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Abstract
Most discussions of the reproducibility crisis focus on its epistemic aspect: the fact that the
scientific community fails to follow some norms of scientific investigation, which leads to
high rates of irreproducibility via a high rate of false positive findings. The purpose of this
paper is to argue that there is a heretofore underappreciated and understudied dimension to
the reproducibility crisis in experimental psychology and neuroscience that may prove to
be at least as important as the epistemic dimension. This is the communication dimension.
The link between communication and reproducibility is immediate: independent investi-
gators would not be able to recreate an experiment whose design or implementation were
inadequately described. I exploit evidence of a replicability and reproducibility crisis in
computational science, as well as research into quality of reporting to support the claim
that a widespread failure to adhere to reporting standards, especially the norm of descrip-
tive completeness, is an important contributing factor in the current reproducibility crisis
in experimental psychology and neuroscience.

Keywords Reproducibility crisis in experimental psychology and neuroscience .

Replicability crisis in computational modeling . Replication . Reproduction . Norms of
scientific reporting . Descriptive completeness

1 Introduction

The reproducibility crisis is usually depicted as resulting from a failure to follow some
norms of scientific investigation (but see, e.g., Bird 2018). If sufficiently widespread,
this failure can cause a proliferation of false positive findings in the literature, which
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can lead to low research reproducibility because false findings are mostly irreproduc-
ible. For example, many authors have argued that researchers in psychology, including
journal editors and referees, tend to confuse nominal statistical significance of an
experimental finding with its epistemic import (e.g., Rosenthal & Gaito 1963;
Neuliep & Crandall 1990, 1993; Sterling 1959; Sterling, Rosenbaum, & Weinkam
1995; Gigerenzer 2004, 2018). In effect, the psychological literature has been filling up
over the years with statistically significant results, most of which are probably false.
The problem is serious as most psychology papers use null hypothesis significance
testing (NHST) and over 90% of them report positive findings (Fanelli 2010).

However, besides the norms of scientific investigation, there are norms of scientific
reporting, whose violation can also affect reproducibility even if it does not necessarily
lead to a proliferation of false positives in the literature. Chief among these norms is the
norm of descriptive completeness, which states that a research report should provide all
the information necessary to enable a knowledgeable independent researcher to recreate
the study. Widespread failure to follow the norm of descriptive completeness would
have disastrous consequences, threatening the cumulative character of scientific knowl-
edge, its technical applicability, and credibility.

Yet scientists and philosophers of science seldom pay attention to the norms of
scientific reporting. We take it for granted that researchers have no difficulty pro-
ducing adequate descriptions of their experiments. After all, designing and
conducting a scientific study is much more intellectually demanding than producing
a research report. Any high school graduate can write a report. And, let’s face it, the
norms of scientific reporting are not as interesting as the norms of scientific inves-
tigation. The most general ones, which apply to any report regardless of study design
or field, are pretty much self-evident. We all agree that a research report should be
clear, concise, true and complete. What is more problematic is how to apply these
norms in specific cases. To take the norm of descriptive completeness again, it is not
obvious which details of, say, randomized controlled trials are essential to reproduc-
ibility. Which sampling decisions need to be reported and where – in the main text, in
supplementary materials, in a repository? And what about information such as room
temperature or the weather outside? Although nontrivial, such questions are fre-
quently dismissed as pedantic and irrelevant. We often feel that only a pedant would
seek precise answers to them. A reasonable person would simply err on the side of
caution, wouldn’t they?

The aim of this paper is to show that the pedants may actually be on to something. I
contend that the norms of scientific reporting are violated much more frequently than
we like to admit. More specifically, I argue that violations of the norm of descriptive
completeness are probably so widespread as to affect research reproducibility in
experimental psychology and neuroscience. Indeed, I claim that, without recognizing
this, we will not be able to properly assess either the nature or the true scale of the
reproducibility crisis. Although the open science movement advocates transparency
and clear communication, empirical assessments of quality of reporting in experimental
psychology and neuroscience are few and far in between. This makes it impossible to
estimate the actual impact of reporting practices on reproducibility with any confidence.
I exploit various kinds of evidence to provisionally assess the scale of the problem and
argue that standard discussions of the reproducibility crisis in psychology and neuro-
science ought to pay more attention to its communication dimension.
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The paper unfolds in the following manner. In section 1, I introduce the traditional
distinction between the notions of replicability and reproducibility in experimental
research. Based on a methodological analysis of the requirements of replicability and
reproducibility, I show that the latter requirement, unlike the former, is inextricably
linked with the norms of scientific reporting, especially the norm of descriptive
completeness. In section 2, I describe the standard methods of estimating reproducibil-
ity of experimental research and show how they are applied to experimental psychol-
ogy and neuroscience. I conclude that these methods ignore or even minimize the
communication dimension of reproducibility, which suggests a possible blind spot in
the existing assessments. I close the section by hinting at the first source of indirect
evidence regarding the actual impact of communication failures on reproducibility –
namely, the literature on the replicability and reproducibility crisis in computational
modeling. As it will transpire, both kinds of crisis in computational modeling have been
caused by a widespread failure to adhere to the norm of descriptive completeness. Thus,
section 3 introduces the notions of model repeatability, model replicability and model
reproducibility, and describes the methodological functions of model replications and
model reproductions. It also characterizes the standard methods used to estimate the
magnitude of the crisis and, based on available studies, provides the estimates for
computational neuroscience. The crisis, it turns out, is serious. In section 4, I return to
experimental psychology and neuroscience. Having shown that inadequate reporting
has caused a replicability and reproducibility crisis in computational modeling, I look
for empirical evidence regarding the claim that something similar may be happening in
experimental research. I give two indirect arguments appealing to empirically con-
firmed deficiencies in the reporting practices of psychologists. It turns out that re-
searchers are less than eager to share experimental data and they also display a
remarkable tendency to misreport statistical information. These attitudes, though related
to communication, need not impact research reproducibility, however. Therefore, in
section 5, I bring up some direct evidence for my central claim – I discuss four
empirical studies: (a) by Grant et al. (2013), who investigate quality of reporting in
psychological and social intervention trials in clinical psychology, criminology, edu-
cation and social work, (b) by Robb et al. (2018), who examine compliance with field
specific reporting guidelines in the latest studies of music-based interventions in
healthcare, (c) by Brown et al. (2014), who investigate descriptive completeness of
psychological papers published in 2010, and (d) by Carp (2012), who focuses on
reports of fMRI studies. They all indicate that quality of reporting relevant to repro-
ducibility is poor: roughly over 50% of the reports are seriously deficient in this respect
and even about 80–90% of the studies may be irreproducible due to incomplete
reporting. I close the paper with a brief summary of the argument and a few remarks
on the significance of the communication dimension to the reproducibility crisis.

