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Abstract
During heavy rains, traffic monitoring is limited, as the affected areas are monitored by reporting and patrolling. In this study, 
a method for detecting traffic anomalies during heavy rainfall events was established, and a model that uses probe vehicle 
data to detect traffic anomalies during a disaster (an event in which vehicles make U-turns in front of a damaged area) was 
proposed. In addition, a parameter calibration method was developed for the model using past disaster-related data. The 
generalizability of the calibrated model was evaluated by applying it to other disasters. According to the results, the proposed 
model exhibited good generalizability.

Keywords Probe data · Disaster · Anomaly detection · Traffic monitoring

1 Introduction

Traffic anomalies are common during disasters. In this 
study, a model to detect traffic anomalies during heavy rain-
fall events was developed, and its versatility was evaluated. 
To mitigate the effects of a disaster, understanding traffic 
anomalies following a disaster and devising countermeas-
ures is necessary. Therefore, traffic-anomaly detection is 
important. Currently, road administrators assess damage in 
the event of a disaster through onsite inspections (visual 
confirmation) and CCTV cameras. Access to a disaster site 
may be limited owing to traffic restrictions and congestion 
caused by evacuation. In addition, the number of locations 
where CCTV cameras can be installed is limited, and some 
areas may not be monitored. In the event of a heavy rainfall 

disaster, characterized by simultaneous damage, efficient and 
prompt detection of hazardous areas is necessary. Previously, 
we analyzed traffic anomaly and proposed an anomaly detec-
tion method in the event of heavy rainfall, snowfall, and 
earthquakes [1–6]. During heavy rainfall, a vehicle moving 
in traffic may make a U-turn in front of a damaged area 
after noticing a disaster-struck area (e.g., flooded roads). If 
such traffic anomalies can be detected automatically, they are 
expected to contribute to (1) the early detection of hazard-
ous areas and (2) the prioritization of areas for field surveys 
(e.g., surveys in areas where traffic anomalies occur).

A method for detecting the U-turn behavior (traffic anom-
aly) of vehicles during heavy rainfall using probe-vehicle 
data is proposed in this paper. The proposed method was 
used to developed a calibration method for model param-
eters. Finally, the generality (transferability) of the model 
was evaluated by applying it to other disasters.

2  Previous Research

In this section, previous studies from two perspectives 
(understanding the actual traffic situation during a disaster 
and detecting traffic obstacles) are summarized. This section 
is concluded by describing the contributions of this research 
based on previous studies.
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2.1  Traffic State Analysis during Disasters

Zhu et al. [7] analyzed the changes in traffic patterns after 
the collapse of the I-35W bridge using vehicle detectors, 
bus user statistics, and questionnaires. A temporary change 
in the traffic pattern on the highway near the I-35W bridge 
was observed, and the traffic demand did not change sig-
nificantly after the collapse. The actual traffic conditions 
in the entire road network could not be determined owing 
to limited the observation points of the vehicle detectors. 
Moreover, the results of questionnaire surveys are not 
always accurate as they are based on memory of a subject, 
and obtaining a large sample is difficult since surveys are 
time-consuming.

Probe vehicle data collected from cell phones and car 
navigation systems can provide detailed information on 
the routes and speeds of trips across an entire road net-
work. Several researchers analyzed traffic during disas-
ters using probe vehicle data [7–10]. For example, Hara 
et al. [10] quantitatively analyzed a long traffic jam (the 
so-called gridlock) caused by evacuation during the Great 
East Japan Earthquake in March 2011. The tsunami that hit 
traffic in the gridlock caused extensive damage.

Probe vehicle data have been extensively utilized to 
understand traffic conditions during disasters and can help 
understand vehicle behavior over a wide area, even in the 
event of a disaster. Therefore, probe vehicle data is effec-
tive for detecting traffic anomalies during heavy rainfall 
events.

2.2  Traffic Anomaly Detection

Cullip and Hall [11] and Kawasaki et al. [12] attempted to 
detect traffic anomalies using vehicle detectors installed 
as sensors. The differences between normal and abnor-
mal conditions in terms of traffic volume, occupancy, and 
lane-wise speed were analyzed using vehicle detectors, 
and thresholds were set to discriminate between these con-
ditions. Subsequently, traffic disturbances were detected by 
determining whether the newly obtained vehicle detector 
data were normal according to threshold values.

