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Abstract
In a recent article in this journal, Sus purports to account for what have been iden-
tified as the ‘two miracles’ of general relativity—that (1) the local symmetries of 
all dynamical equations for matter fields coincide, and (2) the symmetries of the 
dynamical equations governing matter fields coincide locally with the symmetries 
of the metric field—by application of the familiar result that every symmetry of 
the action is also a symmetry of the resulting equations of motion. In this reply, we 
argue that, while otherwise exemplary in its clarity, Sus’ paper fails in this regard, 
for it rests upon a illegitimate application of the aforementioned result. Thus, we 
conclude, pace Sus, that these two miracles persist in general relativity.

Keywords  Relativity · Noether’s theorem · Symmetries · Dynamical approach

1  Introduction

In a recent article in this journal Sus (2021) argues that what  Read  et al. 
(2018)  dub the ‘two miracles’ of general relativity—that (1) the local sym-
metries of all dynamical equations for matter fields coincide, and (2) the sym-
metries of the dynamical equations governing matter fields coincide locally 
with the symmetries of the metric field—are after all derivable from innocu-
ous assumptions on the matter sector of that theory. In Sus’ words,

the Einstein field equation constrains the equations for the non-gravitational 
fields by imposing that, insofar as such fields are sources for the gravitational 
fields, such equations must be locally Poincaré invariant, and the motion of 
force-free bodies is approximately geodesic. This provides content to the 
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attempts at explaining the constraints of the non-gravitational laws by the met-
ric, carried out in the [geometrical approach], in a way that it does not presup-
pose any mysterious a priori connection and that is relevant to accounting for 
the miracles. (Sus, 2021, p. 16)

The purpose of this response article is to demonstrate that Sus’ argument does 
not go through as intended; as we will argue, he makes illegitimate assumptions 
regarding the action of the matter sector from whose (local) invariance under the 
Poincaré transformations the (local) Poincaré invariance of the matter field equa-
tions is taken to follow. In particular, Sus appeals to the familiar result that every 
variational symmetry (i.e., symmetry of the action) is also a dynamical symmetry 
(i.e., symmetry of the equation of motion) (See, for instance, Brading (2001) and 
Doughty (2018, Section 9.3)). However, as we will see, Sus applies this result to 
the on-shell action (i.e.,  assuming the equations of motion to hold), whereas in 
fact the result holds only for the off-shell action (i.e., without assuming the equa-
tions of motion to hold). This turns out to be fatal for Sus’ purported derivation 
of the miracles.

In the remainder of this paper, we elaborate on this in detail. In Section 2, we 
expose the lacuna in Sus’ reasoning regarding the symmetry theorem. In Sec-
tion 3, we give an explicit example demonstrating that Sus’ inferences fail.

There is one further comment which we should make before we begin. One 
might legitimately raise the concern that all work on the ‘two miracles’ of general 
relativity is stymied by the lack of precision in these discussions—in particular, 
regarding the notion of ‘local symmetries’ which these discussions deploy (See, 
for example, Weatherall (2021, Section 3.1) for a pointed critique in this regard). 
Although in our view appeal to recent work such as that of Fletcher (2020) can go 
some way to resolving these issues, for the purposes of this note we do not engage 
with these discussions: rather, our focus lies solely on Sus’ argument, as presented 
in Sus (2021), and we accept the shared premises of Read et al. and Sus—in par-
ticular, regarding the meaningfulness of the centrally-employed notion of ‘local 
symmetry’ in the sense of form-invariance of mathematical structures defined 
at each point of the manifold under specific coordinate transformations, such as 
those of the Poincaré group.1

2 � A problematic inference

Recall that the metric field equations and matter field equations of general relativity 
can be obtained by extremising the action S = SG + SM , where SG = ∫ R

√

−gd4x 
and SM = ∫ LM

�

gab,�
i
�√

−gd4x . SG is, of course, the Einstein-Hilbert action. 
Recall also that the variation of SM reads

1  See the appendix of Read et al. (2018) for details.
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Sus’ strategy is to derive the Poincaré invariance of the equations of motion for the 
matter fields �i via the following steps: 

1.	 Assume that the equations of motion for (all) �i hold. Thereby, the second term 
in (1) can be dropped and we obtain 

 where the definition of the Hilbert stress-energy tensor 

 has been used. (There are three salient points to be made here. First, in the 
following, one should distinguish Son-shell for �i

M
 and SM . Second, Sus neglects the 

second term in the Hilbert stress-energy tensor (3); we further discuss this mat-
ter in Section 3 in the context of a consideration of the symmetries of (2). And 
third, locally, the Hilbert stress-energy tensor does not always coincide with a 
locally-derived Noether stress-energy tensor—see our discussion in §3.)