2 Replication studies and the Replicability vs. reproducibility
requirements in experimental research

Given the aim of this paper, the most important difference we need to draw between
various kinds of replication studies concerns authorship. Thus, I define an independent
replication as one conducted by independent investigators – i.e., a research team that
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does not overlap with the authors of the original study. By contrast, an internal
replication of experimental research is performed by a research team that does overlap
with the authors of the original study. Both independent and internal replications are
said to be successful when the results they yield are sufficiently similar to those of the
original study; what precisely counts as sufficiently similar varies with the field. I say
that research is replicable to the extent that its successive internal replication attempts
are likely to be successful. By analogy, I say that experimental research is reproducible
to the extent that its independent replication attempts are likely to be successful. It
follows that there can be two corresponding requirements imposed on experimental
research: first, that it be replicable and, second, that it be reproducible.

The other significant distinction regarding repeat experiments concerns the extent to
which a replication attempts to reflect the original study. I use the term direct replica-
tion for studies intended to recreate as closely as possible all the parameters of the
original study. Because it is often impossible to duplicate a psychology or neuroscience
study down to the smallest detail, any amendment to the original procedure should be
justifiable by appeal to the best contemporary understanding of the phenomena under
investigation. I use the term conceptual replication for replication studies intended to
extend the original result or make it more robust by modifying some parameters of the
study under investigation. Conceptual replications are not the focus of this paper, so
whenever I talk about replications without qualifying them as conceptual, I am referring
to direct replications.

Although rarely mentioned in the literature before the eleventh century AD, the
requirement of replicability may be as old as the experimental method itself (Steinle
2016). A practitioner of empirical science quickly learns how many things can, and
often do, go wrong during an experiment. Therefore, it is plausible to suppose that early
scientists had developed the habit of repeating their experiments on numerous occa-
sions in order to convince themselves that the outcomes they obtained were sufficiently
consistent. Unsurprisingly, assertions of replicability were also used as a rhetorical
device, intended to persuade the readers of a scientific text that the claims made by the
author were true. For example, the Arab scholar Ibn-al-Haytham, known in Europe as
Alhazen, often concluded his experiment descriptions with the words “this is always
found to be so, with no variation or change” and Galileo Galilei stressed that he had
performed his inclined plane experiments “a full hundred times” (see Steinle 2016, p.
43).

The requirement of reproducibility is much more recent by comparison. It was first
invoked as an essential element of the experimental method both in Saggi di naturali
esperienze (1667), published by the Accademia del Cimento in Florence, and in
Thomas Sprat’s History of the Royal Society of London for the Improving of Natural
Knowledge (1667) (cf. Steinle 2016, pp. 46–47). The link between the requirement of
reproducibility and the appearance of the first institutions of modern science was no
historical accident. The idea of reproducibility was part and parcel of a system of social
inventions that had transformed the investigation of nature in the seventeenth century
into a massively collaborative endeavor that has since yielded unprecedented rewards.

As already mentioned, the idea that a credible experimental finding must be
replicable came with the awareness that an investigator has to control a wide range
of experimental parameters in order to obtain consistent outcomes. Assuming that the
researcher is not sloppy, irreplicability either signals indeterminacy in the world or
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reveals that the researcher has an insufficient understanding of the phenomena under
investigation. In either case, the primary advantage of replicating research is that it
guards the investigator against accepting certain kinds of false positives and guides
further research. From an investigator’s point of view, a result that replicates is stable
enough to warrant an explanation. By contrast, a result that does not replicate indicates
that more research is needed to determine the source of the problem.

The requirement of replicability serves the individual investigator rather than the
research community as a whole. The policy of attempting to replicate obtained findings
allows the scientist to reject empirically unstable results, but does not necessarily shape
the way she communicates her research to others. Although keeping a record of how an
experiment was conducted facilitates replicability, it is not its necessary condition. The
investigator may be able to replicate a finding by remembering a few distinguishing
features of the experimental setup and relying on habit to recreate it. More to the point,
she may produce highly replicable research and be secretive about how she is able to do
so. In fact, following the requirement of replicability and keeping the necessary know-
how hidden from others was typical of much of early experimental practice.

The requirement of reproducibility, by contrast, presupposes communication. It
would simply be impossible for an independent investigator to recreate a study unless
its author provided a complete and accurate description of the experimental procedure.
The fact that a finding can only be reproduced if appropriately communicated to an
independent investigator entails that the requirement of reproducibility imposes some
general constraints on scientific reporting. Not only does it reinforce the traditional
qualities of effective communication, such as accuracy, clarity, precision and concise-
ness, but it also demands that the research report contain all the information necessary
for a competent reader to be able to recreate the study.

This link between the requirement of reproducibility and the norms of scientific
reporting, including the norm of descriptive completeness, is immensely important.
Ensuring reproducibility does not only help to reduce the rate of false positives in the
literature but it also facilitates accumulation of knowledge and boosts scientific prog-
ress by making research fully available to anyone who wishes to build on it. Finally,
reproducibility is necessary for developing technologies based on scientific findings.
This is so even if we lack theoretical understanding of the phenomena under investi-
gation, as in the case of high-temperature superconductivity research, which has led to a
number of valuable inventions although the nature of the effect remains unexplained
(see Steinle 2016, p. 50).

In light of these remarks, it is clear that reproducibility has two separate but
interdependent aspects. Under the epistemic aspect, reproducibility is seen to involve
an experimental stability that lends credibility to specific findings and, derivatively, to a
whole field of research. Experimental stability is a good proxy for empirical truth
although, strictly speaking, the two are logically independent. First, a field of study may
produce highly stable results that are in fact false – say, due to a widespread use of a
statistical analysis package containing an undiscovered bug. Second, it is possible that
most findings generated within a field of research are true but irreproducible (this may
be the kind of scenario envisaged by those who are unmoved by the reproducibility
crisis). Under the communication aspect, reproducibility involves the publishing of
experiment descriptions that meet the norms of scientific reporting. Violation of any of
these norms affects the ability of independent investigators to assess or reproduce a
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finding. The norm of descriptive completeness is crucial in this latter connection
because, if it is not being followed, researchers are unable to find information necessary
to duplicate the study. As a result, even a perfectly stable experimental finding cannot
be validated or used to develop new technologies.

