
Vol.:(0123456789)

https://doi.org/10.1007/s13194-021-00405-1

1 3

PAPER IN PHILOSOPHY OF SCIENCE IN PRACTICE

Values and inductive risk in machine learning modelling: 
the case of binary classification models

Koray Karaca1 

Received: 12 May 2020 / Accepted: 21 July 2021 /
© The Author(s) 2021

Abstract
I examine the construction and evaluation of machine learning (ML) binary clas-
sification models. These models are increasingly used for societal applications such 
as classifying patients into two categories according to the presence or absence of 
a certain disease like cancer and heart disease. I argue that the construction of ML 
(binary) classification models involves an optimisation process aiming at the mini-
mization of the inductive risk associated with the intended uses of these models. I 
also argue that the construction of these models is underdetermined by the available 
data, and that this makes it necessary for ML modellers to make social value judg-
ments in determining the error costs (associated with misclassifications) used in ML 
optimization. I thus suggest that the assessment of the inductive risk with respect 
to the social values of the intended users is an integral part of the construction and 
evaluation of ML classification models. I also discuss the implications of this con-
clusion for the philosophical debate concerning inductive risk.

Keywords Machine learning · Inductive risk · Underdetermination of model 
construction · Social values

1 Introduction

The societal need to extract useful information from large and complex data sets, 
often referred to as big data, has led to the emergence of big data analytics. This is 
a new field of study encompassing various computational methods that have been 
offered to cope with the growing complexity of big data analysis. The transformative 
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effects of big data analytics on the social aspects of scientific practice have been 
extensively studied in the literature on critical data studies (for a review, see Iliadis 
& Russo, 2016). Only in recent years have the epistemological aspects of big data 
analytics been scrutinized in the philosophy of science literature, focusing mainly on 
the epistemology of machine learning (ML).1

ML is a prominent computational method of data modelling that has an increas-
ing part in big data analytics (see, e.g., Najafabadi et al., 2015). Models based on 
ML have recently gained prominence in various societal domains owing to their 
distinctive ability to draw predictions from big data.2 The accuracy of the predic-
tions of ML models depends on how well these models generalize to new data sets 
beyond those used to construct and test them. In this regard, the application of ML 
models to big data is based on inductive generalization and, as a result, their predic-
tions about new data sets are always prone to error. Therefore, there exists a societal 
risk associated with grounding decision-making processes in social domains—such 
as healthcare and criminal justice—on the predictions of ML models, in the sense 
that the errors in these predictions would translate into wrong decisions that could in 
turn have negative consequences for both society and individuals.3

The foregoing considerations indicate that the kind of risk posed by the societal 
applications of ML models illustrates what has come to be known as inductive risk, 
which “arises whenever knowledge is inductively based […] and there are clear con-
sequences to getting it wrong” (Douglas, 2017, p. 93). In the philosophy of science 
literature, inductive risk has been discussed in relation to the context of theory (or 
hypothesis or model) acceptance, whereas its relevance to the context of theory (or 
hypothesis or model) construction has been neglected. In this paper, I will address the 
latter issue in the context of ML models used for binary classification tasks in soci-
etal domains, such as the classification of patients into two categories according to the 
presence or absence of a certain disease like cancer and heart disease, and the classifi-
cation of credit applicants as low-risk or high-risk customers. I will argue that the con-
struction of these models requires ML modellers to appeal to social (or non-epistemic) 
values to quantify the inductive risk that will arise from their intended uses. I will 
further argue that the evaluation of these models is also dependent on social values rel-
evant to their intended uses. I will thus suggest that social values are essential to both 
the construction and evaluation of ML classification models. I will also discuss the 
implications of this conclusion for the philosophical debate concerning inductive risk.

1 See, e.g., Buckner (2019), Zednik (2021), Biddle (2020), Creel (2020), Erasmus et  al. (2020), Ratti 
(2020), and Sullivan (2019).
2 These domains include healthcare, e.g., prediction and prognosis of chronic diseases—such as cancer 
(Kourou et al., 2015) and heart diseases (Ghumbre & Ghatol, 2012)—and drug discovery (Lima et al., 
2016); financial risk management (van Liebergen, 2017); fraud detection (Phua et al., 2010); manufactur-
ing (Wuest et al., 2016); criminal justice (Dressel & Farid, 2018), and forensics (Mena, 2011).
3 See, e.g., Cabitza et al. (2017) for a discussion concerning the unintended consequences of using ML 
in medicine.
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2  The inductive risk argument and Jeffrey’s counterargument

What is referred to as the argument from inductive risk in the literature of contemporary 
philosophy of science is an elaborated version of an argument put forward by Richard 
Rudner (1953) against the value-neutrality of science. The concept of inductive risk, 
which was first introduced by Carl Hempel (1965), was later incorporated into Rudner’s 
argument by Heather Douglas (2000), whose version of the inductive risk argument 
includes both epistemic and social values, not only ethical values as in Rudner’s original 
argument. The starting point of the inductive risk argument is the inductive underdeter-
mination of theory by empirical evidence, which refers to the following situation:

[A]t any given stage of a scientific enquiry the available data will in princi-
ple be compatible with many different, mutually incompatible theories. This is 
because theories always outstrip the data on which they are based, if only by 
universal generalization—the inference from data to theory is always deduc-
tively invalid (Okasha, 2002, pp. 303–304).

According to the inductive risk argument, since the decision to accept or reject a 
hypothesis is (inductively) underdetermined in the aforementioned sense, scien-
tists accept or reject hypotheses with less than the amount of empirical evidence 
needed for certainty, meaning that “no scientific hypothesis is ever completely veri-
fied” (Rudner, 1953, p. 2). As a result, in accepting or rejecting hypotheses, scien-
tists inevitably take an inductive risk that can be characterized as the risk of erring 
“when making an inductive leap from evidence to hypothesis acceptance or rejec-
tion” (Biddle & Kukla, 2017, p. 216). In order for scientists to manage this risk, 
they need to decide whether the available empirical evidence is sufficiently strong to 
warrant their decision to accept or reject a given hypothesis, i.e., to take the induc-
tive risk. This decision depends on the severity of the inductive risk that will arise 
from the consequences of the acceptance or rejection of the hypothesis. In order for 
scientists to assess the severity of the resulting inductive risk, and thereby to make a 
hypothesis acceptance or rejection decision, they need to make epistemic and social 
value judgments that they find relevant to this assessment.

Richard Jeffrey’s counterargument against Rudner’s inductive risk argument is still 
regarded as a serious challenge against the value-neutrality of science. Jeffrey rejects 
one of the underlying premises of Rudner’s argument, namely that “the scientist qua 
scientist accepts or rejects hypotheses” (Rudner, 1953, p. 4). Jeffrey suggests that:

It is not the business of the scientist as such, least of all of the scientist who 
works with lawlike hypotheses, to accept or reject hypotheses ... [T]he scien-
tist’s proper role is to provide the rational agents in the society which he repre-
sents with probabilities for the hypotheses [with respect to available evidence]. 
(Jeffrey, 1956, p. 245)

Jeffrey’s main concern about Rudner’s argument is that accepting or rejecting a hypoth-
esis once and for all does not do justice to the variety of decisions to be based on the 
acceptance or rejection of the hypothesis. Here, Jeffrey’s consideration is that inductive 
risks associated with different decisions can be qualitatively different, as the decision 

Page 3 of 27    102European Journal for Philosophy of Science (2021) 11: 102



1 3

to accept or reject a scientific hypothesis can have different consequences in different 
cases. As a result, scientists themselves cannot reliably assess the nature and extent of 
the inductive risk that will arise from this decision. In Jeffrey’s account, this assessment 
should rather be done by the practitioners who are to make the relevant decision and 
thus to take the inductive risk.

