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Abstract
This study aims to explore accessibility indicators influencing the interactions between users, transport service providers 
(TSPs), and a platform operator, generating a conceptual framework for modeling these interactions under Mobility as a 
Service context. A systematic literature review was conducted to identify all studies focusing on indicators and modeling 
the interactions. There are limitations in integrating psychological indicators and dynamic pricing into the existing models. 
Moreover, there are gaps in considering monthly service packages, the efficiency of transport systems, and the perspectives 
of the TSPs for modeling the demand–supply interactions. The study ends with conclusions, discussions, and directions for 
further studies.
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1 Introduction

Mobility as a Service (MaaS) concept aims to integrate on-
demand services, such as taxi, carsharing, bike-sharing, 
ridesharing, ride-hailing, and demand-responsive services 
with public transport services (PuT) to offer user-oriented 
mobility options, providing travel information, payment, 
and ticketing on and through a single platform [1]. MaaS 
is considered as a potential solution to enhance multimodal 
integration [2], economic, environmental, and social sustain-
ability [3–5], and changes in travel behaviors and prefer-
ences [6]. Particularly, the Ubigo and Smile pilot presented 
a decrease in private car usage and an increase in the usage 
of carsharing and PuT [5, 7, 8]. Smile [9] and Whim [10] 
revealed that multimodal mobility was enhanced by com-
binations of bike-sharing with car-sharing and taxi with 

PuT. Storme et al. [11] studied travel patterns from Touring 
pilot and pointed out that MaaS could substitute private car 
usage for commuting trips.

A MaaS ecosystem is built on the interactions between 
users, the TSPs, a MaaS platform operator (MPO), public 
authorities, and other related partners [1]. The users provide 
trip requests, including a pick-up point, drop-off point, depar-
ture and/or arrival time interval, and mobility preferences. 
The TSPs include (1) PuT providers (i.e., buses and trains) 
operated by fixed routes, predefined service frequency, and 
fares; (2) on-demand service providers (i.e., carsharing, bike-
sharing, ridesharing, ride-hailing, and demand-responsive 
service) operated by a fleet of vehicles, flexible operational 
plans, and fare policies. The MPO plays a role in connect-
ing the TSPs and users, integrating different TSPs to design 
mobility options according to user preferences. From a mod-
eling perspective, exploring the demand–supply interactions 
under the complex multimodal system and integration of 
MaaS requires a much higher level of detail than conventional 
travel demand models [1] and a holistic modeling framework 
to capture all the influential aspects of MaaS. Kamargianni 
et al. [12] proposed a conceptual framework integrating dif-
ferent TSPs within a central platform; however, their study 
did not point out the indicators that represent the interactions 
between users, TSPs, and an MPO.

MaaS impacts user behaviors and preferences by facilitat-
ing accessibility to different available mobility options [6]. 
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Accessibility generally includes both physical and psycho-
logical indicators. The former may be referred to as the level 
of transport supply, including travel time (e.g., transfer time, 
waiting time, in-vehicle time, and access/egress time), travel 
distances, and costs to travel [13–17]. The latter reflects users’ 
perception of safety, security, comfort, available informa-
tion, and their perception of  physical indicators by utilizing 
transport services [15, 18]. Increased accessibility may lead 
to an increase in the total amount of user demands; how-
ever, it may also increase the operational costs of TSPs and 
users’ travel costs. To support decision making and planning 
in a complex multimodal system, it is essential to understand 
the indicators that affect the demand–supply interactions. While 
some studies have focused on modeling the operation of inte-
grated on-demand services with PuT services, a comprehensive 
understanding of the indicators and models used to model the 
demand–supply interactions has not yet been established in the 
literature. Consequently, this study focuses on exploring acces-
sibility indicators that influence the interactions between users, 
TSPs, and an MPO to generate a conceptual framework for 
modeling these interactions in the MaaS context.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the methodology of the systematic literature 
review. Section 3 presents the key results of this systematic 
review. In this section, the results of reviewing accessibility 
indicators from (1) users’ viewpoint; (2) TSPs’ viewpoint; 
(3) MPO’s viewpoint will be presented separately; and (4) 
we also illustrated the demand–supply interactions through 
identified indicators. In the final section, we discuss the main 
findings and offer critical directions for further studies.

