
1 3

https://doi.org/10.1007/s13177-022-00339-9

Data‑driven Modeling of Car‑Following Behavior on Freeways 
Considering Spatio‑Time Effects: A Comparison of Different Neural 
Network Structures

Masahiro Kinoshita1 · Yasuhiro Shiomi2 

Received: 1 June 2022 / Revised: 13 September 2022 / Accepted: 10 December 2022 
© The Author(s), under exclusive licence to Intelligent Transportation Systems Japan 2023

Abstract
Car-following behavior models based on conventional mathematical models cannot adequately reproduce traffic phenom-
ena, such as traffic breakdown, capacity drop, and oscillations, and require parameter setting. Therefore, this study aims to 
construct a highly accurate car-following behavior model using deep learning. We evaluated the influence of variables in the 
dataset using a random forest. Furthermore, we constructed models to predict the acceleration in one second using the deep 
learning methods, deep neural network, long short-term memory, one-dimensional convolution neural network (1DCNN), 
and 2DCNN models. The models were evaluated using root mean square error, MAE, yyplot, and loss plot. The results 
showed that spatiotemporally structuring the data increased the accuracy of the predictions.
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1 Introduction

Traffic congestion on freeways remains one of the social 
problems to be solved. Although the amount of traf-
fic congestion on freeways temporally reduced due to the 
COVID-19 pandemic, it has mostly returned to the level of 
before the pandemic in many countries, including Japan. 
The speed reduction caused by traffic congestion results in 
huge economic losses and environmental burdens, making 
a carbon–neutral society difficult to achieve. Therefore, it is 
essential to implement effective traffic management meas-
ures to alleviate traffic congestion based on existing infra-
structure. Additionally, a microscopic traffic simulation is a 
useful tool for evaluating the effectiveness and impacts of 

such measures in advance, especially in the era of connected 
and autonomous vehicles.

Generally, in microscopic traffic simulations, vehicle 
movement is described by combining multiple mathematical 
models according to many IF–THEN rules [1, 2]. Therefore, 
there is a nonlinear and discontinuous relationship between 
parameter values and vehicle behavior, and even a slight 
change in parameters or the order of vehicles with different 
parameters causes unrealistic behavior, such as rear-end colli-
sions [3, 4]. It is still a challenging issue to establish a logical 
method for calibrating parameters in traffic simulation [5–8].

However, it is possible to collect large amounts of detailed 
data on vehicle trajectories along freeways, and deep learn-
ing methods have been recently established to learn com-
plex vehicular behaviors. These methods enable data-driven 
vehicle behavior modeling, which does not require any 
assumptions. For example, Zhou et al. [9] showed that a car-
following behavior model using a recurrent neural network 
(RNN) trained on the next generation simulation (NGSIM) 
I80 datasets achieved higher reproducibility than the intelli-
gent driver model (IDM) [10]. Wang et al. [11] developed a 
deep learning-based car-following model using NGSIM and 
vehicle trajectory data generated by an IDM calibrated based 
on the NGSIM data. They verified that the proposed model 
could reproduce traffic congestion phenomena, including 
hysteresis loops. Additionally, they claimed the importance 
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of considering the time-series factors using long short-term 
memory (LSTM). Fan et al. [12] investigated the parameters 
necessary for improving the accuracy of RNN.

The above studies used the NGSIM dataset. However, this 
dataset has the following issues on the coverage of the dataset, 
i.e., this data did not contain the free-flow state and shockwave 
generation. Thus, it is not unveiled that the data-driven approach 
can represent the vehicle maneuvers in such traffic conditions. 
Additionally, although the above studies emphasized the impor-
tance of capturing time-series effects, they ignored the spatial 
effect on vehicle maneuvers. Traffic congestion is a spatiotem-
poral phenomenon; thus, the spatial factors, such as road geo-
metric features and the traffic state of vehicles ahead, should be 
captured in the model, as previous studies suggested [13–15].