In order to illustrate the foregoing claim, Jeffrey considers the case of a doctor who 
is confronted with the decision to inoculate a child with a specific polio vaccine. In this 
case, there is an inductive risk associated with this decision, as there is no certainty 
in the hypothesis that bears on the decision to use the vaccine, namely the hypothesis 
that the vaccine is free from active polio virus. Jeffrey then compares this case with the 
case of a veterinarian who is also confronted with the decision to inoculate a monkey 
with the same vaccine. The inductive risks associated with the decisions to be made by 
the doctor and the veterinarian are different from each other, as the outcomes of these 
decisions and the negative utilities (or error costs) associated with these outcomes can 
be different. Therefore, to “accept or reject [the polio vaccine hypothesis] once for all 
is to introduce an unnecessary conflict between the interests of the physician and the 
veterinarian” (Jeffrey, 1956, p. 245). In Jeffrey’s account, this conflict can be avoided if 
the scientist who is in charge of making a judgment about the hypothesis in the afore-
mentioned cases only provides the doctor and the veterinarian with a probability in the 
sense of degree of confirmation on given evidence. Then, based on this probability and 
the utilities they will attach to the possible outcomes of their decisions, the doctor and 
the veterinarian can make their own decisions as to whether to use the vaccine.

Jeffrey’s account aims to keep the scientists’ evaluation of hypotheses free from the 
influence of social values. To this end, he distinguishes between the epistemic and norma-
tive aspects of this evaluation and thereby he delimits the role of social values to the nor-
mative aspect that concerns the application of scientific hypotheses. The epistemic aspect 
consists of assigning probabilities to hypotheses with respect to available empirical evi-
dence, while the normative aspect consists of assigning numerical utilities to the prospec-
tive outcomes associated with the applications of scientific hypotheses (in conjunction 
with probabilities assigned by scientists). In Jeffrey’s account, only the epistemic aspect 
is the scientists’ proper task, whereas the normative aspect is the task of those who are 
to make use of or to be affected by the outcomes of the applications of hypotheses. The 
normative task can involve social value judgments that have no bearing on the epistemic 
evaluation of scientific hypotheses. Therefore, Jeffrey does not deny the role of social 
value judgments in the assessment of inductive risk that arises from the acceptance or 
rejection of hypotheses. Rather, he denies the role of value judgments in the probabilis-
tic evaluation of scientific hypotheses that is concerned with the determination of their 
degrees of confirmation with respect to available experimental evidence.

3  Inductive risk in the context of model construction

Unlike Rudner and Hempel who associated the concept of inductive risk merely with 
theory or hypothesis acceptance or rejection, Douglas suggested that “just as there is 
inductive risk for accepting theories, there is inductive risk for accepting methodolo-
gies, data, and interpretations” (2000, p. 565). Contrary to Jeffrey’s account, she thus 
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suggested that “non-epistemic values are a required part of the internal aspects of sci-
entific reasoning for cases where inductive risk includes risk of non-epistemic conse-
quences” (Ibid, p. 559). In a similar vein, Daniel Steel argued that “probabilistic assess-
ments of evidence or degrees of confirmation themselves depend on accepting data, 
background knowledge, and probability models, and hence are also subject to the argu-
ment from inductive risk” (2015, p. 87). Another prominent paper that aims to extend 
the inductive risk argument to the aspects of scientific inquiry beyond theory or hypoth-
esis choice is a joint paper by Justin Biddle and Eric Winsberg where they visit Jeffrey’s 
account in relation to climate modelling (Biddle & Winsberg, 2009). The argument of 
this paper was elaborated by Winsberg (2012) in a later paper that is a notable excep-
tion to the neglect of inductive risk in the context of model construction.

While Winsberg’s discussion in this paper is not sufficiently detailed and explicit 
about the relevance of inductive risk to the construction of climate models, he sug-
gests that the choice of methodologies used for constructing climate models bears 
upon the inductive risk that will arise from the acceptance of these models:

When a climate modeller is confronted with a choice between two ways of 
solving a modeling problem, she may be aware that each choice strikes a dif-
ferent balance of inductive risks with respect to a problem that concerns her at 
the time. Choosing which way to go, in such a circumstance, will inevitably 
reflect a value judgment. (Ibid., p. 124)

In the same paper, Winsberg also points out that the assessment of inductive risk associ-
ated with the acceptance of climate models is made through what is called uncertainty 
quantification, which consists in “giving quantitative estimates of the degree of uncer-
tainty associated with the predictions of climate models” (Ibid., p. 111). Winsberg argues 
that performing uncertainty quantification requires a division of labor between the epis-
temic and social value-laden considerations, and thus that the latter considerations are 
essential to the decision concerning model acceptance in climate science. Therefore, 
Winsberg’s argument goes against Jeffrey’s claim that probability assignments (associ-
ated with theoretical predictions) are based on purely epistemic considerations.4

Winsberg’s discussion of inductive risk in the context of climate modeling sug-
gests that different methodological choices can lead to the construction of climate 
models involving different inductive risks, thus illustrating Douglas’ claim that 
inductive risk is also associated with the choice of methodologies. It should however 
be noted that Douglas does not specifically consider methodologies used for theory 
or model construction, nor does she draw a link between inductive risk and the con-
text of theory or model construction. I shall argue that such a link exists as a result 
of one important aspect of model construction in science, namely that it is subject 
to inductive underdetermination in the sense that no finite set of empirical evidence 
can uniquely determine a model. I shall call this aspect of model construction its 
underdetermination by available empirical evidence.

4 Winsberg’s argument was criticized by Morrison (2014) and Parker (2014). Morrison argues that uncer-
tainty quantification “involves subjective elements, [but that] in no way does that detract from its status as 
an epistemic exercise” (Morrison 2014, p. 939). Parker states that Winsberg’s “argument exaggerates the 
influence of social values on estimates of uncertainty in climate prediction” (Parker, 2014, p. 27).
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The underdetermination of model construction signifies the non-uniqueness of the 
set of methodological choices that can be used to construct a model that is compat-
ible with the available empirical evidence. This in turn means that different (or rival) 
models that are compatible with the same set of empirical evidence but that yield differ-
ent or conflicting empirical results can be constructed by adopting different methodo-
logical choices. Adopting a particular set of methodological choices for the construc-
tion of a model is always accompanied by a particular set of background assumptions 
(such as simplifications, idealizations and approximations) that is necessary to con-
struct the model. These modelling assumptions can in turn translate into uncertainties 
in the empirical consequences of the model. Since accepting a model entails accept-
ing its empirical consequences, the inductive risk taken in accepting a particular model 
amounts to the risk of accepting its empirical consequences that can be erroneous, 
to varying extents, due to the fact they involve uncertainties that are caused by the 
assumptions underlying the construction of the model. Winsberg illustrates this aspect 
of model construction in the context of climate science as follows:

While the construction of climate models is guided by basic science—
science in which we have a great deal of confidence—these models also 
incorporate a barrage of auxiliary assumptions, approximations, and 
parameterizations, all of which contribute to a degree of uncertainty about 
the predictions of these models. (Ibid., p. 116)

The above discussion suggests that the inductive risk associated with accepting a 
model is built into the model through its underlying background assumptions. The deci-
sion of how much inductive risk is to be built into the model is different from the deci-
sion to accept or reject it. It is therefore important to distinguish between the assessment 
of inductive risk in the context of model construction and its assessment in the context 
of model evaluation concerning model acceptance or rejection. The former assessment 
is made by modellers who are confronted with making methodological choices concern-
ing model construction, while the latter assessment is made by those who are confronted 
with the decision to accept or reject a given model. Given that these contexts and the 
associated decision makers are different and also that in both contexts the decisions are 
underdetermined by the available empirical evidence, these assessments are based on 
different value judgments. For example, in the context of climate science, the value judg-
ments concerning the construction of climate models are different from the value judg-
ments of the policy makers who are to make use of the results of these models. In the 
remainder of this paper, I shall examine the role of inductive risk in both the construction 
and evaluation of ML binary classification models.

