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Abstract
Background  Acetaminophen (APAP) is the most common cause liver injury following alcohol in US patients. Predicting 
liver injury and subsequent hepatic regeneration in patients taking therapeutic doses of APAP may be possible using new 
‘omic methods such as metabolomics and genomics. Multi’omic techniques increase our ability to find new mechanisms of 
injury and regeneration.
Methods  We used metabolomic and genomic data from a randomized controlled trial of patients administered 4 g of APAP 
per day for 14 days or longer with blood samples obtained at 0 (baseline), 4, 7, 10, 13 and 16 days. We used the highest ALT 
as the clinical outcome to be predicted in our integrated analysis. We used penalized regression to model the relationship 
between genetic variants and day 0 metabolite level, and then performed a metabolite-wide colocalization scan to associate 
the genetically regulated component of metabolite expression with ALT elevation. Genome-wide association study (GWAS) 
analyses were conducted for ALT elevation and metabolite level using linear regression, with age, sex, and the first five 
principal components included as covariates. Colocalization was tested via a weighted sum test.
Results  Out of the 164 metabolites modeled, 120 met the criteria for predictive accuracy and were retained for genetic 
analyses. After genomic examination, eight metabolites were found to be under genetic control and predictive of ALT 
elevation due to therapeutic acetaminophen. The metabolites were: 3-oxalomalate, allantoate, diphosphate, L-carnitine, 
L-proline, maltose, and ornithine. These genes are important in the tricarboxylic acid cycle (TCA), urea breakdown pathway, 
glutathione production, mitochondrial energy production, and maltose metabolism.
Conclusions  This multi’omic approach can be used to integrate metabolomic and genomic data allowing identification of 
genes that control downstream metabolites. These findings confirm prior work that have identified mitochondrial energy 
production as critical to APAP induced liver injury and have confirmed our prior work that demonstrate the importance of 
the urea cycle in therapeutic APAP liver injury.
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Introduction

Acetaminophen is the prototypical hepatotoxin and has 
been used for numerous hepatotoxin models [1]. The 
drug is responsible for significant liver injury following 
overdose, and occasionally after therapeutic dosing. This 
has led to several labs to use ‘omic techniques to examine 
the pathophysiology of hepatic injury due to acetaminophen 
in order to learn new insights of he mechanisms of injury 
and hepatic regeneration [2–5]. The increased availability 
of ‘omic techniques has yielded numerous datasets with 
multi’omic data, though this has not yet been performed 
with acetaminophen. There is a strong belief that integration 
of these increased data will lead to new understanding of 
disease, drug therapy, and ultimately improve patient care. 
In fact, integrative analyses of proteomic and genomic 
data from patients with colon and rectal cancers have 
identified new associated genes, thereby providing a 
functional discovery framework of new disease pathways 
[6]. Metabolomic and proteomic markers can predict sepsis 
death with high accuracy [7] and clinical data paired with 
epigenomic data can predict clinical outcomes in patients 
with COVID-19 at initial presentation using machine 
learning techniques [8]. Integrative programs have been 
developed [9] and statistical packages have outlined 
pipelines for data analysis [10]. With the exception of 
the COVID-19 epigenomic work, these pipelines are 
remarkably manual in their data curation, which limits 
scalability of these approaches. New pipelines are needed 
to adequately leverage more than one ‘omic dataset.

Capturing more than one ‘omic dataset on a cohort raises 
questions as to which dataset takes priority in a pipeline and 
introduces difficulty in determining statistical and clinical 
significance of the linked findings. Fully agnostic approaches 
are hindered by multiple testing limitations which raise the 
number of patients that must be examined. These analytic 
problems become exacerbated further when clinical phe-
notypes are polygenic and multifactorial. These complex 
phenotypes require thousands of patients to be effectively 
examined with currently available multi’omic pipeline meth-
ods. Analytic methods that allow one ‘omic dataset to advise 
the examination of another, when aligned with the biologic 
underpinnings of disease or drug mechanism, can lead to 
findings that are more likely to be clinically significant. New 
multi’omic pipelines can maximize the biologic understand-
ing of clinical conditions by allowing triangulation of find-
ings generated from one technique in the other as well as 
reduction of sample size needed for targeted discovery in 
the second dataset. Additionally, new integrative pipelines 
can minimize the chance of type 1 error.