Asakura et al. [13] obtained a shock wave surface con-
necting the inflection points of a vehicle trajectory in two 
dimensions (time × distance traveled) as a function of time 
and distance traveled at the time of traffic disturbance. 
Cai et al. [14] defined “abnormal behavior” as wobble or 
lane departure at the entry section of an intersection on 
a public road in the event of a traffic disturbance. The 
time and location of the traffic disturbances were estimated 
using only the probe trajectory data near the intersection 
(plane). We attempted to detect abnormal behavior using 

only the probe trajectory data of the vicinity of an inter-
section (flat surface). Based on the speed and direction 
of travel obtained from the probe trajectory data, clusters 
of vehicle trajectories indicating normal and abnormal 
behaviors were constructed in advance. When a newly 
obtained trajectory was classified into a cluster of abnor-
mal behavior, the trajectory was detected as abnormal 
behavior (occurrence of traffic disturbance). However, if 
the entire obtained trajectory for the entire road network 
is statistically processed, the computational load increases 
significantly. In addition, even if a vehicle is classified into 
a cluster of abnormal behaviors, determining whether it is 
classified into a cluster owing to a unique vehicle behavior 
during a disaster is not possible. Therefore, constructing a 
model based on the abnormal behavior of vehicles during 
disasters is necessary. Hirata et al. [15] used probe vehicle 
data corresponding to a heavy rainfall event to determine 
1) whether traffic anomalies similar to those observed in 
previous disasters could be identified (Is there a generality 
in traffic anomalies?); (2) the common characteristics of 
traffic anomalies across multiple cities; 3) the quantita-
tive analysis results of the traffic anomalies in front of the 
affected area. Events similar to those observed during pre-
vious disasters were determined. The results showed that 
vehicles exhibited U-turn behavior in front of damaged 
areas in the event of heavy rainfall in several cities. This 
behavior can be characterized by the location and speed of 
the U-turn. In this study, a U-turn detection method was 
developed based on the U-turn characteristics identified in 
the aforementioned studies.

2.3  Contribution of this Study

The contributions of this study, based on the previous stud-
ies, described in Sections 2.1 and 2.2, are given below:

1) Proposal of anomaly detection method: A U-turn in front 
of a damaged area in the event of heavy rainfall was 
defined as a traffic anomaly. We proposed a simple and 
fast U-turn detection method that uses only probe vehi-
cle data.

2) Parameter calibration method: The parameters of the 
detection model must be calibrated to detect U-turns. In 
this study, we proposed a method for calibrating param-
eters using historical data corresponding to heavy rain-
fall disasters.

3) Generalizability of the anomaly-detection model: We 
applied the calibrated anomaly-detection model to 
typhoon data of multiple cities and evaluated its accu-
racy. This model can accurately detect traffic anomalies 
(U-turns). Hence, the proposed model can be applied 
(extended) to various scenarios, such as newly occurring 
disasters.
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3  Methodology

In this section, an overview of the data used in this study 
is provided, and the U-turn detection algorithm based on 
the probe data is described.

3.1  Data

An overview of the data is provided in this section. First, 
meteorological and disaster-related data for heavy rainfall 
events were obtained. Data related to Typhoon No. 19, 
which hit Fukushima Prefecture, Japan in 2019, were ana-
lyzed. The typhoon hit the city on Saturday, October 12, 
resulting in the highest amount of precipitation recorded 
in October. This heavy rainfall caused levee failure and 
overtopping on Sunday, October 13. In this study, the 
period from 0:00 to 12:00 on October 13, 2019, corre-
sponding to the consequent inundation, was considered for 
analysis. Meteorological data related to Typhoon No. 19 
were obtained from the Japan Meteorological Agency [16]. 
Data on areas inundated (flooded roads) by typhoon were 
obtained from open-source hazard maps [17, 18] collected 
by each municipality. Hazard maps were used to confirm 
the correct data for U-turns in the event of a disaster (i.e., 
whether U-turns were made before the flood zone) and to 
narrow down the U-turn detection area.