4  Construction and evaluation of ML binary classification models

4.1  Essential elements and aspects of ML

The kind of learning problem for which ML is used is how to mathematically model 
the mapping relationship between a set of inputs X = (x1,… , xn ) and its correspond-
ing set of outputs Y = (y1,… , yn ) in a given set of data for a specified task, such as 
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classification tasks. In the case of binary (two-class) classification which is widely 
used in social applications, the inputs are assigned to the set of outputs consisting of 
two distinct classes denoted by a binary tuple (y1, y2).5 For example, in the context of 
healthcare, classifying patients into two groups (such as cancer or non-cancer) based 
on their observed characteristics is a binary classification task for which ML is used 
(see, e.g., Kourou et al., 2015). ML is based on the assumption that there exists a tar-
get function f ∶ X → Y  that correctly maps all the given inputs to the corresponding 
outputs for a given task. This means that the function f  is the true mathematical rep-
resentation of the foregoing mapping relationship. In ML applications, given a set of 
inputs for which corresponding outputs need to be predicted for a specified task, the 
function f  is unknown, and ML is used to find the function g , called final hypoth-
esis, that optimally represents the sought mapping relationship and thus provides an 
optimal approximation to the unknown function f  . The function g is considered to 
be the ML model of the foregoing mapping relationship.

The essential elements of ML include the training data set, the learning algorithm, 
the hypothesis set ( H ), and the loss (or error) function together with an optimisation 
procedure. H contains the candidate functions that can be used to represent the map-
ping relationship under consideration. The learning algorithm is a set of instructions 
usually executed through a program run on a computer or a computer-like machine. 
The learning algorithm uses the training data to find (or compute) which function—
i.e., the function g—in H is the optimal approximation to the function f  . There are 
two main types of ML, namely supervised and unsupervised ML.6 In the case of 
supervised learning, the training data contains examples of inputs together with the 
corresponding correct outputs, while in the case of unsupervised learning the train-
ing data does not contain the information regarding corresponding outputs for the 
given inputs. In this paper, I shall discuss only supervised learning, as ML classifi-
cation models are typically based on this type of ML.

In the case of supervised learning, the training data set ( D ) consists of N 
instances or examples: D = {xt, yt}

N

t=1
 , where xt stands for the arbitrary dimensional 

input, and yt stands for the associated desired (correct) output, which is “0/1” in 
binary-class learning problems.7 ML is used to find an approximation to yt given 
xt for each instance t in the training data set. This approximation is denoted by a 
parametric function g(xt|�), where � stands for the set of parameters. One particular 
set of values for � instantiates one particular hypothesis in the hypothesis set, i.e., 
g ∈ H . The difference between the desired output yt and g(xt|�) is called the approx-
imation error, i.e., the error due to using g in the solution of the learning problem. 
Approximation error is measured through a loss (or error) function: L(yt, g(xt|�)) , 
which is used to quantify the loss incurred due to incorrect predictions (such as 
misclassifications) made during training.8 The term training error is used to denote 

5 See Alpaydin (2010, Chapter 2), for a discussion on ML for classification with multiple classes.
6 There are also two other types of ML, namely semi-supervised ML (see Zhu & Goldberg, 2009) and 
reinforcement ML (see Alpaydin, 2010, Chapter 18).
7 In this part, I follow the treatment offered in the widely used textbook by Alpaydin (2010).
8 Different loss functions are used in the context of ML. For a discussion, see Alpaydin (2010, Sec-
tion 13).
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the total loss incurred due to the approximation error, which is defined to be the 
sum of losses over the individual input–output instances classified during the train-
ing: E(��D) = 1

N

∑N

t=1
L(rt, g(xt��)) . The chosen learning algorithm is implemented, 

according to a pre-determined procedure, in such a way that instances drawn from 
the training data, such as (x1, y1), (x2, y2),…(xn, yn) , are introduced to the learning 
algorithm until the latter finds the set of optimal parameters that minimizes the total 
loss: �∗ = Arg min

�
E(�|D). As a result of this optimisation process,9 the learning 

algorithm singles out the function g(xt|�∗) as the optimal solution of the given learn-
ing problem, which is the ML model of the sought mapping relationship.10

While training error is concerned with the construction of a ML model, what 
is called test error is concerned with the evaluation (or testing) of the model and 
denotes the error made by the model when it is applied to a new data set, called 
test data, which has not been introduced to it before.11 What is called generalization 
error (Jakubovitz et al., 2019) is defined to be the difference between training error 
and test error, and it is taken to be a measure of how well the model generalizes from 
the training data to new data sets and thereby makes accurate predictions.12 There 
are two main problems associated with ML optimisation that are indicative of insuf-
ficient generalization. The first is called overfitting and occurs when a ML model fits 
the training data too closely, meaning that the model has learned the peculiarities of 
the training data, such as mislabeled instances, that are not present in new data sets 
and thus irrelevant to the representation of the sought mapping relationship. Overfit-
ting is thus indicated by a significantly large generalization error. The other prob-
lem is called underfitting and occurs when training error is high, meaning that the 
model has not learned enough from the training data. Both overfitting and underfit-
ting should be avoided in order for an ML model to optimally generalize from the 

12 Both training and generalization errors concern the accuracy of the predictions of ML models and 
arise from the inaccuracies in the modelling assumptions. There is a different kind of error, called soft-
ware error, that arises from the malfunctioning of computer software. Since ML algorithms are software, 
software error can arise in the context of ML model construction and contribute to both training and 
generalization errors. See Symons and Alvarado (2016) for a discussion of the social implications of 
software error in the context of big data software applications, such as Google’s flu tracker.

9 In this paper, ML optimisation refers to the optimisation of model parameters (such as weights), rather 
than the optimisation of hyperparameters, which control the training process, such as number of training 
iterations.
10 ML optimisation is based on the principle of empirical risk minimization in statistical learn-
ing theory (Vapnik, 1999). According to this principle, the goal of ML learning is to find the func-
tion g

(
x, �0

)
 that minimizes the expected value of the total loss given by the risk functional: 

R(�) = ∫ L(y, g(x, �)) dP(x, y), also called empirical risk, where P(x, y) is a joint probability distribu-
tion over the training data; L(y, g(x, �)) represents the loss or discrepancy between the response y of the 
supervisor to a given input x and the response g(x, �) provided by the learning machine. Since the joint 
probability distribution is unknown to the learning algorithm in practical applications, empirical risk is 
computed by averaging the loss function L over the training set: R(�) = 1

N

∑N

i=1
L
�
yi, g

�
xi, �

��
.  

11 What is called cross validation is an intermediate phase between training and testing phases (see 
Alpaydin, 2010, Chapter 2). Cross validation serves to choose the best hypothesis in the hypothesis set, 
namely the one that fits the validation data (which is different from both training and test data sets) the 
best. For example, cross validation can be used to determine the right polynomial order if the hypothesis 
set contains polynomial hypotheses of different orders.
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training data to new data sets and thus to yield accurate predictions about new data 
sets (Dietterich, 1995). Underfitting can be avoided by reducing the total loss by 
means of training. However, further training increases generalization error and thus 
causes overfitting. What is called early stopping is a criterion used to stop training 
before it starts incurring overfitting. Finding the right criterion for early stopping is 
a challenging issue for which various methods have been proposed in the ML litera-
ture (see, e.g., Prechelt, 2012).