2.	 Show then that �Son-shell for �i

M
 is (locally) invariant (up to boundary terms) under 

Poincaré transformations.
3.	 Infer from the premise that �Son-shell for �i

M
 is (locally) invariant (up to boundary 

terms) under Poincaré transformations to the conclusion that the equations of 
motion for (all) �i are (locally) invariant under Poincaré transformations.

Although it is not the focus on our arguments in this paper, let us say something on 
Sus’ methodology in the second of these steps. It is first argued that matter fields 
which source the Einstein equation Gab = 8�Tab must have stress-energy tensors Tab 
which satisfy ∇aTab = 0 . This is taken to mean that there are ten locally conserved 
currents Tab�b , associated respectively with ten approximate local Killing vector 
fields �b relative to gab—so that we have

for any normal coordinate system (note that, given that ∇ is induced by a Lorentzian 
metric, there is at least a whole class of normal coordinate systems associated to one 
another via local Poincaré transformations).2

(1)
�SM =∫

�(LM

√

−g)

�gab
�gabd

4x + ∫
�LM

��i

��i

√

−gd4x

=∫
�

�LM

�gab
+

1

2
gabLM

�

�gab
√

−gd4x + ∫
�LM

��i

��i

√

−gd4x.

(2)�S
on-shell for �i

M
= ∫ Tab�gab

√

−gd4x,

(3)Tab ∶=
�LM

�gab
+

1

2
gabLM

(4)�a
(

Tab�b

)

= 0,

2  Here (to fill in some details absent in Sus’ discussion at Sus (2021,  p.  18)), one can regard �a as a 
‘coordinate derivative operator’—see Malament (2012, p. 64). If one prefers, one could make the same 
point by writing (4) in coordinates.
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Sus alludes to using the converse of Noether’s first theorem at this stage to make 
statements about the symmetry group of the action:

... one can derive the transformation properties of an action integral from 
the existence of divergences of some quantities by applying the con-
verse of Noether’s first theorem. This is how it would work out in this case. 
(Sus, 2021, p. 19)

If these ten currents are associated to the matter sector of the theory—i.e. the theory 
encoded by the action SM—then one can indeed use the converse of Noether’s first 
theorem to assert the (local) invariance of SM under ten corresponding continuous 
(local) symmetries. Note that this would still not mean that these ten locally con-
served currents are necessarily associated with the local Poincaré symmetry group; 
after all, the conventional wisdom that a conserved current (e.g. energy-momentum) 
is always connected to the same kind of symmetry transformation has been demon-
strated by Smith (2009) to be false.

But it is in particular the antecedent of the above conditional claim which can be 
problematic. These ten currents seem to be associated to the matter sector if the met-
ric gab relative to which the Killing vectors in these currents—and thus the currents 
themselves—are defined is the unambiguous metric structure ‘seen’ by the matter 
sector. However, as we will see in Section 3, gae∇eTab = 0 can obtain without the 
matter Lagrangian from which Tab is derived featuring the metric gab in any straight-
forward sense, and moreover without the equations of motion exhibiting local Poin-
caré symmetries. In such a case, there is then no physical motivation to ascribe any 
physical meaning to (matter) currents obtained from Killing vectors that are associ-
ated to gab.

All of the above being said, one can argue by other means (and, indeed, Sus 
accomplishes this in Sus (2021, Section 5)—clearly, without using the converse of 
Noether’s first theorem) that Son-shell for �i

M
 is locally Poincaré invariant. As we will 

continue to argue below, Son-shell for �i

M
 does not contain the decisive information about 

the matter sector which would allow one to derive the (local) Poincaré invariance of 
the matter equations of motion; this constitutes a fatal blow to Sus’ argument.