Needless to say, other norms of scientific communication, besides the norm of
descriptive completeness, are also relevant to reproducibility. These include the norm
of accuracy and the norm of clarity. Reports that either misrepresent the experimental
procedure or are plagued by ambiguity can make it impossible for an independent
investigator to recreate the study. What is perhaps less obvious, providing too much
information – i.e., information that is not necessary to duplicate a study – can have
similar effects (Miłkowski et al. 2018). Although, in what follows, I touch on whether
these norms are being followed, I focus on the norm of descriptive completeness
because its violations seem to have the largest impact on the current reproducibility
crisis.

3 Assessments of reproducibility in experimental psychology
and neuroscience – The epistemic dimension

Like any empirical feature, reproducibility can be measured directly or indirectly. The
direct method of assessing reproducibility is simple. It consists in actually trying to
independently replicate research. The trouble is that, in many fields, replication at-
tempts are too rare to warrant generalization. According to Makel, Plucker & Hegarty
(2012), who searched publication data from the hundred psychological journals with
the highest five-year impact factor, the string “replicat*” appears in 1.57% of papers
published in the years 1900–2009. Based on a closer analysis of a random sample,
Makel and colleagues estimated that only about 64.8% of the papers mentioning the
word “replication” are actual replications. This puts the overall rate of replication
attempts at 1.07% (though, admittedly, in the period after 2000, it is estimated at
1.96%). However, out of those 1.07%, only 47.1% were performed by independent
investigators and 14% were direct rather than conceptual replications. When coupled
with the publication bias, a large number of underpowered conceptual replication
studies can, in fact, create an illusion of robustness (Romero 2019). Given these figures,
it is nearly impossible to arrive at a credible estimate of reproducibility based on prior
replication attempts. Indeed, although Makel, Plucker, & Hegarty (2012) found that the
reproducibility rate in psychology between 1900 and 2009 was 64.6% (69.4% in 2000–
2009), their estimate is probably off the mark as it does not distinguish between direct
and conceptual replications and relies on a biased literature.

Another method for directly assessing the reproducibility rate of a discipline in-
volves selecting a representative sample of studies and attempting to replicate them.
The largest such effort in behavioral sciences is the Reproducibility Project: Psychol-
ogy conducted by the Open Science Collaboration (2015). Its results have been widely
publicized: only 36–47% randomly selected recent studies from three of the most
prestigious psychological journals have been successfully replicated (n = 100). The
estimated reproducibility rate differs according to the field: e.g., it is about 50% in
cognitive psychology and about 25% in social psychology. The average effect size was
50% smaller than that reported in the original study.
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We may also glean important information from studies investigating smaller num-
bers of effects, such as the Many Labs 2 replication project, which examined 28
psychological effects reported in both classic and contemporary studies. Its main
objective was to assess variation in reproducibility across samples and settings rather
than estimate the reproducibility rate, so the sample was not random: some of the
effects under scrutiny had been known to be highly reproducible and the selection
criteria included simplicity of design and brevity of experimental procedure, which
arguably favored easily reproducible results. The outcome: 50% of the effects have
replicated (p < .0001) (Klein el al. 2018). A related effort, with similar selection criteria,
has replicated 3 out 10 effects (Ebersole et al. 2016). Both replication projects also
showed considerable effect size inflation in original reports.

Large-scale replication projects are logistically and financially demanding, even if
the studies under investigation are relatively cheap and simple. The challenges are even
greater in neuroscience where research is more resource-intensive. Boekel et al. (2015)
conducted a preregistered multi-study replication attempt of 17 structural brain-
behavior (SBB) associations, such as that individual differences in the number of
Facebook friends and real social-network size are positively correlated with grey matter
volume in several brain areas. Only one of the correlations (about 6%) has replicated.
The sample was only 36 subjects but the conclusion is consistent with that of Kharabian
Masouleh et al. (2019), who reanalyzed a large dataset containing brain scans and
selected psychological tests.

Given the heterogeneity of both experimental psychology and neuroscience and the
difficulties associated with conducting large-scale replication projects, most assess-
ments of the reproducibility crisis are indirect. They are based on estimating the value
of certain parameters that are either known or supposed to indicate reproducibility.

A large number of these meta-scientific studies focus on the truth of scientific
results. They involve sifting through the published record and applying a wide range
of statistical methods to estimate the value of such parameters as the average statistical
power and effect size (e.g., Ioannidis 2005; Button et al. 2013; David et al. 2013; Szucs
& Ioannidis 2017, Stanley, Carter, & Doucouliagos 2018), the prevalence of various
biases (e.g., Fanelli 2009, 2010, Scheel 2019), the flexibility of current research
methods (e.g., Patel, Burford, & Ioannidis 2015), etc.

A second group of meta-scientific studies of reproducibility attempt to discover
the frequency of behaviors that do not conform to the principles of scientific
investigation. These studies are relatively rare and often involve conducting
anonymous surveys among researchers, asking them about their conduct, experi-
ences or attitudes (e.g., Anderson, Martinson, & DeVries 2007; Fanelli 2009;
Baker 2016; Mobley et al. 2013; Héroux et al. 2017; John et al. 2012). Although
there are surveys that ask scientists about selective reporting, which obviously
violates the norm of descriptive completeness, they do not generally target the
communication dimension of reproducibility.

What is the reproducibility rate in experimental psychology and neuroscience? It
should come as no surprise that opinions on this point vary. Despite our best efforts, we
still lack sufficient data to assess the situation, and the data we do have are interpreted
in a variety of ways because every analysis relies on some controversial assumptions
(see Amrhein, Trafimow, & Greenland 2019). Let me illustrate this with a vivid
example. On one side of the spectrum, Gilbert et al. (2016) argue that the empirical
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evidence obtained by the Open Science Collaboration (2015) is actually consistent with
the reproducibility rate in psychology being around 85%. This is because, they claim,
the replicability benchmarks adopted by the Open Science Collaboration did not take
into account the infidelities of the replications (some of which may even suggest bias)
and the replications were underpowered because power calculations were based on
considerably inflated effect sizes reported by original investigators (cf. Anderson et al.
2016 for a rejoinder; for more on the question of power in large-scale replication
efforts, see Camerer et al. 2018). On the other extreme, Johnson et al. (2017), who
performed a reanalysis of the Open Science Collaboration (2015) dataset, claim that the
pre-study odds of experimental hypotheses in psychology – i.e., the probability that a
hypothesis being tested is actually false – are likely below 10% and the rate of false
positives is likely over 90% (cf. Szucs & Ioannidis 2017 for similar estimates based on
a different methodology and Bird 2018 for a general argument that low reproducibility
may be the result of low pre-study odds even in the absence of questionable research
practices).