4.2  Supervised ML: an illustrative example

In order to illustrate supervised ML, I shall make use of the following often-used 
textbook example where ML is used to obtain a credit decision model that a bank 
can use to make a classification of its credit applicants as low-risk and high-risk cus-
tomers (Abu-Mostafa et al., 2012; Alpaydin, 2010). Based on this classification, the 
bank will accept applications from low-risk customers and reject applications from 
high-risk customers. This is a binary-classification problem that can be solved by 
using supervised ML. In this example, supervised ML is used to model the mapping 
relationship between the set of inputs—i.e., (x1,… , xn)—consisting of the records of 
the credit applicants and the set of outputs—i.e., ( y1, y2)—consisting of two distinct 
classes labeled as low-risk and high-risk customers, corresponding to the approval 
or disapproval of their credit applications, respectively. The training data used in 
this example is taken to be the credit scoring data from the past years that contains 
the personal records of the former credit applicants with respect to various financial 
factors, including their income, savings, profession, age, past financial history, and 
the information as to whether previous credits were paid back or not. Since we sup-
pose that the kind of ML used in this example is supervised ML, the training data 
contains instances of correct pairs of inputs (records of former applicants) and their 
corresponding outputs (credit decisions). Figure 1 illustrates the basic structure of 
ML as it is used in the banking example.

Since the foregoing financial factors are not equally important for the final credit 
decision, the credit score of an applicant is determined by multiplying each financial 
factor by its corresponding weight parameter according to its relative importance in 
the final decision. The credit score of an applicant is taken to be the weighted sum of 
the values of its financial factors, and it can therefore be defined through a linear 
polynomial function: 

∑n

i=1
wixi , where x1,… , xn stand for the values of the financial 

factors considered relevant to the credit decision, and wi, … , wn stand for the 
weight parameters associated with these financial factors. A credit applicant will be 
classified by the credit approval formula as a low-risk customer, and thus her credit 
application will be accepted, if her credit score is greater than a threshold. Other-
wise, the applicant will be classified as a high-risk customer and thus her credit 
application will be rejected. Therefore, mathematically speaking, a given credit 
application will be accepted if g(x) = 1, i.e., if 

∑n

i=1
wixi > d ; and it will be rejected 

if g(x) = 0, i.e., if 
∑n

i=1
wixi ≤ d , where d is a threshold parameter. The hypothesis 

set for the solution of this classification problem can thus be expressed in the form 

of a unit step function as: g(x�w, d) =
�

1 if (
∑n

i=1
wixi) > d)

0 if (
∑n

i=1
wixi) ≤ d)

. The set of parameters 
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� = {w, d} for this hypothesis set consists of the weight parameters and the threshold 
parameter, which is also treated as a weight parameter.13

Through an optimisation process, the learning algorithm determines the optimal 
values for the set of parameters that will in turn single out one particular hypothesis 
as the credit decision model. In supervised ML, the (weight and threshold) param-
eters are typically set to zero or small random numbers at the beginning of the opti-
misation process (or training). In the above example, the learning algorithm uses 
these initial values to calculate g(x|w, d) and thereby predicts the output for each 
input introduced from the training data. Since the examples of correct input–output 
pairs are introduced to the learning algorithm in the case of supervised ML, each 
time an incorrect prediction (i.e., a misclassification) is made, the learning algo-
rithm updates (or adjusts) the parameters so as to reduce the total error (or loss) in 
the classification of customers.14 In this way, the algorithm learns how to correctly 

Fig. 1  The basic set-up of ML in the banking example ( Source: Abu-Mostafa et al., 2012, Fig. 1.2)

13 The threshold parameter is the bias term that controls the predisposition of the model to yield one of 
the final outcomes.
14 This is typically done by using the gradient descent algorithm that computes the gradient of the loss 
function in order to find the parameters (weights and bias) of the model that minimize the total loss (see 
Alpaydin, 2010, Section 10).
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classify the given inputs. The optimisation process continues until the error attains 
its minimum value, without causing overfitting. This signifies that the optimal val-
ues for the parameters have been computed by the learning algorithm. The optimal 
values for the parameter set �opt =

{
wopt, dopt

}
 determined as a result of the optimi-

sation process single out g
(
x|wopt, dopt

)
 as the credit decision model that will be used 

by the bank to decide if a future credit application should be accepted or rejected. 
This is a linear and parametric binary classification model. It is also deterministic as 
it produces either acceptance or rejection decision, without any assignment of prob-
abilities to these outputs.15

4.3  Underdetermination of ML model construction and inductive risk

Training data is the sole empirical element in ML model construction, in the 
sense that it provides the necessary empirical evidence for modelling, without 
singling out the methodological choices concerning the other essential model-
ling elements. These methodological choices are therefore underdetermined by 
the training data, meaning that the solution of a given learning problem, namely 
the estimation of the unknown target function, can be given by different ML mod-
els based on different methodological choices determined by the preferences of 
the relevant ML modellers. This indicates the non-uniqueness of the solution of 
a given learning problem by ML (Alpaydin, 2010; Domingos, 2012), thus illus-
trating what I have previously called (inductive) underdetermination of model 
construction.

A particular set of modelling assumptions chosen by the ML modeller reflects 
her preference for a particular (mathematical) representation of the target func-
tion over its possible representations. In this sense, the ML modeller’s choice of 
a particular set of modelling assumptions indicates a kind of preference bias that 
introduces subjectivity into ML model construction. In the ML literature, this 
preference bias is called inductive bias (Alpaydin, 2010; Mitchell, 1997) due to 
the inductive character of ML model construction, namely that it consists in gen-
eralizing from the input–output relations found by the learning algorithm in the 
training data to a model (of the target function) that (mathematically) represents 
the mapping relationships in new data sets having the same characteristics as the 
training data. Inductive bias is essential to ML model construction in the sense 
that it enables drawing the foregoing inductive inference necessary to construct a 
ML model.

Since ML model construction is basically an estimation process based on induc-
tive inference, the results of ML models are always prone to error, as indicated by 
the presence of training error and test error. Test error can be regarded as a measure 
of the inductive risk associated with the use or application of a model, as it signi-
fies the extent of error involved in its results when it is applied to data sets different 

15 ML classification models can also be probabilistic (see, Bishop, 2006, Chapter 2).
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from the training data. Unlike test error, training error can be directly controlled 
by the modeller as it can be minimized during model construction in such a way 
that the problems of overfitting and underfitting are avoided. Training error can thus 
be regarded as an indication of the error-proneness of the model based on its per-
formance on the training data. In this regard, training error indicates the extent of 
inductive risk built into the model during its construction. This means that the mini-
mization of training error during ML optimisation serves to minimize the inductive 
risk built into the ML model.16

It should be noted that inductive bias does not necessarily give rise to discrimina-
tory bias such as racial or gender bias (see, e.g., Mehrabi et al., 2019). Inductive bias 
can involve discriminatory bias in cases where some modelling elements, includ-
ing training data, are discriminatory against certain groups of people. In such cases, 
the predictive performance of the constructed model will be undermined because 
ML optimisation process will be carried out in a discriminatory way. For example, 
if the training data involves discriminatory bias,17 it is not fairly representative of 
the data sets to which the model is to be applied. The lack of representativeness of 
training data in this sense would result in errors in the predictions of ML models. 
Therefore, discriminatory bias can give rise to inductive risk. However, this kind of 
inductive risk cannot be managed during training because discriminatory bias is an 
essential feature of the training data with respect to which ML optimisation is car-
ried out. Since discriminatory bias is not a legitimate form of bias, it should be prop-
erly addressed during ML model construction. However, identifying and handling 
discriminatory bias has its own challenges that are currently discussed in the ML 
literature (see, e.g., Bordia & Bowman, 2019).