In the third step above, Sus makes appeal to the statement that all symmetry 
transformations that leave the action invariant (up to boundary terms) also leave 
invariant all the equations of motion that follow via Hamilton’s principle from 
that action (Sus, 2021, fn. 44). However, showing via this statement that the equa-
tions of motion for the fields �i are (locally) Poincaré invariant requires showing 
the (local) invariance of all terms in the action SM involving �i under the Poincaré 
symmetry transformation—not just that of Son-shell for �i

M
 , i.e. not just of that part of 

SM which remains when the equations of motion for the �i are applied to the action 
(see e.g. Brading, 2001). In other words, one could say that Sus’ above reasoning 
involves an illegitimate step between (2) and (3), namely: 

	2.5.	 Infer from the premise that �Son-shell for �i

M
 is (locally) invariant (up to boundary 

terms) under Poincaré transformations to the conclusion that �SM is (locally) 
invariant (up to boundary terms) under Poincaré transformations.
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Heuristically speaking, the problem then lies in disregarding the fact that the infor-
mation about the equations of motion (including their symmetry structure) is first 
and foremost to be found in their corresponding action term (i.e.,  the action terms 
from which the equations of motion of interest actually follow from a variational 
principle—which would be SM in the given case, rather than Son-shell for �i

M
 ). To make 

the point as tangible as possible, we provide in Section 3 a clear counterexample to 
the soundness of step (3). Before doing so, however, we demonstrate in the remain-
der of this section some difficulties regarding other perhaps prima facie innocuous 
assumptions and claims made in Sus’ paper.

An important passage in Sus’ article comes in footnote 39, where he recognises 
that “...one could restrict further the symmetries of matter laws through the introduc-
tion of fixed fields that break local Poincaré invariance”, but questions whether the 
resulting theory “would be GR anymore” (Sus, 2021, fn. 39). If theories featuring 
fixed fields are precluded by fiat, then since Sus is also dealing with general relativ-
ity—and, hence, theories with a Lorentzian metric field appearing in the associated 
action principles—one might think that, by stipulation, Sus is dealing with theories 
in which the off-shell action has local Poincaré symmetries, and in turn (after vary-
ing the action) that �Son-shell for �i

M
 is invariant locally under Poincaré transformations.3

We have seen that step (2.5) is a problematic inference in general. Given the 
above, however, we are now in a position to see that Sus has (at least on this reading) 
in fact sought to secure the consequent (viz., the local Poincaré invariance of �SM ) 
by other means—i.e., by stipulating that theories featuring fixed fields in their action 
are precluded. But this, in turn, allows us to conclude two things. First: Sus’ reason-
ing via the symmetry theorem (as presented in Section 2), is a red herring: what he 
seeks to demonstrate is, in fact, assumed—albeit implicitly—in footnote 39. Inso-
far as this (the thought might go) precludes by fiat miracle-violating scenarios, one 
could argue that Sus has, in fact, not derived these miracles within the framework of 
general relativity; rather, he too presupposes them.

In fact, however, this reasoning itself is problematic—for the preclusion of fixed 
fields in a theory with a Lorentzian metric field gab appearing in its action does not 
necessarily yield local Poincaré invariance—think of a case in which terms in action 
also couple to an unfixed but timelike vector field �a ; such a theory will be discussed 
explicitly in Section 3.4 Thus, the correct thing to say here, ultimately, is this: Sus’ 
reasoning regarding the symmetry theorem fails; moreover, the restrictions made in 
footnote 39 are still insufficient to secure that which Sus is after.

3  Read et al. (2018), Sus (2021), and ourselves all make use of the notion of a fixed field presented by 
Pooley in (Pooley 2017, p. 115)—such an object is a field fixed identically in all kinematical possibili-
ties of a theory. In addition, all three parties can be taken to accept the understanding of diffeomorphism 
invariance presented in Pooley (2017,  p.  117), for which the salient transformations are those which 
transform dynamical fields, but not fixed fields. For further details on all these assumed background 
notions, see Pooley (2017) and Read (2016, 2020b).
4  Notably, such a condition does not have to violate the diffeomorphism invariance of the theory in ques-
tion, for the space of kinematical possibilities ⟨M, gab, �

a
,Φ⟩ of some theory T  , where Φ is a placeholder 

for material fields, will partition into equivalence classes under diffeomorphisms in which the vector field 
�a is timelike, spacelike, or null. By contrast, fixing �a privileges a representative of (some) of the above-
mentioned equivalence classes, and thereby breaks the diffeomorphism invariance of the theory.
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Finally, even if it were the case that the assumptions made in that footnote were 
sufficient to secure the miracles, there still seems to be room to argue (potentially 
with Sus) that general relativity, correctly understood, indeed assumes (if only 
implicitly) the contents of footnote 39: one could maintain that the preclusion of fixed 
fields is a kinematical constraint of general relativity, delimiting the range of what is 
possible according to that theory. Proponents of the ‘dynamical view’ promulgated 
by Brown and Pooley (see Brown, 2005; Brown & Pooley, 2001, 2006) are unlikely 
to be convinced—for their concern is this: why is it the case, in the actual, physical 
world, that material fields are such that they all obey dynamical equations of a certain 
kind? From the point of view of these theorists, abstract modal talk of the kinematical 
possibilities according to some theory does nothing to resolve this physical question.

In sum: in our view, Sus’ work does not afford the possibility of ‘relativity with-
out miracles’, for (a) the specific reasoning deployed in his paper—proceeding via 
the implicit assumption of (2.5)—is flawed on technical grounds, (b) the assump-
tions presented in footnote 39 of Sus’ paper might be seen as begging the question 
by (the thought might go) assuming the content of the miracles, and (c) even then, 
these assumptions are, in fact, insufficient to guarantee the miracles. There remains 
one further point to be made in this article. In the interests of clarity, it would be 
valuable to present a theory which demonstrates the illegitimacy of the inference in 
(2.5), as presented in Section 2. Such a theory we now present.

3 � A problem case for Sus’ argument

We consider a ‘Newtonian’ variant of the Jacobson-Mattingly theory (which in turn was 
introduced in Jacobson & Mattingly (2001), and later exposed to the philosophical literature 
in Read et al. (2018, Section 6)). First recall that the equation of motion for the gravitational 
potential � of Newtonian gravity is the Newton-Poisson equation,

where hab is a degenerate metric field of signature (0, 1, 1, 1) (Malament,  2012, 
ch. 4); for simplicity in the ensuing, we will set Newton’s constant GN = 1 , and will 
also assume a constant and normalised matter density content ( � = 1)—although the 
latter is a significant restriction, this will not compromise the point which we seek 
to make in this section. Now, letting �a be some unfixed normalised timelike vector 
field, recall that we can define hab in terms of the (inverse) metric field gab , as

Treating hab in (5) as shorthand for (6), and moreover interpreting � as a matter sec-
tor scalar field, we can write down the matter sector Lagrangian as

where ∇ is the Levi-Civita derivative operator associated with gab . Since �a is 
unfixed, this action is still diffeomorphism invariant (see footnote 4); accordingly, 

(5)hab∇a∇b� = 4�GN�,

(6)hab = gab + �a�b.

(7)LM =
1

2
hab∇a�∇b� + 4��,
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the response equality ∇aTab = 0 (‘conservation of energy-momentum’) obtains.5 
Indeed, this covariant conservation of the stress-energy tensor can be shown explic-
itly—to do so, note first that the equations of motion for �a and � are, respectively,

in particular, (8) implies �a∇a� = 0 , so ∇a� is orthogonal to �a . Furthermore, the 
Hilbert stress-energy tensor can be computed to be

Using (8)-(10), one can thereby compute:

where both equations of motion (8) and (9) were used in the final step.
In this theory, the presence of the timelike vector field �a means that locally this 

Lagrangian is invariant not under the Poincaré group, but rather under the Leibniz 
group (see Pooley (2013,  Section  3.1) for an explicit presentation of this group). 
Indeed, the matter action SM = ∫ LM

√

−gd4x is also invariant under Leibniz trans-
formations, as locally the volume element takes the form of the unimodular con-
dition 

√

−g = 1 ; one can compute explicitly that this condition is preserved under 
Leibniz transformations. This (and only this) Leibniz invariance obtains also for the 
equation of motion (5) derived from the matter action via a variational principle.

At the same time, one can compute

(8)�a∇a�∇b� =0,

(9)∇a

(

hab∇b�
)

=4�;

(10)Tab =
1

2
∇a�∇b� −

1

4
gabh

cd∇c�∇d� −
1

2
gab(4�)�.