Toward that end, we have utilized a well character-
ized multi’omic dataset containing detailed clinical 

observations, metabolomic data, and genomic data to 
develop a pipeline for multi’omic mosaic modeling of 
acetaminophen induced alanine aminotransferase (ALT) 
elevation. Utilizing ‘omics to characterize acetaminophen 
induced liver injury can lead to mechanistic understanding 
of ALT elevation triangulated by the genomic and metabo-
lomic data generated. Integration of these datasets gives 
a more rich understanding of which metabolites associ-
ated with ALT elevation are under genetic control, and 
thus, may predict ALT elevation prior to drug administra-
tion. The objective of this study is to determine new genes 
associated with ALT elevation using a novel integrated 
metabolomic and genomic multi’omic method.

Methods

Patients and Parent Study

The parent study was an outpatient placebo-controlled trial 
(NCT00743093) in which patients received therapeutic 
doses of acetaminophen, totaling 4 g/day [11]. Compliance 
was verified by study diary, pill counts at each study visit, 
and confirmation of acetaminophen in the plasma. ALT was 
drawn on study days 0 (baseline), 4, 7, 10, 13 and 16 and, 
when elevated, until it returned to baseline. Patients did not 
change their diet throughout the study. ALT is used as the 
marker of hepatocyte death and is specific for hepatocellular 
injury. All subjects provided informed consent. We included 
male and female subjects who were age 18 years or older 
and who did not have any of the following exclusion 
criteria: history of acetaminophen ingestion on any of 
the four days preceding study enrollment or a measurable 
serum acetaminophen concentration at time of enrollment; 
laboratory testing suggesting active viral hepatitis A, B, or 
C infection; any of the following tests greater than the upper 
limit of normal at screening: serum aminotransferase or total 
bilirubin, International Normalized Ratio (INR) or alkaline 
phosphatase activity; platelet count less than 125,000/mL; 
positive pregnancy test; history of cholelithiasis (without 
cholecystectomy); history of heavy ethanol use defined as 
consuming more than an average of 3 alcohol containing drinks 
daily or 3 or more alcohol containing drinks on any given day 
over the preceding 2 weeks prior to study enrollment; new 
prescription medication started within the previous 30 days; 
taking isoniazid or warfarin; currently has anorexia nervosa or 
reports a fasting type diet; clinically intoxicated, psychiatrically 
impaired or unable to give informed consent for any reason; 
known hypersensitivity or allergy to acetaminophen. Only the 
patients receiving APAP were included in these analyses. All 
blood samples were stored at -80 °C and there was only one 
thaw prior to ‘omic analyses.
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Metabolomic and Genomic Analyses

Plasma samples were extracted and 164 metabolites rel-
evant to know biologic pathways and acetaminophen drug 
mechanism were measured at day 0, as previously described 
[12]. Quantitative metabolite levels were determined for 
each patient and used for statistical analyses [12]. DNA was 
extracted from patient whole blood and run on the Illumina 
MEGA array as previously described [4]. Genotyping at 2.2 
million loci was determined. Imputation was not performed 
to characterize non-genotyped loci. Metabolomic data rep-
resent the end-stage products of upstream biologic pathways 
and thus, is the closest ‘omic technique to the clinical pheno-
type examined. Genomic data represent the underlying code 
that drive this downstream pathways. Thus, linking these 
two ‘omic datasets can capture the span of biologic activity 
from code to phenotype.