The probe data are described below. In this study, we 
used probe data collected by ETC2.0 [19], a system that 
enables collaborative links between vehicles and roads 
of a variety of services. Vehicles equipped with ETC2.0 
service compliant OBUs accumulate travel and behavior 
histories in a privacy-protected format. This information 
is collected as probe data when the vehicles pass through 
an RSU. The travel history is recorded every 200 m. In this 
study, we used point-sequence data from the probe data 
without aggregation. The penetration rate of the ETC2.0 
onboard units was 30.1% in Japan as of February 2023 
[22]. RSU were installed at more than 1,800 locations 
on expressways and 2,400 locations on national roads in 
Japan (as of April 2023). Therefore, notably, data may not 
be obtained for locations where RSUs were not installed 
(e.g., narrow streets). However, we believe that this system 
can monitor a wider area than a CCTV camera owing to 
the following reasons:

1) Rapid detection of traffic anomalies is necessary to sup-
port mobility during disasters. Therefore, the data pro-
cessing time was reduced by omitting the map-matching 
process.

2) The accuracy of map matching depends on the state of 
road network data. Traffic anomalies may occur even 

on narrow streets where network data are unavailable. 
Therefore, we developed a traffic anomaly detection 
method that is independent of the network data.

3.2  U‑Turn Detection Algorithm

We defined the U-turn behavior during heavy rainfall as 
a traffic anomaly and proposed an algorithm for its detec-
tion using probe data. This algorithm is intended to be exe-
cuted in the event of a heavy rainfall warning (or rainfall 
restriction).

First, the U-turn behavior during heavy rainfall was 
defined as follows:

1) A U-turn is made on a single road (route) (i.e., when 
a vehicle moves into an oncoming lane) within the same 
road (route).
2) U-turns were made before the flooding (or within the 
flooded area).

In this study, U-turns that met these conditions were 
defined as disaster-caused U-turns. In a previous study [15], 
based on the above definition, U-turns during Typhoon No. 
19 were classified by visually checking the probe trajectory 
data.

1) Location of occurrence: U-turns are frequent near 
bridges and rivers.

2) Speed transition before and after a U-turn: A vehicle 
decelerates before the U-turn and then further deceler-
ates during the U-turn, after which the vehicle recovers 
(increases) its speed.

3) U-turn angle: All U-turns were made at sharp angles.

Figure 1 shows the latitude and longitude of a U-turn; as 
shown, U-turns were detected using GPS data at three points 

Fig. 1  Definition of a U-turn
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(Nos. 1–3). The corresponding velocities were defined as 
v1, v2 , and v3 , and the angles at Points 1–3 were defined 
as X1,2,3 . The thresholds of the velocities were defined as 
v
th

1
, vth

2
, vth

3
 , and the thresholds of the angles were defined as 

X
th

1,2,3
.

The following procedures were proposed to detect 
U-turns using probe data:

Step 1: Establishment of candidate locations
U-turns are routinely made in parking lots and turna-
rounds. However, these U-turns are beyond the scope of 
this study. To improve the accuracy of U-turn detection 
in the event of heavy rainfall, the locations where U-turns 
were detected were narrowed down in advance. Based on 
a previous study [15], we targeted locations near river-
banks. The specific method is described as follows.
Step 2: Detection of candidate U-turn locations
Speed changes were detected at Points 1–3, as shown in 
Fig. 1.

1: The vehicle is traveling at a speed higher than speed 
v
th

1
 before the start of the U-turn. Next, the point 

where the vehicle is moving normally immediately 
after decelerating to make a U-turn (i.e., the point 
where the vehicle is moving at a speed of vth

1
 or less 

immediately after decelerating to a speed ≤ vth
1

).
2: The point where the vehicle appears to have made a 

U-turn (the point where the vehicle decelerates to a 
speed ≤ vth

2
).

3: The point at which the vehicle appears to have 
started moving after the U-turn (the point where the 
vehicle accelerates to a speed of ≤ vth

3
 after (2)).