2  Methodology

We only selected papers published in peer-reviewed jour-
nals indexed in the Scopus, Web of Science, and Science-
Direct, while limiting the search from 2014, which was the 
time MaaS emerged until August 2020. We only considered 
papers that considered: (1) multimodal integration, par-
ticularly the integration of on-demand services with PuT 
services, and (2) modeling the demand–supply interactions. 
Keywords were separately used for searching all relevant 
papers: “Mobility as a Service”; “MaaS”; “on-demand 
mobility”; “shared mobility”; “on-demand service”; “on-
demand transport service”; “ride-hailing”; “ridesharing”; 
“multimodal transport”; and “integrated transport services.”

The first search was conducted across keywords and iden-
tified a total of 1,940 papers in which 995, 482, and 503 
papers were found from the sources of Scopus, Web of Sci-
ence, and ScienceDirect, respectively. Duplicated papers 
from three search sources were identified using Mendeley, 
and 723 duplicated papers were removed. Following the ini-
tial search, most papers were eliminated by reviewing titles 

(n = 1,026), predominantly for being unrelated to multimodal 
integration and MaaS. In the next step, we categorized the 
remaining 190 papers into 37, 7, 28, 78, and 40 papers related 
to the demand side, supply side, platform side, multimodal 
integration modeling part, and mixed part, respectively, and 
then conducted an abstract review of these articles.

After an abstract review, we rejected 110 papers. We 
rejected 15 papers on the demand side, predominantly for 
being unrelated to users’ behaviors and preferences and 
removed four papers on the supply side regarding discus-
sion papers. On the platform side, 12 papers regarding dis-
cussions and technological provisions were rejected. We 
removed 41 papers on the multimodal modeling part related 
to logistic delivery and a single transport service. On the 
mixed part, most papers focusing on discussions, challenges, 
and barriers were rejected, and only two remaining papers 
related to the demand side were selected for full-text review.

The remaining 80 papers were considered for full-text 
review. We removed seven papers related to literature 
review and non-descriptive statistics on the demand side, 
deleting two papers describing the roles of MPO in the 
MaaS ecosystem on the platform side. On the supply side, 
one study focusing on the operational costs of on-demand 
service in isolation was rejected. In the modeling part, 20 
papers related to modeling independently the operation of 
on-demand services within a multimodal network were 
removed, while two papers were not available. A total of 
50 papers were identified for analysis in this study. Figure 1 
shows the identification process of relevant papers.

The user demands  for MaaS mainly focused on user 
behaviors [5, 7, 8, 19, 68], user preferences [20–22], will-
ingness to use [22–29], and willingness to pay [30–35]. The 
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Fig. 1  The identification process of selecting papers
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supply side concentrated on service package creation [36] 
and pricing schemes [37]. The platform side focused on 
matching both users and vehicles, route planning [38–49], 
and the impact of MPO on users [50–52]. The modeling 
part focused on modeling the demand–supply interactions 
[48, 53–67].

3  Results of Systematic Literature Review

Figure 2 describes the interactions between the three stakehold-
ers through physical and psychological accessibility indicators. 
The TSPs generally provide physical infrastructure, facilities, 
and services described as initial physical indicators based on 
user demands. Users’ perceptions of safety, security, comfort, 
available information, and their perceptions of initial physical 
indicators are formed through utilizing transport infrastructure, 
facilities, and services. Users decide whether to utilize transport 
services at a later time based on their psychological evaluation 
of physical accessibility indicators. In MaaS, the MPO conducts 
operational plans (e.g., dispatching and relocating strategy with 
integrated PuT) to serve user requests. Further, the MPO makes 
agreements with TSPs who provide initial physical indicators 
to create service packages, pay-as-usage options, operational 
plans and information, fare, and ticket integrations to offer to 
users. New physical indicators reflecting travel time, waiting 
time, fares, transfer locations, service integration, flexibility, 
etc., will present services provided by the MOP. Similarly, users 
also evaluate new accessibility indicators to decide whether to 
use the MaaS service. In this scene, the provision of MPO may 
rely on a range of available TSPs and their operational plans.