In this study, we develop a car-following model using deep 
learning-based on open data sources of vehicle trajectories 
on a freeway, Zen traffic data (ZTD) [16], provided by Han-
shin Expressway Co. Ltd. in Japan. This dataset provides 5 h 
of vehicle trajectory data over a 2 km section and includes 
various traffic conditions, such as free-flow conditions and 
the generation and propagation of shockwaves. Using this 
data, we develop a deep learning-based model that explicitly 
considers the gradient and curvature as road structure char-
acteristics, states of multiple vehicles in front and behind 
to reflect the spatial characteristics of the traffic conditions, 
and the time-series effect. First, we evaluate the importance 
of the input variables using a random forest (RF) and select 
them for further modeling. Then, we employed four types 
of neural network (NN) models, e.g., fully connected deep 
neural network (DNN), LSTM, one-dimensional convolu-
tional neural network (1DCNN), and two-dimensional CNN 
(2DCNN), to train the car-following behavior. In previous 
studies, many models have been developed by considering 
time series data, but in this study, each model was selected 
to verify how structurization of the data set affect the predic-
tion accuracy. Finally, their prediction accuracy is compared.

The remainder of the paper is organized as follows. Sec-
tion 6 provides a modeling framework for car-following 
behavior and outlines of RF and NN models employed in this 
paper. Section 3 describes the ZTD trajectory dataset used in 
this paper and its preprocessing procedures. In Section 4, we 
describe the results of variable selection based on RF. Sec-
tion 5 presents the comparisons of the prediction accuracy 
given by the four NN models and the discussion. Finally, Sec-
tion 6 presents the conclusion and future studies.

2  Model overview

The following section provides a concept of car-follow-
ing modeling using a data-driven approach. It also briefly 
introduces each machine learning and NN algorithm used 
in this study.

2.1  Overview of Data‑Driven Car‑Following Model

Car-following models describe traffic dynamics from the 
perspective of individual driver-vehicle units [17]. This 
model mimics the accel and brake pedal operation of human 
drivers that perceive the surrounding environment and react 
to the vehicle ahead and behind. The model outputs the lon-
gitudinal acceleration of the target vehicle and requires the 
variables about stimuli and environment a driver may per-
ceive and react to as input variables. Thus, the model can be 
formulated by Eq. (1).

where ai(t) is the acceleration of vehicle i at time t ; Δt is the 
reaction delay; si(x, t) and ei(x, t) are vectors of variables rep-
resenting stimuli that vehicle i perceived and the surround-
ing environment at the time and location (x, t) , respectively; 
f (∙) is an arbitrary function that transforms the stimuli to an 
acceleration after Δt.

Generally, relative speeds and space gaps with vehicles 
ahead are considered as variables of stimuli s . e includes the 
geometric features, such as a curvature radius, gradient, and 
current traffic states. For example, the effect of changes in 
gradient on acceleration is accounted in the model formu-
lation by Bernat et al. [18], and the free-flow and interact 
terms are considered in IDM + [19]. These factors are rep-
resented as a vector ei.

In the conventional mathematical model of car-following 
behavior, an arbitrary function f (∙) is explicitly defined given a 
priori principles and assumptions on human driving behavior. 
However, there is no guarantee that the principles and assump-
tions are always consistent, instead they may depend on driv-
ers, vehicle characteristics, and traffic state. Meanwhile, in this 
study, we use a data-driven approach to model the behavior by 
applying NNs, which enable assumption-free modeling.

2.2  Outline of RF and NN Algorithms

In this study, we use RF to select the important input variables 
and criteria for the car-following model. We referred Degen-
hardt et al. [20] and the importance values estimated by random 
forests has been used as a method of variable selection. Then, 
we employ DNN, LSTM, 1DCNN, and 2DCNN to predict 
acceleration after a 1-s reaction delay and compare the predic-
tion accuracies. In existing studies, the reaction delay is often 
assumed to be 1 s or longer. Therefore, in this study, we also 
assumed 1 s. DNN deals with input variables independently, 
i.e., the order and structure of input variables are not considered 
in the model. Meanwhile, STM and 1DCNN can capture the 
time-series effect, and 2DCNN can capture the time-series and 
spatial effects by appropriately formatting the input variables. 
A brief explanation of each model is described as follows.