4.4  Cost‑sensitive ML optimisation

ML optimisation consists in minimizing the total loss due to training errors. ML is 
called cost-sensitive if the optimisation is carried out by using different costs for dif-
ferent types of training errors, such as false positives and false negatives in binary 
classification tasks. ML is called cost insensitive if the optimisation is carried out by 
using equal costs for different types of training errors (Elkan, 2001; Ling & Sheng, 
2011). In the context of binary classification tasks, the total loss is minimized with 
respect to what is called a cost matrix whose entries consist of numerical utilities 
attached to different misclassification costs (Elkan, 2001). Typically, in practical 
applications of ML, while zero utility is assigned to correct classifications, finite 
utilities are assigned to misclassifications in order to weigh their costs differently. 
In the credit application example, the costs for different classification errors can be 

16 This is mathematically indicated by the principle of empirical risk minimization on which ML opti-
misation is based (see Footnote 10 in this paper). It is also worth noting that in the context of ML this 
principle should be understood in the sense of reducing the expected risk (or error) to the least possible 
value without causing overfitting.
17 This can occur intentionally such as due to discriminatory labelling of training data, or unintentionally 
such as using biased historical data. For a discussion, see, e.g., Barocas and Selbst (2016), who also sug-
gest that value judgments can also affect the assignment of class labels to instances in training data sets.
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noted as follows: Cost-1 is the cost of misclassifying (rejecting an application from) 
a low-risk customer (false negative or reject); and Cost-2 is the cost of misclassify-
ing (accepting an application from) a high-risk customer (false positive or accept). 
These costs yield the following cost matrix:

Actual accept Actual reject

Classify accept No error, zero cost False accept, Cost-2
Classify reject False reject, Cost-1 No error, zero cost

In the context of binary classification tasks, cost-insensitive ML optimisation 
boils down to minimizing the rate of misclassifications, which is ratio of the total 
number of misclassifications to the total number of classifications. This means that 
the aim of cost-insensitive ML optimisation is to maximize the predictive accuracy 
of classification models. Whereas in the case of cost-sensitive ML, due to differing 
error costs, ML optimisation does not boil down to minimizing the rate of misclas-
sifications, and thus it does not aim at maximizing the predictive accuracy of clas-
sification models.

In the credit application example, the inductive risk arises from the risk of error 
to be caused by the use of the ML credit-decision model in making decisions on 
credit applicants. This inductive risk should be expected to have different negative 
financial consequences or costs for the bank. This means that Cost-1 and Cost-2 
should be different from each other, meaning that ML optimisation needs to be car-
ried out in a cost-sensitive way. The ratio of these costs affects the extent of ML 
optimisation, i.e., the extent of training, needed to determine the parameters of the 
credit-decision model.

The foregoing cost-ratio is determined by the trade-off made by the bank between 
two financial values, namely financial risk-taking and financial security. Depending 
on this trade-off, the following two cases will arise. If the bank values financial risk-
taking more than financial security, it will be more willing to accept applications 
than to reject them. This means that the cost of misclassifying (rejecting) a low-
risk customer is more than the cost of misclassifying (accepting) a high-risk cus-
tomer, i.e., Cost-1 > Cost-2. On the other hand, if the bank values financial security 
more than financial risk-taking, it will be more willing to reject applications than 
to accept them. This means that the cost of misclassifying (accepting) a high-risk 
customer is more than the cost of misclassifying (rejecting) a low-risk customer, i.e., 
Cost-2 > Cost-1. Since the ratios of misclassification costs are different in the fore-
going cases, the associated ML optimisation processes will result in different (opti-
mal) values of model parameters, thus yielding different credit-decision models. In 
both cases, the cost ratio to be used in the ML optimisation depends on the bank’s 
inductive risk profile, which determines how the bank makes the trade-off between 
financial risk-raking and financial security.

Cost-sensitive ML has found many societal applications in contexts where clas-
sification tasks involve unequal error costs (see, e.g., Turney, 2000; Johnson & 
Khoshgoftaar, 2019). It is also used in classification tasks with imbalanced classes 
(He & Garcia, 2009) where “one or several classes (the majority classes) vastly 
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outnumber the other classes (the minority classes), which are usually the most 
important classes and often with the highest misclassification costs” (Garcia et al., 
2012, p. 347). In these cases, the minority class, called the positive class, and the 
majority class, called the negative class, typically have significantly different error 
costs. This means that classification tasks involving imbalanced classes are a special 
case of classifications tasks involving unequal error costs. For instance, in medical 
applications, patients having cancer constitute the minority class in a given popula-
tion, while those not having cancer constitutes the majority class. The cost of a false 
negative, i.e., misclassifying a cancer case as non-cancer, has a much higher cost 
than a false positive, i.e., misclassifying a non-cancer case as cancer. This is because 
the former case might result in the delay of the treatment of the case, which is a life-
threatening situation, while the former case requires carrying out some additional 
medical checks on patients.18 The above example illustrates that in cases where clas-
sification tasks involve imbalanced classes, inductive risk stems mainly from false 
negative errors that are due to incorrect predictions of ML classification models 
about minority classes, such as classification of a cancer case as non-cancer. In these 
cases, cost-sensitive ML optimisation is useful to handle inductive risk as it enables 
determining the parameters of ML classification models in a way that takes account 
of unequal error costs associated with false negative and false positive errors.

4.5  Evaluation of ML binary classification models

In binary classification tasks, true positives ( TP ) and true negatives ( TN ) denote 
respectively the positive and negative instances (in a given data set) correctly classi-
fied (as positive and negative respectively) by a binary classification model, while 
false positives ( FP ) and false negatives ( FN ) denote respectively the positive and 
negative instances incorrectly classified (as negative and positive respectively) by the 
model. The fit of a ML classification model to the test data is measured through what 
is called a performance metric. One such metric is classification accuracy that is 
defined as the ratio of the correctly classified instances to the total number of 
instances classified in a given data set: TP+TN

TP+TN+FP+FN
 . However, classification accuracy 

is not an appropriate metric to evaluate the predictive performance of ML classifica-
tion models with unequal error costs, as it does not take account of unequal costs 
assigned to FP and FN (Provost et  al., 1998). For the same reason, classification 
accuracy is also not an appropriate metric to evaluate the performance of ML classifi-
cation models with imbalanced classes. In this context, since classification accuracy 
does not take into account differing error costs, it can give misleading results due to 
the fact that the instances in the negative (majority) class outnumber those in the pos-
itive (minority) class. In the extreme case where all the instances in the positive class 
are misclassified and those in the negative class are correctly classified, i.e., 
TP + TN = TN , TP + TN + FP + FN ≈ TN , classification accuracy approximates to 

18 Imbalanced data sets can arise in many real-world applications of ML classification models concern-
ing the detection of rare events such as frauds and natural disasters (for a review, see, e.g., Haixiang 
et al., 2017).
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1 . This is grossly misleading given that the main aim of the classification problem is 
to correctly classify the instances of the positive (minority) class. A model classify-
ing all instances as belonging to the majority class, e.g., all patients as non-cancer, 
has a very high predictive accuracy due to the fact that the instances of the majority 
class greatly outnumber those of the minority class, but such a model is useless as it 
fails to correctly classify any of the instances belonging to the minority class.