Step 3: Calculation and evaluation of U-turn angle
Using the angle X(1,2,3) between the three points detected 
in Step 2, we can determine if the vehicle has made a 
U-turn or simply decelerated and proceeded (without 
making a U-turn). Specifically, if X1,2,3 < X

th

1,2,3
(the angle 

threshold), a vehicle is considered to have made a U-turn.

v
th

1
, vth

2
, vth

3
 , and Xth

1,2,3
 are the parameters of the U-turn 

behavior detection. Based on the above procedure, an algo-
rithm for U-turn detection was established. The notation 
used in this algorithm are listed in Table 1. Figures 2 and 
3 show the U-turn detection algorithm for a single vehicle 

Table 1  Notation of variables Notation Definition

t = 1, 2,… ,T Time step
P(t) = (v(t), x(t), y(t)) GPS data (speed, longitude, and latitude) at time t
k = 1, 2,… ,K Index of vehicle U-turns
P(1)(k) = (v(1)(k), x(1)(k), y(1)(k)) Information on Point No. 1 of the k-th U-turn
fangle(∙) Function to calculate angles using data from 

Points 1–3 ( P(1)(k),P(2)(k),P(3)(k))
P(f )(k) k-th U-turn information (after finalization)
vth
1
, vth

2
, vth

3
U-turn velocities threshold

X
th1,2,3

   U-turn angle threshold

Fig. 2  Algorithm for Step 2
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based on these notations. Figure 2 shows the algorithm for 
Step 2, which extracts Points 1–3 where the speed changes. 
Figure 3 shows the algorithm for Step 3, which passes the 
information of the three points and determines whether a 
U-turn is made based on the angle.

4  Parameter Calibration

In this section, a method for calibrating the parameters of the 
U-turn detection method described in Section 3 is proposed, 
and the calibration results are summarized. The data used 
for the parameter calibration were obtained from Koriyama 
City, Fukushima Prefecture, Japan, during Typhoon No. 19.

4.1  Data for Parameter Calibration

The data used in parameter calibration are described in this 
section. The data were related to vehicles that made a U-turn 
(traffic anomaly) owing to heavy rainfall in Koriyama City, 
Fukushima Prefecture (correct U-turn data). The correct were 
organized according to the definition of U-turn (Section 3.2), 
using the following procedure: First, vehicle trajectory and 
inundated area data were visualized in GIS. The individual 
vehicle trajectories were visually confirmed, and the data that 
met the definition of a U-turn were organized as “correct data.” 
For details on the method for creating correct data, please refer 
to [15]. Owing to human errors (e.g., oversight), not all U-turns 
could be detected as the data were collected by visual inspec-
tion. Figure 4 shows the visually detected U-turn locations. 
The red star indicates the U-turn point. This figure shows that 
U-turns were frequently made near crossing areas and rivers. 
The distribution of U-turns differs significantly between the east 
and west sides of the river, as shown in Figure. A large number 
of U-turns on the west side of the river can be attributed to the 
1) lower level of the west side of the river, 2) wider undrivable 
road caused by inundation, and 3) higher population (automo-
biles) than the eastern area of the river.

4.2  Parameter Calibration Procedure

The parameter-calibration procedure is described in this 
section.

(1) A mesh was set up for U-turn detection and accuracy 
verification (see below for details).

(2) Multiple parameter candidates were enumerated.
(3) The accuracy of the U-turn detection for each param-

eter was evaluated. The high-frequency value of the 
top pattern with the highest accuracy was used as the 
calibration value.

We did not use the calibration result with the highest 
accuracy, instead, used a multifrequency pattern, as in (3). 
The results showed no significant differences in the top 
U-turn detection accuracy, and the parameter set patterns 
were diverse (details are described later).

In the following section, the mesh setting of the U-turn 
detection location in (1) is described. According to a previ-
ous study [15], U-turns are frequently made near river banks. 
Therefore, we set the detection locations to units of the GSI 
regional mesh [20]. Two meshes, tertiary (1 km × 1 km) and 
quaternary (500 m × 500 m), were selected as candidates, 
and their accuracies were compared. Using hazard maps, the 
location of the mesh for U-turn detection was determined to 
be within the expected inundation area near rivers (where 
many U-turns are expected to occur in the event of a disaster). 
The reasons for setting GSI regional mesh are as follows: 1) 
The regional mesh is organized with GIS information such 

Fig. 3  Algorithm for Step 3

Fig. 4  Visualization of U-turn locations (correct data only)
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as elevation, which enables analysis of environmental fac-
tors that cause traffic anomalies such as U-turns; and 2) the 
regional mesh is defined with similar definitions (e.g., size) in 
each region. Therefore, we considered that the regional mesh 
could be used as a standard for matching the spatial resolution 
to compare the accuracy of U-turn detection among regions.