(1)ai(t + Δt) = f
(
si(x, t)|ei(x, t)

)
,
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2.2.1  Random Forest

RF is a machine learning algorithm that combines multiple 
decision trees to make predictions. Decision trees are meth-
ods for creating conditional branches in order from the top; 
however, it is prone to overlearning. RF can create mod-
els with high generalization performance by averaging the 
results of multiple decision trees; thereby, minimizing over-
learning. RFs are also characterized by the ability to obtain 
variable importance. Importance is a relative measure of the 
magnitude of the prediction error when randomly replacing 
a numerical value for a selected variable from all variables; 
the importance of all variables added together equals 1. In 
other words, the higher the value of importance, the more 
important the variable is for the forecast.

2.2.2  DNN

DNN is a kind of NN with four or more layers. It is one of 
the deep learning methods that enable complex processing. 
In the DNN model, neurons in each layer are fully coupled, 
and if appropriate weights can be derived, the method can 
provide highly accurate predictions. For the details of DNN, 
please refer to the literature [21].

2.2.3  LSTM

LSTM is a type of RNN that can learn long-term depend-
encies. RNNs can only handle relatively short datasets, 
whereas LSTM models can be trained on datasets with 
longer time-series information. For the details of LSTM, 
please refer to the literature [22].

2.2.4  CNNs

CNN is a type of deep learning method that adds convolu-
tion to NNs. Convolution is the process of extracting local 
features and generating a “feature map” that summarizes the 

data features using numerical data on a small lattice called 
a kernel. There are two types of CNN models: the 1DCNN 
model, which can numerically predict time-series data, and 
the 2DCNN model, which is successful in the field of image 
recognition. The 2DCNN model can structure input vari-
ables in two dimensions in time and space; therefore, it is 
suitable for representing traffic phenomena. In this study, we 
use the 1DCNN and 2DCNN models for prediction. For the 
details of CNN, please refer to the literature [23].

3  Data and Dataset Construction

3.1  ZTD

ZTD [16], provided by Hanshin Expressway, is used for mod-
eling car-following behaviors. ZTD utilizes image sensing 
to create data on the driving behavior of all vehicles driving 
in the target section in 0.1-s increments as vehicle trajectory 
data. ZTD records the position and speed of each vehicle.

Figure 1 shows a schematic road map of the vehicle trajec-
tory data used in this study. The target section includes the 
Tsukamoto on-ramp on the Hanshin Expressway Route 11 
Ikeda Line (Osaka direction). This section is an important 
route that connects Osaka Airport, Meishin Expressway, Chu-
goku Expressway, and other national trunk roads with Osaka 
City. In this section, traffic congestions recurrently occur due 
to the complex road environment with shaped curves, sags, 
and a merging section with the Tsukamoto on-ramp.

Our proposed car-following behavior model predicts the 
acceleration based on the conditions of vehicles in front and 
behind the target vehicle and road structure data. To elimi-
nate the influence of lane changes and merging vehicles on 
acceleration, the target section is limited to the overtaking 
lane where a lane change is prohibited. The starting and 
ending points of the no lane change zone are 4.2 and 3.5 
kp, respectively. In the overtaking lane, congestion mainly 
occurs near the Tsukamoto on-ramp at 3.8 kp. In this study, 

Fig. 1  Target section

Lane-change ban section (approx. 700m)

To Osaka

4.5kp 3.2kp

Tsukamoto on-ramp

Down grade (-0.3%)

R = 235m

Up grade (+0.5%)

Up grade (+0.3%)

3.8kp

Moving direction
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we used approximately 20 min of data, as shown in Fig. 2. 
This figure shows the free-flow state and the generation and 
propagation of the shockwave.

3.2  Input Data

In this study, data every 0.1-s is used to learn detailed vehi-
cle motion and predict the acceleration of the target vehicle 
one second later. The target vehicles are divided into small 
and large vehicles, and models are built for each.

For each vehicle for which acceleration was to be pre-
dicted after 1 s, the datasets for each model were obtained 
by adding the driving history data for ten vehicles in the 
front and three vehicles in the rear and road structure data, 
as shown in Table 1. Only the DNN models were given 
the time-series information of “speed change, acceleration 
change, and distance traveled from 0.5 to 3 s ago (in 0.5-s 
increments). The road structure data was the average longi-
tudinal slope of the road 50 m in front and behind the target 
vehicle and the curvature 50 m ahead. The number of time 
steps considered in the LSTM, 1DCNN, and 2DCNN models 
was set to 30 steps, corresponding to 3 s.