Statistical Analysis

We employed a one-sample colocalization analysis to iden-
tify metabolites under genetic control associated with ALT 
elevation. This approach can be conceptualized as an exten-
sion of the BADGERS approach [13] where metabolites are 
leveraged as intermediate phenotypes. Such an approach 
has previously been applied to identify brain imaging 
endophenotypes associated with Alzheimer’s disease [14]. 
This approach can be conceptualized in two ways: first, as 
an extension of the transcriptome-wide association study 
framework to additional mediating phenotypes (i.e., not 
limited to gene expression), and as an extension of a Men-
delian randomization framework where polygenic scores, 
rather than single nucleotide variants (SNVs), are used to 
quantify the SNV-exposure relationship. Although typical 
transcriptome wide analysis studies (TWAS) type analy-
ses leverage two samples (one for the exposure and one 
for the outcome), we note that one-sample colocalization 
approaches are employed in literature, and generally shown 
to maintain good operating characteristics [15]. Given the 
difficulty of rigorously assessing the instrumental variable 
assumptions required to draw causal conclusions about the 
relationship between SNVs, metabolites, and ALT elevation 
in a one-sample study of small size, we do not draw causal 
conclusions from our analysis regarding the relationships 
between SNVs, metabolites, and ALT elevation. We claim 
that significant TWAS-type associations in this analysis are 
evidence of colocalization between the metabolite and ALT 
elevation in our sample, corresponding to the original inter-
pretation of TWAS [16].

We conducted a metabolite wide colocalization scan to 
associate the genetically regulated component of metabolite 
expression with ALT elevation. This framework can detect 
shared genetic control of ALT elevation and metabolite level, 

and thus is distinct from a ‘differential expression’ metabo-
lite analysis, whereby observed metabolite level is associ-
ated with ALT elevation. In this framework, we first model 
the genetically regulated component of metabolite level by 
estimating a machine learning model to predict metabolite 
level from SNVs. This model provides coefficient estimates 
for each SNV. We then weight the SNV-ALT association 
statistics (Z statistics) by the SNV-metabolite coefficients to 
conduct a ‘weighted sum’ or TWAS type test. This can be 
interpreted as a test for colocalization of ALT and metabolite 
regulation, and may be interpretable as a causal mediation 
(i.e. the causal pathway whereby SNVs causally modulate 
metabolite level, and metabolite levels causally modulate 
ALT elevation).

To quantify ALT elevation, we used the highest meas-
ured ALT value across the study. To quantify metabolite 
level, we used the observed value at day zero. Genome-wide 
association study (GWAS) analyses were conducted for ALT 
elevation and metabolite level using linear regression, with 
age, sex, and the first five principal components included as 
covariates. To model the genetically regulated component 
of metabolite level, we estimated an elastic net penalized 
regression model. Only the top 50,000 SNPs were included 
in the elastic net modeling to reduce computational com-
plexity; given the relatively few number of nonzero SNPs 
selected (< 1,000 for all metabolites), we do not believe that 
this screening step meaningfully affects model accuracy.

Elastic net models were fit and assessed as follows. Data 
was split into training and testing sets, with the training set 
comprising 75% of the sample. fivefold cross-validation was 
performed on the training sample and accuracy was assessed 
on the testing sample. This training–testing split was per-
formed ten times (thus entailing ten separate cross-validation 
procedures). Tuning parameters were chosen to be the set 
of parameters that produced the best testing accuracy most 
frequently. After tuning parameters were selected, the model 
was re-fit to the full dataset. Coefficient estimates from this 
final model were used for the ensuing metagenome-wide 
association study (MWAS) test. Only models with average 
testing accuracy > 0.001 were considered for MWAS tests, 
thus reducing weak-instrument bias.

We note the potential risk associated with overfitting a 
machine learning model to the SNV-metabolite relationship 
in such a one-sample analysis. Namely, an overfit model 
would predict some of the non-heritable metabolite variance, 
thus potentially inducing false positive colocalization asso-
ciations. Although our rigorous cross-validation procedure 
reduces the likelihood of overfitting, it does not preclude the 
possibility. To reduce the likelihood of overfitting, we use 
a simple clumped and thresholded polygenic risk score to 
model the SNV-metabolite relationship and likewise con-
duct TWAS-type tests. We compare these associations to 
those identified via the elastic net framework. Polygenic risk 
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scores were estimated in PLINK using a threshold p-value 
of 0.01 and a Linkage Disequilibrium (LD) R2 cutoff of 0.1.