What is called receiver operating characteristic (ROC) plot is a prominent metric 
used to evaluate the predictive performance of ML classification models with une-
qual error costs (Provost & Fawcett, 1997).The ROC metric consists of a plot of true 
positive rate: TPR =

TP

P
=

TP

TP+FN
 (on the y-axis) versus false positive rate: 

FPR =
FP

N
=

FP

FP+TN
 (on the x-axis). Here, TPR is the ratio of the positive (relevant) 

instances correctly classified to all the positive instances in a given data set, while 
FPR is the ratio of the negative instances incorrectly classified to the ratio of all the 
negative instances. TPR is also called sensitivity (or recall), and it is a measure of 
how well a classification model can correctly classify the relevant instances, i.e., 
those in the positive class. For the sake of completeness, one can also define false 
negative rate: FNR =

FN

P
=

FN

FN
+ TP = 1 − TPR , and true negative rate: 

TNR =
TN

N
=

TN

TN+FP
= 1 − FPR . TNR is also called specificity and it is a measure of 

how well a classification model can correctly classify the instances in the negative 
class.

In the ROC plot, each point corresponds to a TPR − FPR pair associated with 
a classification model as shown in Fig. 2. The location of a classification model in 
the ROC plot shows how the model makes the balance between TPR and FPR , i.e., 
between the benefits and errors associated with the positive class, respectively. The 
ROC plot has a number of interesting aspects that enable comparing the predictive 
performance of different classification models (Ibid.). The point (0,1) (exemplified 
by the classification model D in Fig. 2) represents perfect classification performance 
which amounts to correctly predicting all positive and negative instances, i.e., both 
sensitivity and specificity are equal to one. The diagonal line y = x represents what 
is called random guessing, for which TPR and FPR are expected to be equal to each 
other. For example, the performance of the classification model  C  (in Fig.  2) is 
close to random guessing. The lower right triangle in the ROC plot represents those 
classification models, such as E in Fig. 2, whose performance is worse than that of 
random guessing, because in this region FPR is greater than TPR . The upper left tri-
angle in the ROC plot represents those classification models, such as A , D and B in 
Fig. 2, that perform better than random guessing. It is important to note that “one 
point in ROC space is better than another if it is to the northwest ( TPR is higher, 
FPR is lower, or both) of the first” (Fawcett, 2006, p. 862). This is because as one 
moves towards the northwest direction in the ROC plot, TPR increases while FPR 
decreases. This provides a way to compare the predictive performances of differ-
ent classification models. For example, in Fig. 2, the predictive performance of the 
model B is better than that of the model C , as B is to the northwest of C in the ROC 
plot. However, when one compares the models A and B  in Fig. 2, since neither of 
them is located northwest of the other, one needs to strike a balance between TPR 
and FPR in making a choice between these models.
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An important drawback of the ROC metric is that it provides an overly optimistic 
evaluation of the performance of ML classification models with highly imbalanced 
classes (Davis & Goadrich, 2006). In these cases, since “the number of negative 
examples greatly exceeds the number of positives examples […] a large change in 
the number of false positives can lead to a small change in the false positive rate 
used in ROC analysis” (Ibid., p. 233). This means that even if a classification model 
has a high sensitivity, it still produces a high number of FP as compared to TP , if its 
precision is low. Precision is defined as the ratio of the positive instances correctly 
classified to all the instances classified as positive, i.e., TP

TP+FP
 . What is called F1 

score (or measure) is a metric widely used to evaluate ML classification models with 
imbalanced classes (Forman & Scholz, 2010). F1 score combines sensitivity and 
precision into one single metric that is defined as their harmonic mean: F1 score 
= 2 ×

Precision×Sensitivity

Precision+Sensitivity
 , which ranges between 1 and 0.19 The idea underlying F1 

score is that the harmonic mean of two numbers gets smaller than their arithmetic 
mean, as the difference between them increases. This means that in order for a clas-
sification model to have a high F1 score, both its precision and sensitivity should be 
high. For classification tasks with imbalanced classes, such as classification of 
patients, a high F1 score is an important evaluation criterion for ML classification 
models.20 Both ROC and F1 score are measures of how well a model makes the bal-
ance between TPR and FPR . Unlike ROC, F1 score involves precision and thereby 
“captures the effect of the large number of negative examples on the [model’s] 

Fig. 2  A ROC plot showing five 
classification models (Fawcett, 
2006, p. 862)
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19 The harmonic mean ( H ) of n positive real numbers xi,… , xn is given by the following formula: 
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20 For a review, see Johnson and Khoshgoftaar (2019).
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performance” (Davis & Goadrich, 2006, p. 233). As a result, it provides a more 
accurate evaluation of ML classification models with imbalanced classes (Saito & 
Rehmsmeier, 2015).21

5  Value judgments in the construction and evaluation of ML 
classification models

The cost matrix is used to quantify and thereby to minimize the total loss and thus 
the inductive risk associated with the intended use of a ML classification model. 
The error costs specified in a cost matrix are determined by the ML modeller by 
weighing the relative importance of FP and FN with respect to the inductive risk 
profile of the intended users of the model. Here, inductive risk profile can be defined 
as the extent of the inductive risk that the intended users of a ML classification 
model can afford to take. Since ML optimisation is carried out by means of a learn-
ing algorithm with respect to the error costs specified in a cost matrix, the inductive 
risk profile of the intended users of a ML classification model directly bears upon 
the optimisation process underlying the construction of the model. As I have pre-
viously argued, the underdetermination of ML model construction by the training 
data makes it necessary for ML modellers to make methodological choices to deter-
mine the elements of ML model construction. As part of this modelling process, ML 
modellers also need to make methodological choices to determine the error costs 
that are essential to the cost-sensitive ML optimisation. To this end, they need to 
make social value judgments by taking into consideration the inductive risk profile 
of the intended users of ML classification models.

In the credit application example, the values of financial risk-taking and financial 
security are the particular social values that bear on the inductive risk profile of the 
bank, which is the user of the ML credit-decision model. Since these financial val-
ues conflict with each other, the ML modeller needs to make a trade-off between 
them in assigning different costs to FP and FN in the cost matrix used for optimisa-
tion. As discussed earlier in this paper, conflicting financial value judgments regard-
ing the relative importance of financial risk-taking and financial security in credit 
decisions lead to different ratios between the costs of FP and FN , which indicate 
different balances of the inductive risk associated with the bank’s use of the ML 
credit-decision model. In the case of ML models used for the classification of cancer 
instances, patient safety is the particular social value that bears on the inductive risk 
profile of the users of these models. In this case, ML modellers assign significantly 
higher costs to FN than FP . This case illustrates that in the case of ML classifica-
tion problems with unequal error costs (including imbalanced classes), in order for 
ML modellers to assess the relative importance of FP and FN and thereby to deter-
mine error costs to be used in ML optimisation, they need to make judgments based 
on social values that they find relevant to the inductive risk profiles of the users 

21 It is worth noting that several other metrics are also used for the evaluation of ML classification mod-
els with imbalanced classes (for a review, see Branco et al., 2015).
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of these models. Therefore, value judgments based on social values are involved in 
the construction of ML classification models mainly through cost-sensitive ML opti-
misation. Depending on different choices of error costs, different ML optimisations 
can be performed on the same training data, resulting in different optimal values 
of the model parameters and thus in different ML classification models. This indi-
cates that methodological choices concerning cost-sensitive ML model construction 
are epistemically unforced, meaning that there are no “decisive, purely epistemic 
grounds for considering one model-building option to be better than all other avail-
able options” (Parker, 2014, p. 26).

The discussion in the previous section shows that the choice of a ML classifi-
cation model (from among a set of alternative models) depends on the evaluation 
of the model according to the chosen performance metric. ROC and F1 score are 
two prominent metrics used to evaluate the performance of ML classification mod-
els with unequal error costs. The choice of a ML classification model depends on 
whether it is the optimal model in the sense that it strikes the best balance (among 
the available models) between TPR and FPR with respect to the users’ inductive risk 
profile.22 In the credit application example, ROC is an appropriate metric to evalu-
ate the performance of different ML credit-decision models. The bank’s trade-off 
between financial risk-taking and financial security, which is based on its inductive 
risk profile, will determine which ML credit-decision model is optimal in the fore-
going sense. Therefore, like model construction, model choice is also epistemically 
unforced in the context of ML classification models, meaning that the evaluation of 
these models requires taking into account the relevant users’ inductive risk profiles 
that are dependent on social values.

