2 may misleadingly suggest.
A can act on B at any distance D, spontaneously stopping its movement without
coming into contact with it. To see why this is so, the same reasoning as in section
4.2 needs only to be followed with the following modification. When considering the
finite set of rings {a1, a2, a3, ..., an} at instant t = 0, an (the “last ring”) will not be
centered at O(0,0,0) but at (D,0,0), with D ≥ 0 (and B is moving rightwards at unit
velocity, progressively approaching an). After B’s collision with an, the ball will stop
with its geometric center at point (D + (1/n)√(n2–1), 0, 0) (and an will take away all its

6 Although the aim of this paper is to present the dynamics of the unmoved mover, and not to place it within
the literature on indeterminism in classical infinite systems, it is interesting to mention that several notable and
well-known models of indeterminism in infinite systems can be obtained simply as a direct application of the
Limit Postulate LP. Moreover, their analysis closely parallels the discussion already considered on our road to
the unmoved mover (third stage) in section 4.3. Such is the case, for example, of Lanford’s infinite billiard
(Earman, 1986), of Norton’s infinite domino cascade (Norton, 2021) or of the infinite chain of masses and
springs (Norton, 1999). In contrast, the fourth stage of section 4.4 seems to be exclusively confined to
unmoved mover models. This singles them out and, albeit summarily, to some extent allows them to be
accurately framed within the broader context of indeterministic infinite systems. Finally, in order to complete
the picture, it should be noted out that cases of indeterminism such as Laraudogoitia, 1997 (involving creation
ex nihilo, i.e., the evolution of a vacuum and not a system of particles) are not amenable to analysis under the
Limit Postulate (LP) for obvious reasons.
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energy and momentum).7 The other rings present remain forever at rest. Everything
stays the same from here on, and the conclusion (after applying the LP) is also similar.
Now based on B and an infinite set of rings {a1, a2, a3, ..., an, ...} with radiuses rn = 1/n,
each of unit mass. a1, a2, a3, ..., an, ... are initially at rest on the YZ plane centered at
point (0,0,0) while B approaches them at unit velocity from the left (there is no “last
ring”, a∞, located outside the YZ plane being approached by B). Since limn → ∞ [D +
(1/n)√(n2–1))] = D + 1, it is clear that, when its geometric center reaches point (D +
1,0,0), B will not continue to move further to the right. At that instant it will undergo an
interaction and stop. That is all. Since D can be any non-negative real number, B’s
sudden stop is once again an indeterministic process (and, again, a novel example of
indeterminism). Moreover, we are also dealing with a mysterious interaction in this
case, which does not appear to be a collision. The same conclusion is reached if it is
argued that the contact condition presented at the end of subsection 4.2 [“at instant t, D
is in contact with C (i.e. at zero distance from C)”] is a necessary condition for collision
at t between D and C provided that the velocities of the material bodies present in joint
system D + C are uniformly bounded. It is eminently plausible that what is termed
contact condition is a necessary condition for collision between D and C, when the
velocities in D + C are uniformly bounded. Besides being plausible, it is also relevant
to the situation at hand because D and C are now B (the ball) and A (the set of rings)
respectively, and all velocities in B + A are uniformly bounded in the model. Having
acknowledged this, it is then clear that B is not suddenly halted by A by means of a
collision. Of course, if the contact condition is not considered a necessary condition for
collision (not even in the specific circumstances of uniformly bounded velocities
mentioned above), in principle, the possibility remains open that the latter model is
still a collision model nonetheless. It would certainly be a qualitatively different
collision to usual collisions. The fact that B stops would not be associated with
“reciprocal thrust” relating to the impenetrable nature of matter. The collision would
be completely unrelated here to interpenetration and, therefore, to contact. It could be
termed a collision at a distance.

6 Conclusion

Besides leading to a novel form of indeterminism, the discussion in this paper also
shows how the unmoved mover model reveals a conflict between our most basic
intuitions concerning the concepts of collision and interaction and their mutual rela-
tionships. In this respect, I would like to end with a brief programmatic statement. All
the discussions developed around this model of unmoved mover have been brought
about by the formal going-to-the-limit operation, whose close study is imperative. As
mentioned above, the limit postulate (LP) introduced in section 3 is intended to be just a
first step in this respect, sufficient for the needs of this paper, but which would require

7 Fig. 4 in Appendix I is helpful here. It can be considered to show the instant B is stopped by ring an. That is,
the point S coordinates are (D, 0, 0). Since PS = 2 − a = 1 + (1/n)√(n2 − 1), the point P coordinates are (D +
1 + (1/n)√(n2 − 1), 0, 0). Finally, since B has unit radius, the coordinates of its geometric center will be (D +
(1/n)√(n2 − 1), 0, 0).
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further development when considering more general situations. In view of the results
obtained here, this project seems to have borne fruit.