Next, we defined the indices to evaluate the accuracy of 
U-turn detection in (2): Precision (fit rate), Recall (recall rate), 
and F-value. The Recall indicates the extent of inclusion of all 
matched data in the search results. The harmonic mean of the 
Precision and Recall is the F-value. Typically, Precision and 
Recall have a tradeoff relationship. A high F-value implies that 
the model performs well [21]. In this study, Precision, Recall, 
and F-value were defined as follows: First, the relationship 
between the actual and model-estimated traffic congestions 
was defined, as summarized in Table 2. True positives (TP), 
false positives (FP), false negatives (FN), and true negatives 
(TN) in the table represent the number of cases (counts) that 
correspond to each value. For example, if the model can detect 
a U-turn at the location where the U-turn actually occurs, the 
TP is counted (+ 1). Precision, Recall, and F-value are defined 
as follows:

(1)Precision =
TP

TP + FP

The locations where U-turns are not observed disasters 
are infinite; therefore, the TN in Table 2 cannot be counted. 
Instead of using TN as an indicator (e.g., accuracy), we used 
Precision, Recall, and F-value as evaluation indicators.

4.3  Parameter Calibration Results

4.3.1  Setting of Conditions

In this section, the parameter calibration setup is described.
First, we described the mesh setup for the U-turn detec-

tion and accuracy verification. Figure 5 shows the fourth 
mesh (red frame) used for the validation of Koriyama City, 
Fukushima Prefecture, including a mesh containing the river.

Next, we described the parameter set ( vth
1
, vth

2
, vth

3
 , and 

X
th

1,2,3
)of the model. The parameter patterns are listed in 

Table 3. The speeds were set to five to six patterns with 
values up to the regulated speed (60 km/h), and the angles 
were set to six patterns with values up to 90°, similar to 
the right and left turns. Thus, the number of patterns in the 
parameter set was 1,080.

4.3.2  Candidate Mesh Settings

In this section, the results of setting up a mesh to detect 
U-turns are discussed. Figure 6 shows a scatter plot of the 

(2)Recall =
TP

TP + FN

(3)F − value =
2 × Precision × Recall

Precision + Recall

Table 2  Relationship between 
model and actual data

Actual data

U-turn Others

Model U-turn TP FP
Others FN TN

Fig. 5  Visualization of U-turn 
locations (correct data and 
model)
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precision and recall according to the mesh pattern, where 
the horizontal and vertical axes represent Recall and Preci-
sion, respectively. The values for each pattern were plot-
ted; the Precision tended to be lower, and the Recall was 
higher. Recall is crucial for preventing anomalies from being 
missed. However, a higher recall rate increases the cover-
age of true U-turns and the number of FPs. For example, 
the points in Fig. 6 where the Recall = 1.0 (diamonds and 
squares) indicate low precision ranging from 0.05 0.08. As 
an abnormality detection system should reduce false alarms 
(strikeouts), a higher Precision is desirable compared with 
the Recall. As the correct data in this study were detected 
visually by an analyst, some of the data were likely to be 
overlooked owing to human error. Therefore, the precision 
was assumed to be lower than that of the true correct answer 
owing to the fewer validation data than true correct answer 
data. A method for creating the correct dataset is an issue 
that should be addressed in future research. Figure 6 shows 
a comparison of the accuracies of the tertiary and quaternary 
meshes. A quadratic mesh produces higher accuracy than a 
tertiary mesh in terms of the mean points. This was presum-
ably owing to the improved accuracy of the quaternary mesh 
caused by the narrowing of the target area, which excluded 
roads outside the inundation zone, thereby reducing the 
number of FPs. Therefore, we set candidate locations for 
U-turn detection on a quaternary mesh.