The above discussion also suggests that the appropriateness of the choice of ROC 
and F1 score metrics for the evaluation of ML classification models with unequal 
error costs is based on the consideration that unlike classification accuracy, these 
metrics make it possible to weigh TPR and FPR with respect to the inductive risk 
profiles of the users of these models. F1 score is preferred for the evaluation of ML 
classification models with imbalanced classes, because, unlike ROC, it is sensitive 
to class imbalances. These considerations underlying the appropriateness of the met-
ric choice are purely epistemic, in the sense that they are independent of social value 
judgments. Similarly, the measurement of a model’s fit to test data is purely epis-
temic. This measurement is based solely on whether the predictions of the model 
about class labels are true, which can be ascertained by comparing these predic-
tions with the actual class labels present in the test data. This comparison must be 
performed in a way that is entirely free from social value judgments in order for the 
chosen performance metric to provide an objective measurement of the model’s fit 
to the test data. Unlike the appropriateness of the metric choice, the appropriateness 
of the test-data choice depends on considerations based on social values in societal 
applications of ML. For instance, test data is required to be non-discriminatory in 
this context. This requirement is the result of a value judgment typically based on 

22 This balance can also be seen as being between FPR and FNR , given that TPR = 1 − FNR.
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fairness, which is a social value (see, e.g., Mehrabi et  al., 2019; Biddle, 2020).23 
However, as I have pointed out above, this type of considerations based on social 
value judgments are irrelevant to the measurement of the model’s fit to the chosen 
test data.

Therefore, the evaluation of ML classification models with unequal error costs con-
sists of two distinct and related parts. The first part is purely epistemic and concerned 
with the measurement of the extent of the model’s fit to the test data through an appro-
priate performance metric. The second part is concerned with the adequacy of this 
fit for the intended applications or uses of the model.24 The latter part of the evalu-
ation is normative in the sense that it is based on the users’ social value judgments 
bearing on the assessment of the inductive risk associated with the application of ML 
classification models. The distinction between the epistemic and normative parts of 
model evaluation in the context of ML binary classification models indicates that 
social value judgments are not as pervasive as Douglas’ account suggests, namely that 
they do not penetrate into the measurement of model’s fit to test data. It is also worth 
noting that the above distinction accords with Jeffrey’s suggestion that social value 
judgments should only influence the decisions concerning the applications of scientific 
hypotheses.

6  Algorithmic and epistemic opacity in deep ML

The binary ML classification model used in the credit application example illustrates 
what is a called a perceptron, which consists of one single artificial neuron (or node).25 
As shown in Fig. 3, an artificial neuron is a structure where the weighted sum of the 
inputs plus the bias term are transformed into an output by means of an activation 
function, which limits the range of possible outputs to a specified range.26 An under-
lying assumption of the perceptron model is linearity, as a result of which the inputs 

23 What is called “fairness-aware ML” is a new approach that is based on the idea that the requirement 
of fairness imposes certain constraints on ML model construction (see, e.g., Zafar et  al., 2017). This 
approach is consistent with the dependence of ML model construction on social values, given that fair-
ness is a social value. In the same literature, the role of fairness in model evaluation is also discussed, 
especially regarding the relationship between model fit and fairness in ML classification models (see, 
e.g., Zliobaite, 2015; Menon & Williamson, 2018). Different metrics have been proposed to measure 
the fairness of ML classification models (see, e.g., Verma & Rubin, 2018). This literature suggests that 
the measurement of model fairness is separate from the measurement of model fit. Therefore, the former 
measurement can be seen as part of the normative evaluation of ML classification models. This means 
that the measurement of model fit to test data is not affected by value judgments based on fairness.
24 Here, I draw upon a distinction made by Morrison (2014) between model accuracy and adequacy of 
model accuracy for purpose or application. In Morrison’s account, the evaluation of model accuracy is 
purely epistemic, whereas the evaluation of the adequacy of model accuracy is normative in the sense 
that it involves non-epistemic considerations. Instead of accuracy, I prefer using the term model fit to 
data, given that accuracy of classification is not an appropriate aspect to measure for the evaluation of 
ML classification models with unequal error costs.
25 The concept of artificial neuron is defined in analogy to neurons in the human brain. For a discussion, 
see Haykin (2009, Chapter 2).
26 In the case of the perceptron model, the activation function is the unit step function. In neural network 
models, sigmoid is the widely used activation function that limits the outputs to [0, 1].
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are directly mapped to the corresponding outputs. However, linearity does not capture 
the relationships that can exist among the inputs and thus the intricate relationships 
between the inputs and the corresponding outputs. Neural networks are a prominent 
class of non-linear ML models that are widely used in many societal applications of big 
data.27 The kind of ML underlying the construction of these models is called deep ML, 
as it takes places through multiple intermediate layers of interconnected neurons that 
are incorporated between the input and output layers as in the case of multilayer per-
ceptrons as shown in Fig. 4. These intermediate layers are often called hidden layers in 
the sense that their inputs and corresponding outputs are not directly read off from the 
network, unlike those of the input and output layers. The following passage succinctly 
summarizes the role of hidden layers in the construction of deep neural networks:

In real-world problems, input variables tend to be highly interdependent and 
they affect the output in combinatorially intricate ways. The hidden layer neu-
rons allow us to capture subtle interactions among our inputs which affect the 
final output downstream. Another way to interpret this is that the hidden layers 
represent higher-level “features” or attributes of our data. Each of the neurons 
in the hidden layer weigh the inputs differently, learning some different inter-
mediary characteristics of the data, and our output neuron is then a function of 
these instead of the raw inputs. By including more than one hidden layer, we 
give the network an opportunity to learn multiple levels of abstraction of the 
original input data before arriving at a final output (Kogan, 2021).

Multilayer perceptrons28 are the most prominent class of deep neural networks where 
each node in a given layer (except the output layer) connects to every node in the next 

Fig. 3  The structure of the perceptron model ( Source: Kang, 2017)

27 For a recent review, see, e.g., Emmert-Streib et al. (2020). For a review aimed at philosophers, see 
Buckner (2019).
28 The other types of neural networks include what are called convolutional neural networks and recur-
rent neural networks (see Haykin, 2009).
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layer through the weight parameters that scale the outputs of the nodes in the previous 
layer. Each node in the neural network can be seen as a perceptron whereby the map-
ping relationship between its inputs (from the nodes in the previous layer) and outputs 
is modeled in the way described in Section 4 of this paper. Each node receives, as an 
input, a weighted sum of the outputs of all the nodes in the previous layer. By means of 
an appropriate activation function (e.g., sigmoid function), this weighted sum is trans-
formed into an output that will be an input for the next layer. This process repeats in the 
forward direction until the values of the nodes in the output layer are computed as the 
final output(s) of the neural network.29 A multilayer perceptron network can thus be 
regarded as a ML model that consists of a non-linear function representing the mapping 
relationship between the set of initial inputs and corresponding final output(s).30

In the construction of deep ML models, the initially assigned weights evolve into their 
optimal values through an optimisation process that takes place through hidden layers 
each of which acts as an intermediary step in this process. Since deep ML models are 
constructed by using big data, the total amount of computation required for the optimisa-
tion of weights in these models is so vast that it is impracticable for human agents to study 
and understand the entire optimisation process. This in turn indicates that the implemen-
tation of the learning algorithm in deep ML is opaque to human agents (Burrell, 2016; 
Creel, 2020) and thus that optimisation looks like a black box process, in the sense that 
human agents can access the initial inputs and final outputs, but not the inputs and outputs 
of the nodes in the hidden layers. As a result of this algorithmic opacity, while human 
agents can possess an understanding of the working logic of the learning algorithm, they 

29 The training of a neural network is similar to the training of a perceptron. The weights (including 
biases) of a network are computed by the backpropagation algorithm based on gradient descent. Since a 
neural network has hidden layers, the parameters are updated in a backward direction, i.e., from the out-
put layers towards the input layer (see, Alpaydin, 2010, Section 11.).
30 This non-linear function can be seen as a functional composition of weights and activation functions 
associated with hidden layers (see, e.g., Bauckhage et al., 2018).
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Fig. 4  The structure of a multilayer perceptron with two hidden layers ( Source: Haykin, 2009, Fig. 4.1)
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lack an understanding of how exactly the initial weights are updated by the learning algo-
rithm as instances from the training data are introduced to it.