(11)

gea∇eTab =
1

2
gea

(

∇e∇a�
)

∇b� +
1

2
gea∇a�∇e∇b� −

1

2
gabg

eagcd
(

∇e∇c�
)

∇d�

−
1

4
gabg

ea∇e

(

�c�d
)

∇c�∇d� −
1

2
gabg

ea�c�d
(

∇e∇c�
)

∇d�

−
1

2
gabg

ea(4�)∇e�

=
1

2

(

gea∇e∇a� − 4�
)

∇b� −
1

4
∇b

(

�c�d
)

∇c�∇d�

−
1

2
�c�d(∇b∇c�)∇d�

=0.

(12)�S
on-shell for �,�a

M
=

1

2 ∫
�

∇a�∇b� + gabLM

�

�gab
√

−gd4x.

5  See Brown and Brading (2001, Section 5) for an elaboration on the relationship between diffeomor-
phism invariance and the covariant conservation of the stress-energy tensor. Of course, the response 
equation can also be shown straightforwardly to obtain using the matter field equations of motion, as dis-
cussed in the main text to follow. Finally, note that whether this response equation truly represents con-
servation of energy-momentum is a difficult question: see e.g. Hoefer (2000); Lam (2011); Pitts (2010) 
and Read (2020a) for recent philosophical discussion.
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In particular, note that (12) is invariant under local Poincaré transformations. After 
all, for local Poincaré transformations, one has �gab = ∇(a�b) where �a is one of the 
ten approximate local Killing vector fields associated with gab . Then, one has

where the term vanishes because �a is a (local) Killing field. But this means that, 
according to the selfsame methodology presented in Sus (2021,  pp.  19-20), the 
equations of motion for � would have to count as (locally) Poincaré invariant—
something which is evidently not the case in this example: for recall (5).

A final word on the theory currently under consideration. This constitutes an 
example of a theory for which a locally-defined gauge-invariant Noetherian stress-
energy tensor and the localised Hilbertian stress-energy tensor do not even agree 
up to a constant factor (cf. related examples in the context of Minkowski spacetime 
considered in Baker et al. (2021)): Locally, the Hilbert stress-energy tensor for the 
theory under consideration is

where i, j, k,… range only over spatial indices. By contrast, using that 
L
local

M
=

1

2
�i��

i� + 4�� , we obtain the following expression for the Noether stress-
energy tensor:

Notably though, both THilbert, local
��

 and TNoether, local
��

 are conserved just in case one of 
them is conserved, as they agree on-shell up to a constant factor. More concretely, 
requiring the local version of the equation of motion for �a to hold—i.e., requiring 
that �0� = 0—is sufficient to show equality up to a constant factor.6

4 � Closing remarks

Sus’ paper constitutes perhaps the best attempt yet to provide an account of the mir-
acles of general relativity from within the framework of that theory. If Sus’ pro-
ject were successful, then we agree that it would offer “a richer perspective” on the 
miracles (Sus, 2021, fn. 61). However, its success is cast into doubt by the fact that 

(13)
�S

on-shell for �,�a

M
=
1

2 ∫
�

∇a�∇b� + gabLM

�on-shell for �,�a

∇(a�b)

√

−gd4x

=0,

(14)THilbert, local

��
=

1

2
������ −

1

4
����i��

i� −
1

2
���(4�)�,

(15)

1

2
TNoether, local

��
=
1

2

�Llocal

M

�(���)
��� −

1

2
���L

local

M

= −
1

2
�0��0��0��0� +

1

2
������ −

1

4
����i��

i� −
1

2
���(4�)�.

6  It would be interesting to explore further the connection between (a) theories in which the Noetherian 
stress-energy tensor comes apart from the Hilbertian stress energy tensor and (b) theories in which Sus’ 
argument fails.
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Sus makes an incorrect inference regarding the variational symmetry theorem (Sec-
tion 2). As Sus himself concedes, this implies that their miraculous status continues 
to obtain (“... seeing the coincidence of all the symmetries of laws as a mere coinci-
dence [is an option which] must be taken when there is no dynamically determined 
interaction that can be used to derive the constraints” (Sus, 2021, p. 27)). At least to 
us, it is not clear how the above-identified issues with Sus’ argument can be over-
come; in the absence of such a resolution, it remains the case that the best accounts 
of the miracles of general relativity (and ones which would be acceptable to propo-
nents of the dynamical approach) lie in successor theories—such as spin-2 gravity 
(Salimkhani, 2020), or theories of quantum gravity (Read, 2019).
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