However, users also give requests and preferences for new 
physical indicators. The MPO might adjust the design of 
service packages, mobility options, and operational plans to 
meet user’s needs, which in turn require the existing TSPs 
to adjust their operational plans and/or provisions of supply. 
In this case, TSPs adjust their operational plans and service 
provisions as per the requirement of the MPO, which may 

impact the operation of existing TSPs and generate an opti-
mal transport system. 

3.1  Demand‑Side

Several studies exploring the results of MaaS pilots (e.g., 
Ubigo and Whim) indicated that simplicity, ease of access, 
comfort, flexibility, travel time, and travel costs are primary 
indicators leading to changes in user behaviors [7, 28, 68]. 
Furthermore, users’ attitudes toward willingness to share and 
multimodal mobility are important indicators of the like-
lihood of using MaaS [20, 23–28]. Moreover, the pricing 
schemes and amount of travel distances and/or hours pre-
defined for each transport service influence user preferences 
for MaaS packages [20, 21].

Further, several studies developed logit models to explore 
the willingness to pay (WTP) for different MaaS packages, 
showing that travel cost, travel time, and waiting time are 
important indicators affecting the WTP [31–35]. Moreover, 
the user preference for transport services in MaaS packages 
is another important indicator of WTP. Particularly, PuT ser-
vices have significantly higher WTP than current market val-
ues, while bike sharing, car sharing, and taxi are significantly 
lower [33, 35]. Feneri et al. [21] studied the impacts of MaaS 
on mode choice behaviors and indicated that monthly fees 
and discounts impacted the tendency to use a specific mode 
included in the MaaS packages. Travel time, access time, 
waiting time, number of transfers, and fare schemes are key 
indicators that impact users’ mode choices [41, 47, 57]. In 
addition, schedule delays and transfer penalties [67], avail-
able bikes or parking [45, 67], and road pricing scheme [55] 
are important indicators that impact user behaviors.

From a modeling perspective, Narayan et al. developed an 
agent-based model (ABM) considering total travel time (walk-
ing time, waiting time, and in-vehicle travel time), fare, travel 
distance, and number of transfers to model multimodal route 
choices; however, the model could not consider the influence 
of user preferences on mobility options [60]. In their study, the 

Fig. 2  The interactions among 
the three stakeholders under 
impacts of physical/psychologi-
cal indicators
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user demands were adjusted by changes in travel time, wait-
ing time, fare policies, and operational plans through iterations 
implemented in the ABM. Furthermore, Liu et al. [48] consid-
ered the impact of waiting time on the choices of bikesharing 
and ridesharing to public transport stations. The studies by Wen 
et al. [53] and Printo et al. [62] improved the simulation models 
and considered the assumptions of user preferences for estimat-
ing travel demand in the multimodal context, but these analyses 
focused on the operation of autonomous vehicles (AVs).

In summary, user demands toward MaaS are impacted by 
both psychological and physical accessibility indicators. The 
former mainly related to simplicity, ease of access, comfort, 
flexibility, perceived travel time, travel costs, and users’ will-
ingness to share. In addition, user preferences for different 
transport services integrated in service packages also affect 
the likelihood of using MaaS. The latter primarily focused 
on travel time, access time, waiting time, number of trans-
fers, and fare schemes.

3.2  Supply‑Side

3.2.1  Transport Service Providers

From a modeling perspective, the TSPs considered the 
vehicle fleet size, transfer locations, fares, and operational 
costs of shared mobility services and the service frequency 
and fares of PuT services in their operational processes (see 
Table 1). Wen et al. [53] identified the vehicle fleet, vehicle 
capacity, operational policy, and fare policy for AVs based 
on user demands. Similarly, Narayan et al. [60] modeled 
the interactions between demands and supplies to determine 
fleet size, fare, and the level of service (waiting time and 
travel time) for the operation of ridesharing service. Moreo-
ver, several studies considered the transfer locations [42, 48, 
55], and unavailable bike and parking spots [63] to model 
the operational plans of the TSPs.