Does algorithmic opacity entail epistemic opacity in the context of deep ML 
models? This question is relevant to understanding the effect of algorithmic opacity 
on the nature of the knowledge produced by deep ML models. One prominent defi-
nition of epistemic opacity is offered by Paul Humphreys as follows: “[a] process is 
essentially epistemically opaque to X if and only if it is impossible, given the nature 
of X, for X to know all of the epistemically relevant elements of the process” (Hum-
phreys, 2009, p. 618). Based on this definition, Humphreys goes on to suggest that:

distinguishing between the weaker and stronger senses [of epistemic opacity] 
is useful. It is obviously possible to construct definitions of ‘partially epistemi-
cally opaque’ and ‘fully epistemically opaque’ which the reader can do himself 
or herself if so inclined. What constitutes an epistemically relevant element 
will depend upon the kind of process involved. (Ibid.)

To use Humphreys’ terminology, the values of the weight parameters are epistemi-
cally relevant elements of the process of ML model construction, in that the knowl-
edge of them would enable human agents to trace the outputs of the model back to 
their inputs, thereby accounting for how the model actually arrives at its predictions. 
Algorithmic opacity makes it practically impossible for human subjects to examine 
how the weights linking inputs to outputs through hidden layers are optimised by the 
learning algorithm so as to minimize the total error. This means that human agents 
do not have the knowledge of the evolution of the weights, which are usually ini-
tially assigned to small random values, into their optimal values. Therefore, the pro-
cess of optimisation in deep ML is essentially epistemically opaque—in the sense of 
Humphreys’ account. An important consequence of this epistemic opacity concerns 
the predictions of deep ML models. In order to account for these predictions, it is 
necessary to understand how the optimal values of their weight parameters are com-
puted by the learning algorithms, because these predictions are obtained by virtue of 
the optimal values of the weight parameters. Since this information is not available 
due to the problem of algorithmic opacity, it is often stated in the ML literature that 
deep ML models yield predictions without explanations.31

The epistemically relevant elements of ML model construction also include 
the essential elements of this process—namely, training data, learning algorithm, 
hypothesis set, and loss function. Similarly, the value-judgments underlying the 
methodological choices of ML modellers are also epistemically relevant elements, in 
that they enable ML modellers to determine the foregoing essential elements of ML 
model construction. It should also be noted that one can know the essential elements 
of a ML model construction process without knowing their underlying value judg-
ments. Since algorithmic opacity concerns the optimisation (of weight parameters) 

31 Yet, this is currently an open issue that is actively researched within the field of what is called explain-
able ML. For a review, see, e.g., Samek et  al. (2017). The epistemological aspects of ML predictions 
have been recently examined by philosophers in terms of explanation, understanding, interpretability, and 
novelty; see, e.g., Zednik (2021), Erasmus et al. (2020), Ratti (2020), and Sullivan (2019).
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part of the process of ML model construction, the knowledge concerning the essen-
tial modeling elements and their underlying value judgments are not affected by this 
kind of opacity. This means that human agents can investigate how these epistemi-
cally relevant elements have been determined prior to the process of ML optimisa-
tion. In the above discussion, I have argued that such an investigation should look 
into the value-judgments underlying the methodological choices concerning these 
elements. This suggests that the part of the ML model construction concerning 
the determination of the essential modelling elements is epistemically transparent 
to human agents to the extent that their underlying value judgments are known by 
them. ML modellers are obviously in a better position than other human agents in 
knowing the modelling elements and their underlying value judgments. However, 
there is no fundamental difference between them with respect to epistemic opacity, 
as the modelling elements and their underlying value judgments can be learned by 
other human agents through the investigation of the modelling process. Therefore, to 
use Humphrey’s terminology, while the part of the (deep) ML model construction 
concerning the optimisation of the weight parameters is fully epistemically opaque 
due to the fact that this process is algorithmically opaque, the part of the model-
ling process concerning the choice of modelling elements is partially epistemically 
opaque, depending on the extent of the lack of knowledge regarding the underlying 
value judgments.

7  Conclusions

In this paper, I have argued that the construction of ML classification models illus-
trates inductive underdetermination of model construction, in the sense that the 
methodological choices underlying the construction of these models are underde-
termined by the training data, which constitutes the sole empirical evidence for 
ML model construction. Since ML classification models are typically used for 
societally relevant purposes, their construction requires ML modellers to assess 
and thereby minimize the inductive risk that will arise from the intended uses of 
these models. This assessment is made through the quantification of error costs. 
The methodological choices concerning this quantification are underdetermined 
by the training data. Therefore, given that the inductive risk associated with the 
application of ML classification models has social implications, ML modellers 
need to make social value judgments in order to quantify the error costs to be used 
in the minimization of inductive risk. The above conclusions concerning the role 
of inductive risk and social values in the construction of ML classification models 
do not quite fit into the inductive risk argument, as has been discussed thus far 
in the philosophical literature. According to this argument, inductive risk bears 
solely on the decision to accept or reject a theory (or a model), and as a result the 
role of social value judgments in scientific methodology is limited to the assess-
ment of inductive risk that pertains to this decision.

The above conclusions also conflict with Jeffrey’s normative suggestion that 
the assessment of inductive risk with respect to social values should not be a 
part of scientific methodology. Social value judgments bear on the construction 
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of ML classification models because these are optimisation models, mean-
ing that their parameters are optimised so as to serve their intended purposes. 
The extent of optimisation required to construct a ML classification model is 
determined by the inductive risk profile of its users. Therefore, optimisation 
is the main reason why the assessment of inductive risk by ML modellers is 
an essential part of the construction of ML models. This is generally true for 
optimisation models, namely the kind of models optimised from the beginning 
to serve their intended purposes. I thus suggest that the construction of optimi-
sation models requires the minimization of inductive risk that will arise from 
their intended uses. Whereas inductive risk does not typically figure in model 
construction in physical and biological sciences where the aim of modeling is 
mainly to account for natural phenomena, such as the modelling of sub-atomic 
phenomena in high-energy physics and the modelling of gene structures in 
molecular biology. Since the occurrence of a natural phenomenon is independ-
ent of the intended use of the model to be constructed about this phenomenon, 
the modelling of the phenomenon is independent of the inductive risk that will 
arise from the use of the model.

The foregoing considerations indicate that minimization of inductive risk is key 
to the construction of ML classification models used for societal purposes. This is 
also true for the construction of other types of ML models whose intended uses give 
rise to inductive risk. Therefore, ML modellers need to consider the inductive risk 
profiles of the intended users of the models that they aim to construct as well as the 
social values that they find relevant to their inductive risk profiles. In this regard, the 
increasing reliance on ML within big data analytics has the potential to lead to a big 
data modelling practice where the epistemic task needed to construct models of big 
data also involves modellers’ engagement with the intended users of these models.
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