APPENDIX I

CALCULATING a

The situation at the instant B collides with an is shown in Fig. 4 below, where one looks
from the positive Z-axis (the Figure thus shows the B and an projections on the XY
plane):

As Thales already knew in the sixth century BC, angle PQR is a right angle, so
triangles PQS and SQR are similar. Hence, QS/SP = SR/QS, that is, 1/[n(2 - a)] = n·a.
This yields the quadratic equation in a: a2 - 2a + (1/n2) = 0. Of its two roots, it is clear
that the appropriate root for this situation is that smaller than 1, worth a = 1 -
(1/n)√(n2–1).

APPENDIX II

BOUNCING VERSUS STOPPING

Let us consider the initial state in Fig. 1, subsection 4.2, in more detail. First, it will be
assumed that the rings are rigidly bound to each other (however, for the sake of
simplicity, their rigid connections will be considered massless). The system formed
by the rigidly bound rings will be called A*. What is B’s collision with A*? It is a
binary collision (the “particles” involved are ball B and A*) where B is known to
bounce at the same unit velocity at which it collided with A*. This result is clearly not
postulated by dynamics. Rather, it is deduced from the analysis of B’s collision (known

Fig. 4 A rigid ball colliding with a ring
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to be at initial unit velocity) with a body of finite mass n, A*n (formed only by n rings
of unit mass rigidly bound to each other) at rest. Let v be B’s final velocity and w,
A*n’s final velocity after collision B-A*n. Momentum and energy conservation respec-
tively lead to: 1 = v + nw and 1 = v2 + nw2 where B’s post-collision velocity is:

v ¼ 1−nð Þ= 1þ nð Þ ð1Þ

Where the target is A*, of infinite mass, the limit in (1) is only to be taken when n →
∞, resulting in lim n → ∞ v = lim n → ∞ (1 - n)/(1 + n) = − 1 (ball B bounces with no
energy loss).

What happens if the rings are not rigidly bound to each other but, in principle, are
able to move independently of one another? This is the system called A in section 4.2.
Since A has infinite mass (like A*), one might think that the final result of collision B-
A* could be simply transferred (“extrapolated”) to case B-A: B should bounce with no
energy loss. However, the fact that collision B-A* is a collision between rigid bodies,
while collision B-A is not (system A of rigid rings is clearly not rigid), should be a
warning sign against such a reckless leap (which shall be termed “asystematic intui-
tion”, AI). Thus, the only way to justify this extrapolation from B-A* (i.e. to justify
asystematic intuition, AI) is to check whether the going-to-the-limit process applied to
case B-A* can also be applied to case B-A with an identical result. It turns out,
however, that the results are not identical! This can be seen by considering B’s collision
(initial velocity unity) with a body of finite mass n, An (formed only by n rings not
bound to each other, e.g. a1, a2, a3, ..., an, as in Fig. 1, section 4.2) at rest. Collision B-An

is now binary collision B-an. Let v be B’s final velocity and w, an’s final velocity.
Momentum and energy conservation respectively lead to:

1 = v + w and 1 = v2 + w2 where B’s post-collision velocity is:

v ¼ 0 ð2Þ

Where the target is A, of infinite mass, the limit in (2) is only to be taken when n → ∞,
trivially resulting in lim n → ∞ v = 0 (ball B is halted). This shows that asystematic
intuition (AI) lacks justification. As mentioned at the beginning of section 5, LP implies
that the ball can simply be stopped (which would not be possible if the collision was
with A*). In this precise sense, B’s behavior depends on the target of rings’
characteristics.

Finally, what if (in response to my arguments against its justification) IA is simply
postulated with no justification whatsoever? There is then yet another powerful argu-
ment against it: an argument that reveals its logical weakness, its deductive poverty.
This can be seen by considering the B-A collision anew, the only difference being that
B’s mass is not 1 but 1/α (α ≥ 1). According to AI, this does not make any significant
difference: B will bounce off A while conserving its energy (as it would do so if it
collided with A*). However, by predicting such an event shows its logical weakness
compared to LP, because LP allows far more detailed analysis of the situation, and is
able to distinguish B’s possible post-collision states depending on its mass. This can be
seen by considering B’s collision (initial velocity unity, mass 1/α, α ≥ 1) with finite
mass body n, An, at rest. Collision B-An is once again binary collision B-an. Let v be
B’s final velocity and w, an‘s final velocity. Momentum and energy conservation
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respectively lead to: 1/α = (v/α) + w and 1/α = (v2/α) + w2, that is, 1 = v + αw and
1 = v2 + αw2, where B’s post-collision velocity is:

v ¼ 1−αð Þ= 1þ αð Þ ð3Þ

Where the target is A, of infinite mass, the limit in (3) should only be taken with n →
∞, trivially resulting in lim n → ∞ v = (1 - α)/(1 + α). That is, ball B bounces if α > 1
(and does not if α = 1), yet (as can be immediately seen) after the collision, kinetic
energy of magnitude 2/(1 + α)2 is lost. In other words, all initial energy (1/2) is lost if
α = 1, not all if α > 1 is finite, and no energy if α is infinite. Besides being unjustified,
AI is completely refractory and blind to all these possibilities of evolution
opened up by LP.
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