 Price is an important indicator of TSPs. Wischik [37] 
determined the price of ridesharing based on user demands 
and PuT fare. In addition, Wen el al.[53] applied the fare, 
including base fare, per-unit-time fare, per-unit-distance 
fare, discount for sharing, and transferring for modeling the 
operation of AVs, while other studies considered fare as cost 

per unit distance or time [42, 54, 56, 60, 62, 67, 70]. Fur-
thermore, additional road pricing was considered by Sala-
zar et al. [55] in modeling the assignment of user requests 
to mobility options. The operational costs of the TSPs are 
modelled by total travel time [47, 60, 62], and travel distance 
[42, 62] as well as generalized costs (time, distance, mainte-
nance, energy costs and fare) [48, 53–55, 66].

On the contrary, some studies considered the perspec-
tive of service providers, particularly drivers’ perspectives 
toward detour constraint (maximum distance and/or time) 
and maximum waiting time [40, 44, 54–56, 62, 69] as well 
as expectations for perceived benefits [39, 64] to describe the 
availability of shared mobility services [39, 40, 44, 54–56, 
62, 64, 69].

3.2.2  MaaS Platform Operator

A primary operational task of the MPO is to match users’ 
requests to available service providers, which are either on-
demand service, PuT services, or an integration of both ser-
vices through vehicle dispatching, idle vehicle relocation, 
and route planning process. The modeling objectives of the 
MPO are described in Table 2. The dispatching processes 
considered user’s travel time and driver’s detour time and 
waiting time to provide a journey with minimizing total 
travel time for both user and driver [38, 40, 41, 44, 60, 61, 
63, 69], and maximizing the matched users [43, 46, 47, 67]. 
Furthermore, several studies proposed dispatching models 
to minimize the operational costs of shared mobility services 
[45, 56, 62].

Moreover, Posada et al. [42] developed mixed integer 
linear programs aimed at minimizing the operational cost 
of the demand responsive service and the usage cost of PuT 
services. Chen et al. [66] used the mixed-integer optimiza-
tion problem to minimize the total travel distance (PuT and 
e-hailing vehicles) and the total e-hailing fleet size. Fur-
thermore, Salazar et al. [55] proposed a linear optimization 
model considering travel time, waiting time, capacity, and 
operational costs of AVs to maximize social welfare in terms 
of users’ travel time together with the operational costs of 
available service providers. Djavadian and Chow [64] pro-
posed a non-myopic dynamic dial-a-ride model considering 

Table 1  Supply indicators 
accounted for in modeling

Supply-side indicators References

Physical indicators
Fares, fleet sizes, capacities, and operational plans [48, 53, 54, 60]
Fleet size, capacity, PuT frequency, and transferring location [40, 42, 43, 55, 59, 62, 66]
Available bikes, parking spots [40, 63, 67]
Psychological indicators (Drivers)
Detour constraints, waiting time [40, 44, 54–56, 62, 69]
Detour constraints, waiting time, perceived profits [39, 64]
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dynamic operational policies, such as dispatching, fare 
pricing, operational costs, to establish a generalized cost 
function for users and a consumer surplus function for on-
demand service providers. In their study, maximum social 
welfare was obtained when the average consumer surplus of 
users was equal to the average profit of providers.

However, the MPO optimized the operational parameters 
of the TSPs in terms of total travel time, waiting time, vehi-
cle fleet size, pricing schemes, waiting time, and number of 
transfer locations corresponding to demands [39, 44, 45, 49, 
61, 62, 64, 66, 71]. In contrast, Ma et al. [45] showed that 
a higher frequency of PuT can impact the performance of 
ridesharing platform, such as reducing users’ waiting time 
while increasing the share of ridesharing trips for rideshar-
ing platform.