4.3.3  Parameter Settings

The parameter calibration results are described in this sec-
tion. Figure 7 shows a descending graph of the F-values for 
each parameter pattern, including the Precision and Recall 
values for each F-value. The Recall was significantly larger 
than the Precision. From the viewpoint of the administra-
tor, overlooking an anomaly is undesirable, and focusing 
on Recall is preferable. However, in terms of the efficiency 
of abnormality detection (i.e., reduction of false alarms), 
Precision should also be evaluated. Therefore, in this study, 
we mainly evaluated the F-value by considering both Preci-
sion and Recall. No significant differences were observed 
in the top F-values. The pattern with the highest F-value 
exhibited variation (lack of regularity) in Recall. In contrast, 
Precision did not exhibit significant variation and tended to 
decrease gradually with decreasing F-value. The parameters 
in the top F-value range were diverse although no significant 
difference in the F-value was observed. We considered sim-
ply adopting a parameter pattern with the highest F-value 

Table 3  Parameter patterns

Parameter Patterns

v1 km/h (10, 20, 30, 40, 50, 60)
v2 km/h (10, 20, 30, 40, 50)
v3 km/h (10, 20, 30, 40, 50, 60)
X(1,2,3)(°) (10, 20, 30, 40, 60, 90)

Fig. 6  Distributions of the 
precision and recall

Fig. 7  Descending-order graph of the F-value
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as inappropriate. Therefore, we searched for appropriate 
parameters by analyzing the trends in their patterns in the 
top 5% of the F-values. We used the most frequently occur-
ring parameter values ( vth

1
, vth

2
, vth

3
 , and Xth

1,2,3
 ). Figure 8 shows 

a parallel coordinate plot of the top 5% of F-value param-
eters. For vth

1
 , the most frequent value was 40 km/h, followed 

by 60 km/h. A previous study [15] showed that the speed at 
which U-turns are made during a disaster tends to be lower 
than normal, vth

1
= 40 km/h; vth

2
 was 10 km/h in most cases, 

followed by 20 km/h. However, the ETC2.0 probe can only 
acquire GPS data while driving, and acquiring data in the 
low-speed range is challenging (Since data correspond-
ing to < 5 km/h can be missing, and a threshold value of 
10 km/h may result in additional missing data). The pat-
tern with vth

2
=20 km/h also contained a first-place Recall. As 

mentioned above, from the perspective of an administrator, 
Recall should be emphasized to prevent misses. Therefore, 
we set vth

2
= 20 km/h in this study; most common was vth

3
= 

60 km/h, followed by 20 km/h, which tends to be higher 
than the other speeds. Based on this, we set vth

3
= 60 km/h. 

Finally, Xth

1,2,3
 was set; the most common values for Xth

1,2,3
  

were 20° and 10°. The large number of sharp-angle patterns 
may be due to the fact that the U-turns in this study were 
limited to those performed on the same road. Based on this, 
X
th

1,2,3
 was set to 20°. After the calibration, the parameters 

were set as follows:

v
th

1
= 40 km/h

v
th

2
= 20 km/h

v
th

3
= 60 km/h

X
th

1,2,3
= 20°

As mentioned above, the optimal parameters could not be 
determined based only on the F-value; therefore, the param-
eter patterns with the highest F-values were analyzed in this 
study. For practical implementation, easy and systematic 

determination of the parameters is desirable. Construction 
of a systematic parameter calibration method will be con-
sidered in future studies.