It is not my aim here to investigate which proposed estimates are the most plausible
and why. Instead, I want to stress that the methods of assessment targeting what I call the
epistemic dimension of the reproducibility crisis ignore the communication dimension.
In fact, multi-study replication projects are typically designed so as to minimize the
impact of inadequate reporting on estimated reproducibility. Replication teams in the
Open Science Collaboration contacted the original authors to obtain original study
materials, request “any important information about the methodology that may not have
appeared in the original article” and “share the methods draft for comments and
suggested edits” (Reproducibility Project: Psychology Researcher Guide, https://osf.
io/ru689/). Many Labs 2 and 3 had a similar protocol (Klein et al. 2018, p. 448; Ebersole
et al. 2016, p. 70). Boekel et al. (2015) also solicited materials from original authors.
Interestingly, their initial plan had been to replicate 9 studies. They ended up with only 5
because, among other things, the original authors of 3 studies either failed to supply ROI
masks or the masks they sent did not match the coordinates reported in the papers.

Since the methods of assessment described so far cannot detect the possible impact
of descriptive incompleteness on reproducibility, it is at least imaginable that this has
led the community to consistently underestimate the magnitude of the reproducibility
crisis in experimental psychology and neuroscience. I begin to explore this possibility
in the next section, where I discuss the prevalence of incomplete reporting in compu-
tational modeling. The data suggest that computational sciences are experiencing a
crisis similar to that in experimental psychology and neuroscience. However, unlike in
experimental research, there, the main culprit is believed to be inadequate reporting
practices. This constitutes the first piece of indirect empirical evidence I usher in to
support the hypothesis that communication problems are also affecting the reproduc-
ibility of experimental psychology and neuroscience.

4 The communication dimension of the reproducibility crisis: The case
of computational modeling

There are three senses in which computational models can be duplicated. First, a model
is said to be repeatable to the extent that its author can rerun it herself at a later date and
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obtain the same output given the same input data. Second, a model is said to be
replicable to the extent that an independent researcher can run the original source code
on original input data and obtain the same output as the original investigator. Third, a
model is said to be reproducible to the extent that an independent researcher can
reimplement it without using the original source code and, given the same input, obtain
the same output as the original investigator (Delling et al. 2016).

Note that the contrast between replicability and reproducibility of experimental
research, drawn in terms of authorship, breaks down when applied to computational
modeling: both model replication and model reproduction are performed by an inde-
pendent investigator. This is unfortunate but inevitable if we want to keep to standard
usage. Speaking of terminology, I should also warn the reader that there are two
competing ways of using the terms “model replicability” and “model reproducibility”
in the literature. I have chosen to follow a convention inspired by Drummond (2009)
and endorsed by the Association for Computing Machinery. According to the other
tradition, the meanings of the two terms are reversed: i.e., what I defined as model
replicability is referred to using the term “model reproducibility” and vice versa (cf.
Plesser 2018; Miłkowski, Hensel, & Hohol 2018). Needless to say, there are also
writers who use the terms “model replicability” and “model reproducibility” more or
less interchangeably (see Barba 2018).

Someone unfamiliar with computational modeling may be surprised to learn that
neither repeatability nor replicability is easy to accomplish. After all, computers are
deterministic machines, aren’t they? In fact, however, the sheer complexity of the
models and the rapid changes of programming environments make rerunning a com-
puter simulation and actually getting the same output a potentially tedious exercise,
especially after a year or two. In order to ensure repeatability, the modeler has to
document every step of the computation leading from input data to the final result
because the slightest variation may affect the output. This includes keeping track of
software versions as well as the exact versions of scripts and parameters used. Because
human memory is limited, it is also important to store descriptions connecting succes-
sive versions of the code to the conceptual model the code is intended to implement
(Sandve et al. 2013).

Making sure that computational research is repeatable and replicable is as much
about record keeping as it is about quality of the research. And, just as in experimental
studies, keeping detailed notes facilitates error correction (Donoho et al. 2009). In a
sense, researchers who want to build repeatable models need to be able to communicate
effectively with the future versions of themselves, and researchers who want to produce
replicable models need to communicate effectively with other modelers. Insofar as a
future version of the original investigator is similar to other modelers, replicability can
be identified with repeatability plus public availability of the code and data. This is why
nine out of the ten rules for replicable computational research recommended by Sandve
et al. (2013) focus on repeatability. Note, however, that the idea that notes should be
written as if they were addressed to someone other than the author – as if their intended
reader were a different modeler – had been shaped by the requirement of
reproducibility.

There are two dimensions along which computational models are evaluated. The
first concerns what is known as correctness, which is a relation between an implemen-
tation and the conceptual model the implementation is taken to embody. Checking for
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correctness is called model verification. Verifying a computational model is basically
demonstrating that the code operates as intended or, as Balci put it, “model verification
deals with building the model right” (Balci 1997, p. 135). The second dimension is
validity, also called faithfulness (and sometimes fidelity), which is a relation between
the model and the system it represents. To validate a model is to demonstrate that it
describes the behavior of the source system (the target phenomenon) at the level
required by the objectives of the study (Zeigler, Muzy, & Kofman 2019, pp. 32–33).
As Balci put it, “validation deals with building the right model” (Balci 1997, p. 135).
Verification and validation are conducted throughout the model development process
but, since no method of model analysis guarantees either perfect verification or perfect
validation, both activities extend beyond that.

Replicating a model provides a method of its verification (Rand & Wilensky 2006)
and, although there are other methods as well, ensuring model replicability has some
important advantages besides offering an opportunity to discover previously undetected
errors. Replicability enables researchers to reuse and modify the original code and also
contributes to model validation by making it possible to run the simulation on new
datasets. Both of these contribute to theoretical progress.