Results

Data from 192 patients taking 4 g of APAP daily were included 
in this analysis. All metabolites with cross-validated prediction 
R
2
> 0.01 were retained in the stage two association analysis. 

Out of the 164 metabolites modeled, 120 met the criteria for 
predictive accuracy and were retained (Fig. 1).

A metabolite-ALT association was determined to be 
significant if the TWAS-type association test statistic was 
associated at a type I error rate of 0.05 with a Bonferroni 
correction for the number of metabolites. Eight such asso-
ciations were identified via both the elastic net TWAS-type 
approach and the pruning and thresholding approach. These 
metabolites are listed in Table 1. The correlation between 
the negative log of the p-values for the elastic net and the 
pruning and thresholding tests was 0.94, indicating a strong 
degree of agreement between the two approaches (Fig. 2). 
Given that the pruning and thresholding approach should be 
less prone to overfitting, this is evidence that overfitting of 
the stage 1 models is not driving the identified associations.

Genetically Mediated Metabolites

This multi’omic analysis identified eight metabolites 
under genetic control predictive of ALT elevation due to 
therapeutic acetaminophen (Table  1). These metabolic 
pathways are associated with mitochondrial energy 
production and hepatocyte injury and the pathways will 
be outlined below. Interestingly, some but not all, of these 

metabolites were identified with our isolated metabolomic 
examination of these patients [12]. This highlights the 
ability of this multi’omic method to identify new genes for 
interrogation using an integrated multi’omic dataset.

3-oxalomalate is a metabolite that interacts with the 
of the tricarboxylic acid cycle (TCA). This metabolite 
was not previously identified as associated with ALT 
elevation in our prior analyses. Some organisms, and 
some humans possess a truncated version of the TCA 
cycle, known as the  glyoxylate-bypass, that converts 
acetyl CoA to biosynthetic intermediates without the loss 
of carbon dioxide [17–19]. While in most eukaryotes the 
conversion of malate to oxalacetic acid is catalyzed only 

Fig. 1   Histogram showing the cross-validated accuracy of the elastic 
net models predicting metabolite level from SNVs. Black vertical 
line denotes the 0.01 cutoff for retaining metabolites in the stage 2 
analysis. The y axis is the count of metabolites.

Table 1   Significant metabolite-ALT elevation associations for the 
TWAS-type tests.

P-values significant after the Bonferroni correction are bolded

Compound Elastic net P Pruning and 
thresholding P

3-Oxalomalate 1.9E-4 4.3E-5
Allantoate 1.2E-5 4.6E-5
Dimethylglycine 5.2E-6 1.2E-5
Diphosphate 2.9E-4 1.7E-5
L-Carnitine 2.8E-4 8.1E-4
L-Proline 5.0E-7 2.3E-6
Maltose 1.7E-4 2.1E-6
Ornithine 3.2E-4 2.1E-5

Fig. 2   Scatterplot of the negative log base 10 of p-values from the 
elastic net TWAS-type test (x-axis) and the negative log base 10 of 
p-values from the pruning and thresholding TWAS-type test (y axis).



259Journal of Medical Toxicology (2023) 19:255–261	

1 3

by an NAD-dependent enzyme (mitochondrial malate 
dehydrogenase [20]), prokaryotes that employ this variation 
of the TCA cycle possess an alternative quinone-dependent 
enzyme, RXNI-3 [21]. Variants in this gene can lead to 
decreased ATP production, and subsequently decreased 
mitochondrial energy production, and may be associated 
with hepatocyte death in patients taking acetaminophen.

Allantoate represents a metabolite of the uric acid cycle, 
and the production of ammonia. This would be expected 
in the setting of hepatocyte death. This metabolite is 
under polygenic control [22] though ALLC (allantoicase) 
regulates allantoate breakdown and urea production. Failure 
to metabolize allantoate leads to mitochondrial energy 
dysfunction under stress. We had identified this metabolite 
in the past [12] and now have a genetic focus to examine.