4.3.4  Discussion

In this section, the limitations (issues) of the model are dis-
cussed. First, the normal conditions (0:00–12:00 on October 
8, 2019) and disaster conditions were compared. Figure 9 
shows the locations of the U-turns detected by the model 
under normal conditions. The figure shows that the proposed 
model captured U-turns under normal conditions. Normal 
conditions are characterized by change in the course to reach 
a destination (e.g., a U-turn at an intersection) or parking 
(e.g., a U-turn in a parking lot). However, few U-turns are 
made in the vicinity of bridge sections during normal times 
(Fig. 9). However, during a disaster (Fig. 4), many U-turns 
are made near bridge sections. Thus, the distribution of 
U-turns differs between the normal and disaster situations. 
ETC2.0 probe data processing alone cannot prevent false 
detection of U-turns (e.g., U-turns in parking lots) under 
normal conditions. Therefore, in the event of a disaster, 
narrowing down the U-turn detection points in advance is 
necessary, as described in Section 3.2. The limitations of 
the proposed model are discussed below. As shown in Fig. 4 
and 9, the proposed method can detect U-turn behavior using 
only ETC2.0 probe data. However, the ETC2.0 probe data 
has the following problems: 1) The data is sample data; 
therefore, entire data cannot be identified; and 2) the loca-
tions of ITS spots (data transmission and reception points) 
are biased. Therefore, focusing on the interpretation of 
U-turn locations is necessary. Notably, statistical processing 

Fig. 8  Parallel coordinate plot of the parameter Fig. 9  Visualization of U-turn locations (normal condition)
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such as normalization by the number of probes is not pos-
sible owing to this issue.

Consider the reasons for the occurrence of FP. FP means 
the model detects U-turns even where there is no correct 
U-turn data. While this could be a false positive in the 
model, we believe it is an effect of insufficient true correct 
data. Although U-turns were actually occurring at the time 
of the disaster, all U-turns could not be detected because the 
correct data was manually generated, and the FP increased 
due to this effect, which is thought to have lowered Preci-
sion. The method of generating true correct data is consid-
ered a future issue.

5  Validation: Applicability of model in other 
Cities

The validity of the model for Koriyama City was verified 
using calibrated parameters, and its applicability to other 
cities was evaluated. We also present validation results for 
Iwaki City, Fukushima Prefecture, during Typhoon No. 
19. Koriyama (located inland) and Iwaki (located in the 
coast) are 90 km apart and have different topographies and 
climates.

5.1  Validation Results for Koriyama City

In this section, the accuracy of U-turn detection in Koriy-
ama City using post-calibration parameters is described. In 
Fig. 5, the U-turns detected by the proposed method, correct 
answers, and fourth meshes set up for detection are indicated 
by green dots, red stars, and red boxes, respectively. Note 
that the total number of meshes used for detection was 37, 
and the figure shows only some of them.

Next, we discuss accuracy: Precision = 0.128, Recall = 0.888, 
and F-value = 0.223. The Recall value indicated that the model 
covered approximately 90% of all U-turns. Figure 10 shows the 
U-turn detection status in the target mesh for 0:00–12:00. No 
significant decrease was observed in the detection accuracy dur-
ing this period. Figure 11 shows two examples of the visualiza-
tion of traffic control and U-turn detection points attributed to 
the disaster. In these cases, U-turns were detected in areas other 
than the restricted areas. In particular, a U-turn was detected in 
a flooded hazardous area near a bridge; however, traffic control 
was not implemented. Thissuggests that improving the detec-
tion accuracy of U-turns may contribute to quicker identifica-
tion of uncontrolled areas.

Finally, to identify areas for improvement in the model, 
data for which U-turns could not be detected (i.e., FP and 
FN) were analyzed. The analysis results indicate the follow-
ing cases in which U-turns could not be detected: 1) U-turns 
made at high speeds (no deceleration before and after the 
U-turn) and 2) the behavior before and after the U-turn 

Fig. 10  Detection of U-turns by time of day in Koriyama City

(a) Point 1 

(b) Point 2 

Fig. 11  Traffic restrictions and U-turn detection points due to heavy 
rains
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consisting of multiple points (four or more). However, their 
Precision and F-values were insufficient to detect U-turns at 
high speeds. However, detecting U-turns at high speeds is 
difficult while maintaining accuracy within the framework 
of the proposed model, as the Precision and F-value are low. 
Next, we considered the possibility of improving the model 
for 2). Figure 12 shows an example of a U-turn that could 
not be detected by the proposed model. As shown in the 
figure, the positions before and after a U-turn consisted of 
multiple points. The points (locations) where the steering 
wheel maneuvers, which are made several times when mak-
ing a careful U-turn, are recorded. Such U-turns cannot be 
detected as they do not satisfy the assumption of U-turn 
behavior, as shown in Fig. 1. In case of presence of multi-
ple candidates near the deceleration point at the time of a 
U-turn, only the data of the deceleration point with the low-
est speed should be extracted and used, a situation in which 
the vector of the vehicle trajectory changes significantly as a 
U-turn should be detected, or a situation in which the vehicle 
trajectory vector changes significantly as a U-turn should be 
detected. This model improvement is an issue that needs to 
be addressed in the future.