Performing a reproduction attempt can also confirm or disconfirm the computational
model’s correctness. A failed attempt at reconstructing a model based on its verbal
description indicates that either the description is flawed (inaccurate or incomplete) or
the original implementation was incorrect (Cooper & Guest 2014). Yet model repro-
ductions also serve a different, more important function. They allow us to separate the
theoretical assumptions of the conceptual model from the extrinsic properties of its
implementation – i.e., features of the implemented model that are not intended as part
of the theoretical description of the world provided by the conceptual model. The two
kinds of properties often get conflated because most researchers do not specify the
conceptual model independently of its implementation (Cooper & Guest 2014;
McClelland 2009). Thus, reproductions improve our understanding of the model and
contribute to its validation, which is more theoretically significant than model verifi-
cation (Miłkowski, Hensel, & Hohol 2018; Drummond 2009).

Given the importance of model replicability and reproducibility, it is unsettling that,
like experimental psychology and experimental neuroscience, computational modeling
is experiencing a confidence crisis associated with poor replicability and reproducibility
of published research. And, same as with experimental science, there are two kinds of
methods that can be used to assess the rates of replicability and reproducibility. The
direct methods of assessment involve performing model replications or model repro-
ductions whereas the indirect methods focus on estimating the value of various
parameters known or supposed to affect model replicability or model reproducibility.

The direct methods of assessment are even more rarely used in computational
modeling than in experimental science. There is the journal ReScience C, established
in 2015, dedicated to publishing model reproduction studies (Rougier et al. 2017) but
there are no initiatives like the Open Science Collaboration that aim to estimate the
rates of replicability or reproducibility of computational models across the discipline.
Although some research teams make consistent attempts to reproduce models in their
field of interest, the results of their efforts do not yet add up to anything resembling a
general picture of the crisis. For example, Manninen et al. (2018) have tried to
reimplement two models of neural signal transduction, two spiking neuronal network
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models and eight models of astrocyte activity. They managed to obtain all the original
results for four studies (25%). As for model replicability, its direct assessments are
almost never made, which is not a serious problem, however, because indirect assess-
ments have much more scope and provide a good approximation of the upper bound on
estimates of replicability. The study by Manninen et al. (2018) is the only attempt I
know of to directly assess model replicability. The team evaluated the replicability of
10 spiking neuronal network models. Only 3 of the models were available on line – the
proportion of replicated results was over 60% for all three studies.

Most information we have about the replicability crisis in computational studies
comes from estimates of the prevalence of its necessary condition: public availability of
the code and data. According to a survey by Gundersen, only 6% out of the 400 papers
delivered at two top AI conferences organized in recent years have made the source
code for the algorithms publicly available (Hutson 2018). As to the field of computa-
tional simulation, Stodden et al. (2018) have recently evaluated the effectiveness of a
share-artefacts-on-demand policy introduced by the journal Science in 2011. It turned
out that, out of the 204 computational studies selected by Stodden and colleagues, 24
(about 12%) provided the source code and data by means of an external link or
supplementary materials. After contacting the authors of the remaining studies, Stodden
and colleagues were able to obtain artifacts for another 24% of the papers. According to
a survey conducted by Miłkowski, Hensel and Hohol (2018), the situation in compu-
tational neuroscience is slightly better, though far from ideal: 32% out of the 242 papers
published between January 1, 2016, and September 26, 2018, in three prominent
computational neuroscience journals provided the source code for the model. This
matches almost exactly the proportion of available artefacts reported by Manninen et al.
(2018) for the ten spiking neuronal network models they attempted to replicate.

Unfortunately, we do not have similar data on the reproducibility crisis, which is
both understudied and vastly underappreciated by the modeling community. I venture
that model reproducibility rates are lower than those of model replicability because,
other things being equal, model reproductions are harder and more time-consuming to
perform than are model replications. Information necessary to reconstruct a model
based on its verbal description is interspersed throughout the paper, some of it is
ambiguous or missing, and the equations and figures contain mistakes which a
researcher attempting a reimplementation must try to correct. The time it took
Manninen et al. (2018) to reproduce a model ranged between 2 h and over 2 weeks
– by contrast, a replication took them between no time at all and 2 days. We can also
predict that, without a radical change in the way computational modeling is being done
and evaluated, both crises are going to get worse because replications and reproduc-
tions become increasingly difficult and time-consuming as the models get larger and
more complex – which of course they are.

Despite paucity of data on the extent of the reproducibility crisis in computational
modeling, the community is becoming increasingly aware of the need to improve
descriptive completeness of reporting. The first step has already been taken. Various
subfields of computational modeling have developed and endorsed reporting standards.
For example, Nordlie, Gewaltig and Plesser (2009) provided detailed guidelines and
recommendations regarding descriptions of neural network models. This is an impor-
tant development because it shows that researchers in some areas have noticed how
difficult it may be to decide what to include in a research report and how exactly to go
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about it, especially in a rapidly growing field. Which information about a neural
network model ought to be included in the main body of the paper and which can be
relegated to supplementary materials? What if there is a space limit? How to construct
complete and unambiguous diagrams and tables? In any subfield, there are a number of
such seemingly mundane questions that must be answered in an informed and reasoned
way if research is to be effectively communicated and thereby potentially reproducible
(see Miłkowski, Hensel, Hohol 2018).

It is still an open question whether standards of reporting developed by some
communities in computational modeling are actually being met. None of the papers
describing the ten spiking neuronal network models investigated by Manninen and
colleagues presented model parameters in the format proposed by Nordlie, Gewaltig
and Plesser (2009) (Manninen et al. 2018, p. 12).

Having described the nature of the replicability and reproducibility crisis in compu-
tational modeling and assessed its scale based on available data, let me return to
experimental psychology and neuroscience. The second indirect empirical argument
for my hypothesis that the two disciplines are suffering from the reproducibility crisis in
large part because of the researchers’ failure to adhere to the norm of descriptive
completeness appeals to evidence of two worrying patterns of behavior concerning
communication.