Dimethylglycine is a metabolite found in or produced 
by  E. coli bacteria and has been associated with 
hepatomegaly and ALT elevation when mice are stressed 
with lipopolysacchride [23]. This metabolite is also 
a precursor to glycine which is a critical precursor to 
glutathione. This metabolite is under the control of the 
human gene, DMGDH (dimethylglycine dehydrogenase), 
The enzyme is found as a monomer in the mitochondrial 
matrix and uses flavin adenine dinucleotide and folate as 
cofactors. Mutation in this gene causes dimethylglycine 
dehydrogenase deficiency [24] and which limits production 
of glycine, subsequently decreasing glutathione. This 
represents a down-regulated portion of the glutathione 
pathway in hepatocytes that has not been associated with 
hepatic injury due to acetaminophen in the past.

Diphosphate, or pyrophosphate, is present in a wide range 
of dietary compounds. In humans, diphosphate is involved in 
several metabolic pathways, some of which include cardiolipin 
biosynthesis. Diphosphate is also involved in several 
metabolic disorders, some of which include hyperinsulinism-
hyperammonemia syndrome, methionine adenosyltransferase 
deficiency, mevalonic aciduria, and g(m2)-gangliosidosis: 
variant B, Tay-Sachs disease [25]. These diseases are all 
genetically mediated, though they involve different genes 
and thus, diphosphate control associated with ALT elevation 
is likely polygenic. Given the polygenic nature of this 
metabolite, it is unclear exactly which genetic region or 
regions are associated with this clinical finding.

L-carnitine is elevated when the mitochondrial shuttle 
is damaged and hepatocyte death occurs. Long chain fatty 
acids are transferred via the mitochondrial l-carnitine shuttle 
leading to energy production and this rate-limiting enzyme 
controls a key regulatory step for fatty acid β-oxidation 
[26]. Genes involved in regulation of this metabolite include 
SLC25A20, CPT1A, CPT1B, CPT2, and CPT1C [27]. 
SLC35E4 has been identify in past transcriptomic work in 
patients that have elevated ALT due to therapeutic APAP 
ingestion [2].

L-proline is a cyclic, nonessential amino acid in humans 
that is a constituent of many proteins. This metabolite is a 
breakdown product of protein, and thus, while it is likely 
under some genetic control, it is more likely to be elevated 
when there is protein breakdown [28]. There are numerous 
genes associated with this metabolite since it is a product 
of protein breakdown and the genes are spread across the 
genome.

Maltose elevation has been associated with fatty liver 
disease [29]. This metabolite was found in our prior metab-
olomic work and may represent alteration in starch and 
sucrose metabolism which puts hepatocytes at risk. Fatty 
liver disease is known have over 100,000 genes associated 
and genes associated with this metabolite are spread across 
the genome making it difficult to identify which specific 
gene is responsible for the association in this cohort.

Ornithine has a known role as a hepatoprotective agent. 
Mutations in the mitochondrial ornithine transporter result in 
hyperammonemia, hyperornithinemia, homocitrullinuria (HHH) 
syndrome, a disorder of the urea cycle. The pathophysiology 
of the disease may involve diminished ornithine transport 
into mitochondria, resulting in  ornithine accumulation 
in the cytoplasm and reduced ability to clear  carbamoyle 
phosphate and ammonia loads. This transfer is mediated by the 
mitochondrial ornithine transporters SLC25A15, AF112968, 
and ORNT1 [30]. Diminished ornithine transport most certainly 
leads to hepatocyte death. Genes involved in conversion of 
ornithine into downstream metabolites include, OAT, OTC, 
ODC1 [31].