To create the dataset, we first organized the data as described 
above and then removed outliers and unnecessary data. Next, we 
applied normalization according to Eq. (2) to eliminate differ-
ences in the magnitude of each variable value and level the data.

where xi represents the ith value of the original input data � , 
and x′

i
 represents the value after normalization. This gives 

(2)x
�

i
=

xi − min(�)

max(�) − min(�)
(i = 1⋯ n)

all data a maximum value of 1 and a minimum value of 0. 
Then, all data were randomly split 8:2, with the former used 
for model training and the latter for validation.

In this study, we used DNN, LSTM, 1DCNN, and 
2DCNN models, but the shape of the data required for train-
ing differs depending on the model. Therefore, it is neces-
sary to create an array structure that is suitable for each 
model. Figure 3 illustrates each array structure. The variable 
yt in the figure is the variable to be predicted, which repre-
sents the acceleration of the target vehicle at time t in 1-s. 
Additionally, xk

i,t−j
 represents the kth variable at j time steps 

( 0 ≤ j ≤ n ) ahead ( −mf ≤ j < 0 ) or behind ( 0 < j ≤ mb ) of 
the vehicle from time t  in terms of the target vehicle. The 
vector notation for this variable is �i,t−j , and it is expressed 
in Eq. (3). where N is the total number of input variables.

The DNN model uses a 1D array of all input variables 
as input variables. For the LSTM and 1DCNN models, we 
created a 2D array with the time-series on the vertical axis 
and the values of each explanatory variable on the horizontal 
axis to allow for time-series variation. The 2DCNN model 
takes as input a 3D array of data for each variable, organ-
ized in a 2D array in time and space, to explicitly take into 
account the spatiotemporal dynamics of traffic conditions.

4  Variable Selection By Random Forest

4.1  Model Settings

This study evaluates the degree of influence of a variable 
on a dataset using the importance of RF, a type of machine 
learning. The purpose of the influence evaluation is to deter-
mine how a variable affects the predicted acceleration at 1-s 
after. We used a dataset of small vehicles to evaluate the 
influence of the variables. The numbers of training data, 
validation data, and variables are 238,634, 59,659, and 296, 
respectively.

The accuracy of RF can be improved by specifying 
hyperparameters during training. In this study, we set the 
“number of decision trees” and “depth of decision trees” as 

(3)�i,t−j = {x1
i,t−j

, x2
i,t−j

,… , xN
i,t−j

}

Fig. 2  Vehicle trajectory diagram

Table 1  Layout of the dataset Data content

Driving history data Current velocity
Distance and relative speed to vehicle in front
Speed change, acceleration change, and distance traveled 

from 0.5 to 3 s ago (in 0.5-s increments)
Road structure data Curvature at 50 m

Average of longitudinal gradient of 50 m before and after
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Fig. 3  Structures of input data

(i) DNN model

(ii) LSTM model, 1DCNN model

(iii) 2DCNNmodel
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hyperparameters that can be set after trial and error. Increas-
ing the “number of decision trees” improves the prediction 
accuracy, but accuracy reaches a certain limit value. “Depth 
of decision trees” allows one to specify the maximum depth 
of each decision tree. If it is too large, over-fitting will occur 
on the training data, decreasing the prediction accuracy for 
unknown data. We set the “number of decision trees” and 
“depth of decision trees” to 200 and 50, respectively.

4.2  Results

Figure 4 shows the scatter plots between the prediction 
results of accelerations using RF and the overserved accel-
eration (hereafter referred to as “yyplot”). Although the pre-
diction accuracy is not good in the large deceleration and 
acceleration phases, the model prediction plots are mostly 
on the diagonal line.  R2 and the inclination of the yyplot 
are 0.739 and 0.629, respectively, which is high enough for 
analyzing the variable selection.

Table 2 presents the top 20 and bottom 20 importance 
variables calculated. As presented in the table, relative speed 
and distance used in conventional following models were 
selected as the important variables for prediction. In addition 
to driving historical data of the target vehicle, time-series 
data from multiple seconds before for the first to third vehi-
cles in front of the target vehicle was shown to be important. 
For the road structure data, the average of the longitudinal 
gradient of 50 m before and after the road was also shown to 
have a significant impact on the prediction. However, vari-
ables related to the fifth and subsequent vehicles in front 
were less important. This result shows that variables related 

to the fifth and subsequent vehicles in front are not important 
for prediction. Therefore, we will compare the prediction 
accuracy using a dataset with only five vehicles in front of 
the vehicle for prediction using deep learning.