5 Two worrying patterns of behavior in experimental psychology
and neuroscience

There are at least two attitudes that involve withholding information from fellow
researchers or misrepresenting it but do not directly affect reproducibility. The preva-
lence of these attitudes affects experimental research by giving rise to something akin to
the replicability crisis in computational modeling. In computational modeling, failure to
share code and data limits the ability of independent investigators to assess the
correctness of a model’s implementation and inhibits scientific progress by making it
impossible to reuse code. In experimental research, failing to share experimental data
limits the ability of independent investigators to assess the validity of the arguments
and inferences made by the original authors and, at least in the case of neuroimaging
data, inhibits progress by preventing reuse. Note also that the methodological differ-
ences between model replication and model reproduction carry over to experimental
research. When reanalyzing the data of an empirical study, one can run the original
analysis script and check how well the outputs match with reported outcomes (analytic/
computational replication), or write a new script based on the description provided in
the original paper and compare its outputs with reported outcomes (analytic/computa-
tional reproduction).

Kidwell et al. (2016), who investigated articles published in 2012 and 2013 by five
prominent psychology journals, found that less than 3% of the papers declared public
availability of the data (and most of the datasets turned out to be unusable or
incomplete). A similar problem occurs in neuroscience, where less than a few percent
of fMRI scans are available in public repositories (Poline et al. 2012). Furthermore,
researchers have been known to refuse to share data. In 2005, Wicherts and colleagues
contacted the authors of 141 papers published in four APA journals, which require the
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authors to share data on request. Only 27% of the authors complied (Wicherts et al.
2006).

On the upside, we are seeing signs of improvement. When Vanpaemel et al. (2015)
requested data from the authors of almost 400 papers published by APA journals, 38%
of the authors complied. Furthermore, data sharing is now in vogue and the conse-
quences of this are beginning to be felt. Nelson, Simmons and Simonshon (2018) have
even gone so far as to proclaim a renaissance of psychological science. However, most
data are not in yet and the current enthusiasm for open science may prove to be a short-
lived phenomenon. What is relevant to my argument is that researchers, including those
in experimental psychology and neuroscience, have persistently exhibited a marked
reluctance to share data. This reluctance seems to emerge spontaneously in many fields
despite declared adherence to Mertonian norms of scientific investigation (Anderson,
Martinson, & DeVries 2007; Houtkoop et al. 2018).

A second behavioral pattern associated with communication is the misrepresentation
of statistical results. Although it rarely renders replication attempts impossible, it can
increase the rate of false positives in the literature and make it difficult or even
impossible to assess the credibility and theoretical significance of published findings,
which, in the long run, is bound to affect the reproducibility rate in a whole field (cf.
Muthukrishna & Henrich 2019). Garcia-Berthou and Alcaraz (2004) found that over
11% of Nature papers using NHST reported incongruent statistical results, meaning
that reported p values were inconsistent with other statistical information provided in
the text. Bakker & Wicherts (2011) performed a similar study focusing on psychology.
They found that about 18% of statistical results were misreported and, more impor-
tantly, about 15% of the papers contained reporting errors that affected at least one
statistical conclusion. Nuijten et al. (2016) further confirmed these findings by
performing an automated analysis of 30,717 papers published between 1985 and
2013 by eight top psychology journals: 49.6% of the papers using NHST contained
at least one inconsistency and 12.9% contained an inconsistency that affected a
statistical conclusion. Given the perceived role of statistical significance in psycholog-
ical inference, the frequency of this kind of reporting error is striking. It would seem
that p values should be the subject of especially close scrutiny both by the authors of a
paper and its reviewers. Although some of the errors are likely intentional, a great deal
of them are probably honest mistakes that have not been caught before publication.

The two behavioral patterns I have discussed – namely, not sharing data and
misreporting statistical information – are only indirectly relevant to the communication
aspect of the reproducibility crisis in experimental psychology and neuroscience
because neither a lack of original data nor many of the mistakes in statistical informa-
tion prevents direct independent replication. My argument here is that if researchers
withhold or misrepresent one kind of information (irrelevant to reproducibility) then
they are likely to withhold or misrepresent other kinds of information as well (poten-
tially relevant to reproducibility). For example, out of 326 empirical studies published
between 2012 and May, 2015, in four leading psychology journals, almost 20%
contained a materials availability statement but of the materials “reportedly available
at a website or repository, 60% (N = 27) were actually available, 46.7% (N = 21) were
correct materials, 33.3% (N = 15) were usable materials, and 13.3% (N = 6) were
complete materials” (Kidwell et al. 2016, p. 9). I would submit that the same, mutatis
mutandis, applies to reporting infidelities but they are much more difficult to detect.
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Needless to say, both inferences are based on folk psychology and do not have
sufficient empirical support. However, the corresponding psychological constructs –
i.e., the dimensions of conscientiousness and honesty/dishonesty are largely domain-
independent and manifest themselves in numerous aspects of life (see, e.g., Roberts
et al. 2009; Mazar & Arieli 2015).

6 Direct evidence for widespread failure to provide complete research
descriptions in experimental psychology and neuroscience

It is time to confront our main question head on: “What proportion of published
research reports in experimental psychology and neuroscience do not contain all the
information a knowledgeable investigator would need in order to recreate the reported
study?”

Naturally, a reasonable answer must involve a review of the literature on those
aspects of quality of reporting that are likely to influence reproducibility. Studies of this
kind, though not necessarily targeting reproducibility, are relatively common in bio-
medical science. They usually compare a corpus of publications against an established
set of guidelines, developed by experts, informed by research and consistently updated.
Some guidelines, such as Consolidated Standards of Reporting Trials (CONSORT,
http://www.consort-statement.org/), Animal Research: Reporting of In Vivo
Experiments (ARRIVE, https://www.nc3rs.org.uk/arrive-guidelines) and The
Strengthening the Reporting of Observational Studies in Epidemiology (STROBE,
https://www.strobe-statement.org/index.php?id=available-checklists), apply to many
fields and study protocols, whereas others, such as Standards for Reporting
Interventions in Clinical Trials of Acupuncture (STRICTA, https://www.stricta.info/),
are much more specific (for more details see https://www.equator-network.org/, which
provides a comprehensive list of reporting standards in health research). The guidelines
are presented in the form of checklists, flowcharts and, increasingly, full-text explana-
tions and elaborations (e.g., Moher et al. 2010).