3.3  Modeling Interactions Between Demand–
Supply

To capture the interactions between users and TSPs, Wen 
et al. [53] proposed an ABM in the context of integrated 
AVs and PuT systems. In their study, the TSPs offer opera-
tional and fare policy, vehicle fleet, vehicle capacity reflect-
ing in waiting time, travel time, detour factor (defined as 
the ratio of actual in-vehicle travel time with ridesharing 
to the shortest travel time without ridesharing), and travel 
cost. The demand–supply interactions are modeled by the 
waiting time and detour factor. In particular, the users’ 
travel mode choices are affected by the waiting time and 
detour factor, which are changed by iterative simulation in 
the ABM, which in turn influence the supply parameters 
of AV services. Furthermore, the dynamic demand–supply 
interactions in a multimodal context are impacted by the 
various fleet sizes, number of transfers, fare, travel time, 
and waiting time [54, 57, 60, 66]. Moreover, the study 
by Pinto et al. [62] using an ABM and Becker et al. [65] 
using MATSim to simulate the demand–supply interactions 
showed that travel time, travel cost, and PuT frequency are 
primary indicators. However, these studies are limited to the 
operation of an AV fleet and lack dynamic pricing for AVs 
as well. In addition, Li et al. [58] proposed an activity-based 
dynamic user equilibrium model to model the demand–sup-
ply interactions of free-floating shared cars and showed that 
demands of shared cars depend on the availability and the 
rental-parking price of free floating shared cars at a location 

at a certain time interval. Furthermore, Wischik [37] con-
sidered the demand–supply interactions based on the price 
of ridesharing and PuT fare. Pentelidis et al. [51] presented 
cost allocations and pricing of services between a public 
MPO and existing TSPs based on modeling the interactions 
among user route choice decisions and provider operational 
decisions.

The abovementioned models mainly considered physical 
accessibility indicators, including travel time, travel cost, 
and fare, to describe the interactions between user demand 
and TSPs. Another limitation of existing models is the lack 
of consideration of dynamic pricing (e.g., surge pricing) 
scheme, which is a key operational parameter of on-demand 
services. Egan and Jakob [72] represented the interactions 
among users and on-demand service providers through max-
imum price, waiting time, and desired pick-up time intervals. 
Users make decisions on either accepting or rejecting jour-
neys offered by providers according to their preferences for 
maximum price, maximum waiting time, and departure time 
intervals, while service providers aim to jointly optimize the 
scheduling, routing, and pricing to maximize profits; how-
ever, this study is unrelated to multimodal integration and 
the MaaS context.

Furthermore, the MPO captured user needs and prefer-
ences for travel modes and service features to develop MaaS 
plans [50], although there were few models considering 
the assumptions of user preferences for different available 
mobility services to estimate user demand in a multimodal 
context [53, 62]. There is a limitation in the integration of 
psychological indicators into modeling the interactions in 
existing studies, especially considering that users’ willing-
ness to share is a major limitation in modeling ridesharing 
and/or on-demand services. Moreover, the existing models 
focused on modeling and matching a single request to avail-
able mobility options. There is a lack of studies accounting 
for the interactions between users who choose monthly ser-
vice packages and other service providers.

Furthermore, the reviewed models simulating the plat-
form operation of on-demand services can establish and 
assign trip requests to other TSPs, such as PuT services 
and bike-sharing service although the TSPs are indepen-
dently operated and not yet integrated into a single MPO. 
As a result, the existing models focus on the objectives of 
minimizing travel cost and/or travel time or maximizing the 
benefits of on-demand service [38–49, 55, 56, 60–63, 66, 67, 

Table 2  Modeling objectives of 
platform operation

Objectives of Modeling References

Minimize travel time for both users and drivers [38, 40, 41, 44, 60, 61, 63, 69]
Minimize users’ travel time and maximize drivers’ matching rate [43, 46, 47, 67]
Minimize users’ travel time and providers’ operational costs [39, 42, 45, 48, 49, 56, 62, 66]
Maximize social welfare for both users and drivers [55, 64]
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69]. Therefore, a gap found in the literature is identified as 
a lack of studies accounting for the efficiency of both on-
demand services and PuT services.