5  Model Setup and Forecast Results

5.1  Model Setup

In this study, we used Python3, which allows for easy con-
struction of a learning environment, and implemented the 
model using Keras. We used Adam as the optimization 
method. The training process of a model is visualized by Loss 
Plot to check for over-fitting. Loss Plot shows the sequence 
of loss values of each iteration and can determine that no 
over-fitting has occurred if the loss of training and valida-
tion data converges. RMSE, MAE, yyplot, and the inclination 
of yyplot were used to evaluate the prediction accuracy. The 
closer RMSE and MAE are to 0, the more accurate the predic-
tions are. yyplot is a scatterplot of the observed and predicted 
values, and the closer the slope is to 1, the more accurate the 
prediction is in all regions. The structure and hyperparameters 
of each model were determined after trial and error. The learn-
ing rate is a parameter that determines how much to update the 
weights in the optimization. Batch size is the number of train-
ing data used in one training run. Epochs are the number of 
iterations over which the training data are trained. The models 
were constructed for small and large vehicles.

5.2  Results

5.2.1  DNN Model

Figure 5 shows the structure of the DNN model constructed 
in this study. The model setup and each evaluation index are 
presented in Table 3, and the loss plot and yyplot are shown 
in Fig. 6. The loss plots show that the loss converged for the 
training and validation data, confirming that no over-fitting 
occurred. For small vehicles, the inclination of yyplot is far 
from 1.0, and some plots are far off the diagonal, which raises 
questions about the accuracy of the prediction. However, 
for large vehicles, the inclination of yyplot is close to 1.0. 
Although there are some plots that are far from the diagonal, 
the trend of acceleration and deceleration can be grasped.

5.2.2  LSTM Model

Figure 7 shows the structure of the LSTM model constructed 
in this study. The model setup and each evaluation index are 
presented in Table 4, and the loss plot and yyplot are shown 
in Fig. 8. The loss plots show that the loss converged for the 
training and validation data, confirming that no over-fitting Fig. 4  Prediction results of RF
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occurred. As shown in the yyplot, the plots are concentrated 
on the diagonal for the small and large vehicles. Addition-
ally, there are no plots that are far off the prediction in the 
rapid deceleration and rapid acceleration regions, indicating 
that the prediction is very accurate.

5.2.3  1DCNN Model

Figure 9 shows the structure of the 1DCNN model constructed 
in this study. The model setup and each evaluation index are 
presented in Table 5, and the loss plot and yyplot are shown 
in Fig. 10. The loss plots show that the loss converged for the 

training and validation data, confirming that no over-fitting 
occurred. The slope of yyplot is larger for the large vehicle 
than that of the small vehicle, resulting in higher predic-
tion accuracy. Additionally, compared with the yyplot of the 
LSTM model, the small and large vehicles have plots that miss 
predictions mainly in the region of rapid deceleration.

5.2.4  2DCNN Model

Figure 11 shows the structure of the 2DCNN model con-
structed in this study. The model setup and each evaluation 