Discussion

In this multi ‘omic analysis we have identified several 
metabolites under genetic control associated with aceta-
minophen induced ALT elevation. This analysis builds 
upon our prior work that utilized isolated metabolomic 
and targeted genetic analyses and builds a multi’omic pipe-
line that leverages the power of both datasets to identify 
the genetic underpinning of these metabolic associations. 
This technique allows for identification of new pathways, 
and the genes therein, that contribute to clinical outcomes. 
Prior studies have used the TWAS approach to link mRNA 
variability to the genes associated [14], though this is the 
first demonstration of a similar approach linking metabo-
lomic data to genomic data. Typical multi’omic studies 
that integrate metabolomic and genomic data require 
large amounts of time to curate [32]. This technique offers 
the advantage of rapid distillation of the most pertinent 
metabolites and allows targeting of likely genetic etiolo-
gies advised by the clinical data. This technique is similar 
to a polygenic risk score within the metabolite pathways. 
Validation of findings in a separate cohort is still necessary 
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though this allows far fewer patients to be enrolled and 
targeted genetic analysis in the subsequent study popu-
lation. The importance of this new pipeline is the abil-
ity to integrate two ‘omic datasets together rapidly, the 
ability to triangulate findings in the second dataset with 
decreased sample size and subsequently, increased power, 
and decreased risk of type 1 error. This pipeline approach 
can increase the biologic understanding of the mechanisms 
of disease, drug effectiveness, safety, and maximize the 
likelihood of reproducibility.

Some, but not all metabolites agree with our prior 
metabolomic work. This is encouraging as it further 
demonstrates the validity of the prior metabolomic analyses 
but demonstrated this complementary method for identification 
of next genes to interrogate. In the past, we had identified 
allantoate, maltose, and ornithine [12]. These metabolite 
changes represent energy regulation and mitochondrial 
dysfunction that lead to hepatocyte death. New metabolite 
pathways under genetic control were 3-oxalomalate, 
diphosphate, L-carnitine, and L-proline. The genes in these 
pathways are now targeted for further exploration to determine 
if a single SNV or a collection of SNVs results in the genetic 
association found through this work. Additionally, we have 
identified the upstream metabolite, dimethylgycine which is 
regulated by the gene DMGDH. This may be the etiology of the 
lower glutathione levels in those that had ALT elevation [12].

This dataset is unique compared to other acetaminophen 
liver injury data. These patients ingested therapeutic APAP 
and were followed with serial blood work over time. This 
allows for examination of the mechanisms of transient 
liver injury due to a drug insult and the mechanisms of 
hepatic regeneration. Past genomic studies have identified 
a range of variants differentiating outcomes in overdose 
patients including UGT2B15, UGT1A1, CYP3A5, CD44, 
and CYP2E1 [33–35]. In those studies, there was not 
adequate confirmation of acetaminophen overdose and the 
mechanisms of liver injury in overdose are likely different 
at therapeutic ingestions making it difficult to apply those 
data to patients taking the drug appropriately. One well 
conducted transcriptomic study that included 54 patients 
(10 placebo) ingesting therapeutic APAP for 14 days and 
5 overdose patients revealed alterations in RNA transcripts 
in genes associated with mitochondrial energy production 
(ZBTB16) [2]. We also found a variant in the SLC ornithine 
transporter gene identified by this group [2]. We have 
confirmed these findings in this multi’omic analysis. 
It is not surprising that we did not identify metabolites 
associated with immune function, as was observed in our 
and others targeted genetic analyses [2, 36]. There may 
not be specific metabolites associated increased immune 
response as the response leads to cell death which may be 
further upstream.

Limitations

Limitations of this approach include the potential for 
overfitting. This limitation was mitigated by employing 
two methods to prevent this, pruning and thresholding. 
Additionally, this method will not identify the specific SNPs 
that yield the metabolite alteration, but rather the pathway 
and the genes that may be involved. The investigator must 
still examine each gene for deleterious variants and follow 
with targeted genetic analyses. Our genetic platform did 
not include full sequence data, but rather 2.2 million SNPs. 
Thus, we may miss variants in intergenic regions which are 
felt to be increasingly important in regulation of expression. 
We opted not to perform imputation to limit the risk of 
overfitting and decrease type 1 error. This cohort is not large 
enough to determine rare variants present at less than 1% 
frequency in the population.

Conclusions

This novel work uses a multi’omic approach to identify 
genes responsible for metabolomic patterns in patients 
with elevated ALT due to therapeutic APAP ingestion. 
This analytic technique can be used to leverage multi’omic 
datasets to determine which metabolites are under genetic 
regulation.
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