5.2  Validation Results for Iwaki City

In this section, the verification results for Iwaki City are 
described.

First, the damage caused by Typhoon No. 19 in Iwaki was 
studied. Similar to Koriyama City, Iwaki City was confirmed 
to have been inundated by Typhoon No. 19, which resulted 
in a large number of U-turns. In Iwaki City, as in Koriyama 
City, U-turn detection points were set using a fourth mesh. 
The target mesh in Iwaki City was 31, which was identical to 

the number of meshes as that in Koriyama City. The number 
of confirmed U-turns was only 45, as the total number of 
trips was lower than that observed in Koriyama City. The 
characteristics of the U-turns were similar to those observed 
in Koriyama City, such as the concentration of U-turns near 
rivers. For more details, please refer to data provided in a 
previous study [15].

Figure 13 shows the data related to the correct U-turns 
taken in Iwaki City and the U-turn detection results obtained 
by the model. Clearly, the model can detect U-turns near 
the riverbanks. Figure 14 shows the accuracy of the U-turn 
detection for Koriyama and Iwaki. Figure 14 shows that the 
Precision, Recall, and F-values of Iwaki City were not sig-
nificantly different from those of Koriyama City, implying 
that the same level of accuracy can be guaranteed. Figure 15 
shows the U-turn detection status in the target mesh over 
time (0:00–12:00). U-turns during the nighttime (0:00–6:00) 
were generally detected with good accuracy.

Fig. 12  Examples of U-turns that could not be detected

Fig. 13  Visualization of U-turn locations

Fig. 14  U-turn detection accuracy by city
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6  Conclusions

In this study, a model for detecting traffic anomalies dur-
ing heavy rainfall events was developed, and its versatility 
was evaluated. The model was constructed using the speed 
transition before and after considering the U-turn and U-turn 
angles as parameters. The model parameters were calibrated 
using disaster-related data. The calibrated model was applied 
to a heavy rainfall disaster in Koriyama City, and it could 
detect U-turns with high accuracy. When applied to a heavy 
rainfall disaster in Iwaki City, it exhibited similar accuracy. 
This suggests that the proposed model can be extended to 
other cities.

Directions for future research:

1) Expansion of cases: We targeted only two cities, Kori-
yama and Iwaki. Further case studies are required to 
verify the applicability of the proposed method.

2) Verification of applicability to other types of disasters: 
The U-turn event defined in this study can occur if road 
damage occurs. Therefore, verifying the applicability 
of this model to other types of disasters, such as earth-
quakes is necessary.

3) Consideration of how to generate true correct data: The 
correct data used in validation does not cover all true 
U-turns (Section 4.3.4). Therefore, accurate accuracy 
verification is not possible. Future issues include a study 
of how to generate correct data.

4) Model improvement: As described in Section 5.1, the 
proposed model cannot detect cases in which mul-
tiple points exist before and after a U-turn (as shown 
in Fig. 11). Therefore, essentially, the model can be 
improved by extracting and using only the data of the 
deceleration point with the lowest speed in the pres-
ence of multiple candidates at the deceleration point at 
the time of a U-turn, detecting a situation in which the 

vector of the vehicle trajectory changes significantly as 
a U-turn, or detecting a situation in which the vehicle 
trajectory vector changes significantly as a U-turn is 
considered necessary.

5) Model improvement: In this study, we focused on the 
U-turn behavior of vehicles in front of a damaged area 
as an example of a traffic anomaly. However, in the event 
of an actual disaster, various traffic anomalies, such as 
detours and sudden decelerations, are likely to occur. 
Therefore, the model must be improved to detect various 
traffic anomalies in a flexible and versatile manner. For 
example, the model can be modified to switch between 
various models, depending on the situation.
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system
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