Table 2  Importance of variables to predict acceleration after 1 s

Rank Variable Importance index Rank Variable Importance index

1 Relative velocity of the target vehicle at 
present

0.2866 277 Distance traveled from 2.5 s before of the 
5th vehicle in front

0.0014

2 Average of longitudinal gradient of 50 m 
before and after at present

0.0505 278 Distance traveled from 1.5 s before of the 
6th vehicle in front

0.0014

3 Distance of the target vehicle at present 0.0163 279 Distance traveled from 2.5 s before of the 
8th vehicle in front

0.0014

4 Speed change from 3 s before of the 2nd 
vehicle in front

0.0126 280 Distance traveled from 0.5 s before of the 
6th vehicle in front

0.0013

5 Speed change from 1 s before of the target 
vehicle

0.0114 281 Distance traveled from 1.5 s before of the 
10th vehicle in front

0.0011

6 Speed change from 2 s before of the 1st 
vehicle in front

0.0088 282 Distance traveled from 0.5 s before of the 
5th vehicle in front

0.0011

7 Speed change from 3 s before of the 3rd 
vehicle in front

0.0088 283 Distance traveled from 2.5 s before of the 
6th vehicle in front

0.0011

8 Speed change from 3 s before of the target 
vehicle

0.0081 284 Distance traveled from 1 s before of the 7th 
vehicle in front

0.0011

9 Acceleration change from 1 s before of the 
2nd vehicle in front

0.0068 285 Distance traveled from 1 s before of the 6th 
vehicle in front

0.0011

10 Speed change from 2.5 s before of the 2nd 
vehicle in front

0.0066 286 Distance traveled from 2.5 s before of the 
7th vehicle in front

0.0011

11 Speed change from 3 s before of the 1st 
vehicle in front

0.0064 287 Distance traveled from 0.5 s before of the 
7th vehicle in front

0.0011

12 Distance traveled from 1 s before of the 
target vehicle

0.0063 288 Distance traveled from 2.5 s before of the 
4th vehicle in front

0.0011

13 Speed of the target vehicle at present 0.0058 289 Distance traveled from 2.5 s before of the 
5th vehicle in front

0.0011

14 Distance of the 2nd vehicle in front at 
present

0.0056 290 Distance traveled from 2 s before of the 9th 
vehicle in front

0.0011

15 Distance traveled from 0.5 s before of the 
target vehicle

0.0055 291 Distance traveled from 2 s before of the 
10th vehicle in front

0.0011

16 Acceleration change from 1.5 s before of the 
2nd vehicle in front

0.0051 292 Distance traveled from 2 s before of the 6th 
vehicle in front

0.0010

17 Speed change from 1.5 s before of the target 
vehicle

0.0050 293 Distance traveled from 2 s before of the 7th 
vehicle in front

0.0010

18 Speed change from 1.5 s before of the 1st 
vehicle in front

0.0049 294 Distance traveled from 1.5 s before of the 
7th vehicle in front

0.0010

19 Relative velocity of the 2nd vehicle in front 
at present

0.0048 295 Distance traveled from 2.5 s before of the 
10th vehicle in front

0.0010

20 Speed change from 2.5 s before of the target 
vehicle

0.0046 296 Distance traveled from 2 s before of the 4th 
vehicle in front

0.0010
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index are presented in Table 6, and the loss plot and yyplot 
are shown in Fig. 12. The loss plots show that the loss 
converged for the training and validation data, confirming 
that no over-fitting occurred. The inclination of the yyplot 
approaches 1.0 for the small and large vehicles, and the 
plots are concentrated on the diagonal. The 2DCNN model 
can predict with relatively high accuracy by learning from 
structured data with time-series information and spatial 
information of the vehicles in front and behind.

5.3  Discussions

Figures 13 and 14 compare the RMSE, MAE, and inclina-
tion of the yyplot for each NN method.

The DNN model showed the worst prediction accuracy 
compared to the other three models for the small and large 
vehicles. This is because unlike the LSTM, 1DCNN, and 
2DCNN models, the time-series effect is not explicitly 

captured in DNN, although the dataset used in the DNN 
model was trained with historical vehicle information. This 
clearly shows the importance of structuring the time-series 
factors.

It was also shown that the prediction of heavy-duty vehi-
cles was highly accurate even though the number of data 
was smaller than that of small vehicles. This may be because 
large vehicles are driven by a higher percentage of skilled 
drivers and have less variability in driving behavior. Among 
LSTM and CNNs, the LSTM model had the smallest error 
for the small and large vehicles, and the inclination of the 
yyplot was closest to 1. Additionally, the LSTM model’s 
yyplot plots were more densely distributed on the diago-
nal than those of other methods. There were no significant 
outliers in the LSTM model, even in the rapid deceleration 
and acceleration regions. LSTM can capture the long-term 
memory, where the characteristics of current traffic states 
are represented, which may work well to predict the driv-
ing behaviors. The 2DCNN model gives the competitive 
prediction accuracy with the LSTM and higher accuracy 
than 1DCNN, even though it does not consider the long-
term memory. This might be because the 2DCNN model 
is arranged to explicitly capture the spatial effect of traffic 
state and time-series effect. In this study, the LSTM model 
achieved the highest accuracy in predicting car-following 
behavior; however, further refinement of LSTM to explicitly 
capture the spatial effects would be expected to yield higher 
accuracy. LSTM can consider time-series data, but it cannot 
handle structured spatial data, so we believe that combining 
LSTM and CNN can construct a model that also considers 
spatial effects.