Although there is much room for improvement, both psychology and neuroscience
have developed and, to an extent, adopted a number of reporting standards. The
Publications and Communications Board of APA appointed the first Working Group
on Journal Article Reporting Standards (JARS) in 2006. The group’s report was
published as an article (APA Publications and Communications Board Working
Group on Journal Article Reporting Standards, 2008) and the guidelines were incor-
porated, in the form of four tables and a flowchart, into the sixth edition of the
Publication manual of the American Psychological Association (American
Psychological Association, 2010). The recommended standards related to: (1) reports
of new data collections regardless of research design, (2) studies with a manipulation or
intervention, (3) studies using random and nonrandom assignment of participants to
experimental groups and (4) meta-analysis reporting standards (MARS). The guide-
lines have recently been updated and expanded (Appelbaum et al. 2018). Neuroscien-
tists follow biomedical and psychological reporting guidelines but also have specific
standards of their own, such as Picton et al. (2000).

The most important developments cited by the authors of JARS as providing
motivation for the development of reporting standards were the movement toward
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evidence-based practice in medicine and education and an increasing reliance on
research syntheses, especially meta-analyses, in behavioral and social sciences. This
highlights that reporting standards are typically formulated with more than one aim in
mind, which means that not all research into quality of reporting will be relevant to
reproducibility. The functions of reporting standards that have little or no impact on
reproducibility include improving the readers’ ability to accurately interpret the re-
search and facilitating application of datamining techniques. For example, it is largely
irrelevant to reproducibility if most papers in a field do not contain some specific
information in their titles or abstracts, though it may be relevant to datamining and,
derivatively, to meta-analyses.

Research into how well the psychological and neuroscientific literature actually
conforms to reporting guidelines is scarce, especially if we restrict our attention to
adherence to standards potentially relevant to reproducibility. Alas, the situation is not
hopeless. There are a handful of studies that can shed some light on our question. Most
of them are found at the intersection of experimental psychology and neuroscience, on
the one hand, and computer science and biomedicine, on the other. The sample is far
from representative but beggars can’t be choosers. Below, I discuss the findings of four
such studies.

The first study, by Grant et al. (2013), investigated adherence to a variety of
published standards in controlled randomized trials (CRTs) of social and psychological
interventions. It covered clinical psychology, criminology, education and social work,
targeting reports “representative of the best trial research in these disciplines” (Grant
et al. 2013, p. 8). Given its large scope, it can give us a general idea of guideline
effectiveness in reports of CRTs of non-pharmacological treatments. The findings did
not vary significantly with discipline. Average compliance with all standards across the
disciplines was 42%.

Adherence to reporting standards related to internal and external validity was 38%
and 47%, respectively. To zoom in on some of the details relevant to reproducibility:
while 60% of the studies reported trial eligibility criteria, the majority failed to list all
inclusion and exclusion criteria, and although 71% of the studies provided the number
of participants assigned to each condition, compliance with reporting guidelines
concerning descriptions of random sequence generation, allocation concealment and
blinding ranged between 15 and 23%. This suggests that descriptively incomplete
reporting has a considerable impact on the reproducibility of CRTs of psychological
and social interventions as well over 50% of reports published in high-impact journals
are seriously deficient and, apparently, not more than 15% of the reports are complete.

The second study, by Robb et al. (2018), has less scope but provides much more
detail. It examines reporting quality of music interventions in healthcare by comparing
the latest literature (187 papers from 2010 to 2015) against a set of guidelines specific
to the field (Robb, Burns, & Carpenter 2011). Most of these guidelines were expressly
designed to improve reproducibility and translatability to treatment. The guidelines
apply to the following aspects of the interventions: theoretical background (rationale for
selected stimulus, specification of how the stimulus is expected to affect the targeted
outcome), content (details of the intervention: intervention strategies, who selected the
music, what kind of music it was, how the stimulus was delivered, etc.), delivery
schedule (number, duration and frequency of sessions), interventionist (the number,
qualifications and credentials of the persons who delivered the intervention), treatment
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fidelity (strategies of ensuring that the conditions were delivered as intended), setting
(location, privacy level and ambient sound) and unit of delivery (individuals or groups).

As expected, information in some categories was reported by most studies. Thus,
100% of the reports specified the intervention strategies (e.g., music listening, song-
writing, rhythmic auditory stimulation, etc.), 91% specified the unit of delivery and
89% – the person selecting the music (e.g., patient or investigator); 81% of the studies
provided a complete description of the delivery schedule. However, only 53% of the
reports described the theoretical background of the intervention, 34% specified music
and non-music materials used, 23% provided information on volume of the music, 20%
reported on treatment fidelity, 18% characterized the level of privacy and 12% de-
scribed the level of ambient sound; 15% of the studies using recorded music provided
reference for sheet music or sound recording. Overall, compliance was below 50% in
descriptions of four out of the seven aspects covered by the guidelines. As each of these
aspects, with the possible exception of theoretical background, is directly relevant to
reproducibility, it follows, again, that at least 85% of recent studies published in the
field of music intervention may be irreproducible due to incomplete reporting.

Unlike the first two studies I have discussed, the third one, by Brown et al. (2014),
assessed the psychological literature in terms of standards that had not been explicitly
adopted by the community. Brown and colleagues began by creating a comprehensive
list of information needed by a naïve researcher to replicate a psychological study. The
list, which they called The Replicability and Meta-Analytic Suitability Inventory
(RAMSI), was based on Mill’s canons, various extant standards, such as CONSORT,
and empirical studies into factors affecting the outcomes of psychological research.
With RAMSI in hand, the investigators examined 1083 quantitative research reports
published during 2010 by the five highest, middle and lowest ranking psychology
journals as judged using the top 100 ISI Web of Science 5-year impact factor.

RAMSI consists of five groups of items: method, participants, assessor,
experimenter and results. Brown et al. (2014) found that quality of reporting was best
in the category of results (descriptive completeness was 65–69%) and worst in exper-
imenters (11–16%). Overall scores of descriptive completeness were low (29–32%)
regardless of journal rank. Although, due to the method of its development, RAMSI is
open to the charge of arbitrariness, the study seems to offer a unique insight into the
reporting practices in psychology relevant to reproducibility.

My fourth and final example comes from neuroscience, where Poldrack et al. (2008)
presented a detailed reporting standard of fMRI research, providing both a set of
general principles and a checklist of parameters any fMRI study description should
contain. Given the noisiness of fMRI measurements, the value of a majority of the
numerous study parameters specified by Poldrack et al. (2008) can arguably affect the
final outcome of a study.