In addition, Djavadian and Chow [64] proposed an ABM 
to simulate a two-sided market where the operational policy 
is a function of user demand, and user costs are a function 
of the operational policy and network. Users are impacted 
by travel time (waiting time and in-vehicle time), sched-
ule delay, and fare price. Drivers may decide whether to 
participate in service provision based on their expected 
profit threshold and the probability of getting a passenger. 
The platform is represented by operational policies and 
infrastructure network and is modeled in terms of maxi-
mizing the total welfare of both users and operators. The 
study showed that fare price and drivers’ profit threshold 
significantly affected fleet size, which in turn impacts the 
performance of on-demand services, taxi demand, and total 
consumer surplus of users. Similarly, several studies also 
considered drivers’ perspectives toward detour constraints 
(maximum distance and/or time) and maximum waiting time 
[40, 44, 54–56, 62, 69]. However, these studies overlooked 
the decisions of other TSPs, such as bike-sharing providers 
and shared car providers on providing available vehicles, 
which became another gap in the existing models.

4  Conclusions and Discussions

This study aimed to identify psychological and physical 
accessibility indicators to describe the demand–supply 
interactions in multimodal and MaaS contexts, and to point 
out limitations in integrating these indicators into modeling 
the interactions among users, TSPs, and an MPO. Follow-
ing this literature review, the physical accessibility indica-
tors, such as waiting time, travel time, travel cost, and fare 
price are mainly applied for modeling the demand–supply 
interactions. In addition, there are some gaps in modeling 
the interactions as follows:

First, a limitation found in the literature is the lack of 
models integrating psychological accessibility indicators for 
quantifying the demand–supply interactions, except for Wen 
et al. [53] and Pinto et al. [62] considered the assumptions of 
user preferences for AVs. In MaaS, use-oriented service pro-
vision needs to reflect user needs and preferences for travel 
modes and service attributes; thus, considering psychologi-
cal indicators into models could comprehensively establish 
the interactions between users and service providers. Fur-
thermore, considering psychological indicators could make 
MaaS more attractive and accessible to users.

Second, another limitation of existing models is the con-
sideration of dynamic pricing for modeling the interactions. 
The dynamic price is commonly adjusted by the demand/
supply ratio and/or the available vehicle fleet size in the 

network [73]. Particularly, service providers set higher 
prices when user demand is higher than  the amount of 
available service providers, which leads to a reduction in 
user demand and attracts more drivers simultaneously and 
vice versa. Overlooking dynamic pricing might influence 
the choice of alternative mobility services under multimodal 
systems, modeling the demand–supply interactions and the 
performance of an MPO.

Third, a gap found in the literature is to model the inter-
actions between monthly users and/or service packages to 
TSPs. The monthly service packages might be identified 
by a fixed amount of travel time/distances and transport 
modes; therefore, the MPO can determine users’ journeys 
in advance. Given a set of known user demands, the MPO 
can find optimal dispatching and alternative mobility options 
to meet user demands.  In this  scenario, the demand–supply 
interactions could be changed.

Fourth, another gap found in the literature is to account 
for the efficiency of transport systems. Since the TSPs are 
current-independent operations, modeling the platform oper-
ation aims to optimize a single transport service instead of 
joint optimization for transport systems. Considering this 
issue could help transport providers and planners obtain 
the target of transport system, such as maximizing opera-
tors’ profits, minimizing operators’ operational costs, and 
minimizing users’ travel time and travel costs.

Finally, a gap of models that consider the perspectives of 
the TSPs in the modeling platform operation. In addition to 
considering drivers’ decisions, it is necessary to consider 
the decisions of other TSPs when the MPO designs service 
packages and mobility options based on the users’ prefer-
ences and available services. This could not be a major 
problem for PuT services because the PuT services operate 
with fixed schedules and routes; however, it becomes a con-
siderable issue for other services, such as bike-sharing and 
car-sharing when the number of available vehicles is limited.

Further studies need to address the five limitations found in 
this study and generate a conceptual framework for modeling 
the interactions among users, TSPs and MPO in further work.
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