6  Conclusion

In this study, we developed a car-following behavior model 
using vehicle trajectory data on expressways from the data-
driven approach. We applied a series of NN algorithms to 
predict the vehicle acceleration after 1 s. The main findings 
of this study are summarized as follows.

1. Capturing the time-series and spatial effects is essen-
tial in improving the prediction accuracy of accelera-
tion behavior; however, the information of  5th and more 
ahead vehicles maneuver is not necessary as input vari-
ables.

2. Spatiotemporal data structuring and long-term memory 
are effective in improving prediction accuracy.

3. The highest prediction accuracy was obtained for the 
LSTM model, confirming the high-prediction accuracy 
in the low- and high-acceleration bands.

Fig. 5  DNN model composition

Table 3  DNN model result

Small car Large car

Number of training data 244,684 15,135
Number of test data 61,171 3,784
Learning rate 0.0005 0.0001
Batch size 128 128
epoch 500 1000
RMSE 0.0304 0.0432
MAE 0.0232 0.0324
Slope of yyplot 0.6526 0.8298
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4. The prediction accuracy of large vehicles is much higher 
than that of small vehicles, suggesting that the variabil-
ity and heterogeneity in driving behavior significantly 
impact the accuracy of the models, which should be 
captured in the models.

These results show that a car-following behavior model 
based on deep learning using vehicle trajectory data can pre-
dict acceleration with high accuracy. It means that a data-
driven approach for modeling car-following behavior can 
advance traffic simulation.

Fig. 6  Loss Plot and yyplot of 
DNN model

(a) Loss Plot (small car) (b) Loss Plot (large car)

(c) yyplot (small car) (d) yyplot (large car)

Fig. 7  LSTM model composi-
tion

Table 4  LSTM model result

Small car Large car

Number of training data 225,883 14,021
Number of test data 56,471 3506
Time steps 30 30
Learning rate 0.001 0.0005
Batch size 128 128
epoch 500 500
RMSE 0.0173 0.0303
MAE 0.0130 0.0223
Slope of yyplot 0.9059 0.9038
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However, since the data used in this study was limited 
to the overtaking lane in a lane change prohibited zone, it 
is necessary to verify the prediction accuracy in other sec-
tions and at other times of the day. It is also necessary to 
analyze the cases where the LSTM model misses forecasts 
under what traffic conditions.

Fig. 8  Loss plot and yyplot of 
LSTM model

(a) Loss Plot (small car) (b) Loss Plot (large car)

(c) yyplot (small car) (d) yyplot (large car)

Fig. 9  1DCNN model composition

Table 5  1DCNN model result

Small car Large car

Number of training data 225,883 14,021
Number of test data 56,471 3,506
Time steps 30 30
Learning rate 0.001 0.0005
Batch size 128 128
Epoch 500 500
RMSE 0.0214 0.0313
MAE 0.0163 0.0230
Slope of yyplot 0.7990 0.8708
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Fig. 10  Loss Plot and yyplot of 
1DCNN model

(a) Loss Plot (small car) (b) Loss Plot (large car)

(c) yyplot (small car) (d) yyplot (large car)

Fig. 11  2DCNN model composition

Table 6  2DCNN model result

Small car Large car

Number of training data 227,140 14,021
Number of test data 56,786 3,506
Time steps 30 30
Learning rate 0.001 0.0005
Batch size 256 128
epoch 100 200
RMSE 0.0183 0.0329
MAE 0.0139 0.0244
Slope of yyplot 0.8618 0.8804
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In future studies, we will improve the car-following 
behavior model by increasing the training data and length-
ening the time-series information to be considered.
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Fig. 12  Loss Plot and yyplot of 
2DCNN model

(a) Loss Plot (small car) (b) Loss Plot (large car)

(c) yyplot (small car) (d) yyplot (large car)

Fig. 13  RMSE, MAE of each NN method Fig. 14  Inclination of the yyplot for each NN method
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