Recently, Carp (2012) has investigated adherence to this standard. He selected 241 fMRI
papers drawn from 68 neuroscientific journals, such as PLoS ONE, NeuroImage and
Cerebral Cortex, and compared them against Poldrack’s et al. (2008) checklist. The
parameters were grouped into four categories: experimental design, data acquisition, pre-
processing and modeling. Each category covered from 6 to 16 parameters. As to experi-
mental design, most studies reported the number of subjects (99.6%), the proportion of
female subjects (over 86%), the number of recording sessions (over 98%) and the design
type (over 83%). By contrast, only about 6% of the studies reported whether and how the
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task design was optimized for efficiency, less than 22% of the papers described criteria for
excessive head movement and about 28% of the studies reported the number of subjects
scanned but excluded from analysis. The list goes on. As to data acquisition, about 42% of
the studies reported the voxel dimensions, about 36% the coverage achieved, and just over
22% the order of slice acquisition. Pre-processing was the most poorly described category:
only three parameters were specified by a majority of the studies – about 14% of the studies
reported the reference slice used for slice-timing correction and only about 1% described the
interpolationmethod used during co-registration. Again, the list goes on. As Carp concludes
(2012, p. 297):

The widespread omission of these parameters from research reports, documented
here, poses a serious challenge to researchers who seek to replicate and build on
published studies. Changing even a single critical methodological decision may qual-
itatively alter the results of an experiment; changing many decisions at once may exert
profound and unpredictable effects on research outcomes.

7 Concluding remarks

If my analysis is correct then the reproducibility crisis experienced by experimental psy-
chology and neuroscience stems from two sources. First, the researchers are violating the
norms of scientific investigation, which leads to an increase in false positives, which in turn
leads to failed replication attempts. We know that this is happening from the standard
account. Second, however, the researchers are also violating the norms of scientific reporting
that must be followed if research is to be reproducible.

My argumentation for this latter claim proceeded in several stages. I started off by
showing the existence of an almost conceptual link between effective communication
and reproducibility: namely, that an independent investigator cannot recreate a study
without knowing how it was performed. I then described the standard, epistemically
oriented methods of assessing the reproducibility of experimental research in psychol-
ogy and neuroscience, arguing that they neglect the possible contribution of inadequate
reporting. Next, I showed how widespread failure to follow the norm of descriptive
completeness had in fact led to a replicability and reproducibility crisis in computa-
tional modeling. If I were to make an educated guess I would put model replicability at
about 20–60% and model reproducibility at about 10–40%. But the point is that the
existence of a replicability and reproducibility crisis in computational modeling dem-
onstrates how much of an impact incomplete reporting can actually have on reproduc-
ibility. Having established that, I returned to experimental psychology and neurosci-
ence. Here, I pointed to two worrying behavioral patterns that constitute indirect
evidence for the researchers’ tendency to produce descriptively incomplete or mislead-
ing research reports. And, finally, I discussed four empirical studies into quality of
reporting whose results are directly relevant to my claim – they all indicate that failures
to properly communicate research affect reproducibility in a major way.

It follows that a good approximation of the scale of the reproducibility crisis in
experimental science should involve taking the rate of false positives and adding to it
the rate of inadequate research descriptions in the literature. To paraphrase and extend
Ioannidis’ (2005) dictum: most scientific findings are false but many of the true ones
may actually be irreproducible anyway.
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Of course, the operation of adding the relative contributions of false positives, on the one
hand, and inadequate research descriptions, on the other, remains somewhat metaphorical
because we have no idea whether the two dimensions are independent. It is logically
possible that most inadequate research reports happen to describe false positive findings,
which would make a relatively small fraction of true positives irreproducible. And it is also
logically possible that that the opposite is true: that most inadequate research reports happen
to describe true positive findings, in which case a relatively large fraction of true positives
would be irreproducible. In the absence of data, it is probably reasonable to treat failure to
follow the norms of scientific investigation and failure to adhere to the norms of scientific
reporting as if they were independent. Be that as it may, the impact of incomplete reporting
on research reproducibility in experimental psychology and neuroscience, as well as in other
disciplines, seems considerable although much more work needs to be done to properly
assess its extent and causes.

My claim that inadequate, and especially incomplete, reporting may actually be a
major cause of the current reproducibility crisis in experimental psychology and neuro-
science – and that this contribution is relatively neglected – should not be confused with
the ideas of the open science movement (see Crüwell et al. 2019 for a review). Although
I whole-heartedly support many open science initiatives, my focus in this paper is purely
epistemic: I simply want to know what proportion of findings in experimental psychol-
ogy and neuroscience are likely irreproducible. The open science movement, by con-
trast, is primarily interested in improving the quality of scientific research and commu-
nication in many respects, including but not limited to reproducibility.

Of course, the recommendations are based on evidence, which means that the open
science movement is both sensitive to relevant empirical findings and stimulates further
meta-scientific research. However, studies into adherence to reporting standards relevant to
reproducibility have come mostly from the biomedical sciences, where the communication
aspect of the reproducibility crisis seems to have received much more recognition than in
experimental psychology and neuroscience. It is no coincidence, for example, that the
following quote comes from a paper written mostly by biomedical scientists: “Poor
transparency can have very real costs. For example, the Reproducibility Project in Cancer
Biology – a major effort to replicate 50 high-impact cancer biology papers – recently had to
abandon 32 replication attempts partly because pertinent methodological information about
the original studies was not available” (Hardwicke et al. 2020, p. 7). In a sense, then, I am
simply applying some insights from computational modeling and biomedicine to experi-
mental psychology and neuroscience. My fear is that, if the reproducibility project men-
tioned by Hardwicke and colleagues were to be reported, after completion, from a purely
epistemic perspective, the abstract would read something like:we conducted a replication of
18 high-impact cancer biology studies.

In fact, Boekel et al. (2015) did write in the abstract: “Here, we attempt to replicate
five SBB correlation studies comprising a total of 17 effects” – which is also how I
reported the study in section 1. Of course, this does not misrepresent Boekel and
colleagues’ findings, especially given that the reader learns about the excluded studies
from the Materials and Methods section of their paper (and about the number of
excluded effects from a preregistration protocol, http://confrepneurosci.blogspot.com/
2012/06/advanced-methods-and-analyses_26.html). But, I submit, it would not be
entirely inadvisable to consider a slightly different formulation as well: “Here, we
attempt to replicate eight SBB correlation studies comprising a total of 23 effects”.
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